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Analysis on the Feasibility of Landsat 8 Imagery for
Water Quality Parameters Assessment in an
Oligotrophic Mediterranean Lake
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Abstract—Lake water quality monitoring in combination with the
use of earth observation products constitutes a major component in
many water quality monitoring programs. Landsat 8 images of
Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were
used in order to explore the possibility of Landsat 8§ to estimate water
quality parameters and particularly CDOM absorption at specific
wavelengths, chlorophyll-a and nutrient concentrations in this
oligotrophic freshwater body, characterized by inexistent quantitative,
temporal and spatial variability. Water samples have been collected at
22 different stations, on late August of 2014 and the satellite image of
the same date was used to statistically correlate the in-situ
measurements with various combinations of Landsat 8 bands in order
to develop algorithms that best describe those relationships and
calculate accurately the aforementioned water quality components.
Optimal models were applied to the image of late October of 2013 and
the validation of the results was conducted through their comparison
with the respective available in-situ data of 2013. Initial results
indicated the limited ability of the Landsat 8 sensor to accurately
estimate water quality components in an oligotrophic waterbody. As
resulted by the validation process, ammonium concentrations were
proved to be the most accurately estimated component (R = 0.7),
followed by chl-a concentration (R = 0.5) and the CDOM absorption
at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen
concentrations of 2014 were measured as lower than the detection limit
of the instrument used, hence no statistical elaboration was conducted.
On the other hand, multiple linear regression among reflectance
measures and total phosphorus concentrations resulted in low and
statistical insignificant correlations. Our results were concurrent with
other studies in international literature, indicating that estimations for
eutrophic and mesotrophic lakes are more accurate than oligotrophic,
owing to the lack of suspended particles that are detectable by satellite
sensors. Nevertheless, although those predictive models, developed
and applied to Trichonis oligotrophic lake are less accurate, may still
be useful indicators of its water quality deterioration.

Keywords—Landsat 8, oligotrophic lake, remote sensing, water
quality.

[. INTRODUCTION

ATER is essential for the survival of all living organisms.
Part of this resource is stored in lakes and reservoirs,
which are freshwater resources used to satisfy environmental
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and human requirements. Unfortunately, their water quality is
chemically deteriorated, and water managers/ scientists need
new means for observing water quality [1].

The continuous monitoring of large water bodies is a
complex task, since it demands frequent and detailed data
collection and interpretation efforts. Only intensive sampling
efforts can fully capture the spatial and temporal variability of
a multitude of key indicators. This leads to a necessary
compromise between the number of sampling stations and the
need of maintaining costs within reasonable limits [2] in [3].

Satellite remote sensing is a powerful supportive tool for
assessing of spatial and temporal variations in water quality [4]-
[6] in [1]. Remote sensing technologies enable researchers to
acquire a unique, holistic perspective of the ecosystems. From
the vantage point of space, satellite data become an invaluable
tool in support of wetland management. This is of especial
importance in the context of the increasingly strict
environmental regulations approved by governments
worldwide (e.g. Water Framework Directive and the European
Marine Strategy Framework Directive) [7].

Since the FEuropean Commission Water Framework
Directive (EC, 2000) was promulgated, Member States have
started to develop lake ecological status assessment systems,
and finished setting TP and Chl-a as reference conditions for
European lakes in different lake types and ecoregions [8]-[10]
in [11]. In particular, the use of multi-spectral sensors makes
possible to measure many of the parameters required by law [3].
Apart from the law-required components, the major factors
which can influence the quality of inland water bodies are the
suspended  sediments  (turbidity), phytoplankton and
cyanobacteria (i.e., chlorophylls, carotenoids), dissolved
organic matter (DOM), organic and inorganic nutrients,
pesticides, metals, thermal releases, macrophytic algae,
pathogens and oils. The above mentioned factors affect the
optical properties of waters (except for nutrients) thus directly
changing the signal acquired by optical sensors over water
bodies. The parameters which can be directly quantified using
remote sensing techniques are the suspended particulate matter
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(SPM), which is placed in suspension by wind-wave stirring of
shallow waters and can be a tracer for inflowing pollutants [12],
the phytoplankton mainly as chlorophyll-a (chl-a) or
phycocyanin (PC), that can be used to indicate the trophic level,
to evaluate the presence of potentially toxic algal blooms and
as a proxy of phytoplankton biomass [13], [14], the coloured
DOM (CDOM), which is investigated because of its role in
protecting aquatic biota from ultraviolet solar radiation and its
influence on specifically heterotrophic bacterial productivity in
the water column, indicative of the shift from net autotrophy to
net heterotrophy [15], [16].

A number of satellite sensors have been used for the study of
surface water quality [17]-[21]. References [17] and [22] have
recently provided a detailed review of remote sensing
instruments which can be used to assess water quality in inland
and near-coastal waters. Medium spatial resolution multi-
spectral sensor such as Advanced Land Imager (ALI) (30 m),
Advanced Land Observation Satellite (ALOS) (10 m), SPOT-5
(10 m) and Landsat provide images in the visible and near-
infrared wavelengths; compared to the higher spatial resolution
sensors, these sensors are characterized by a higher radiometric
performance which contributes to a more accurate assessment
of the concentrations of quality parameters over water. On May
30, 2013, data from the Landsat-8 satellite (launched on 11
February, 2013) became available allowing the continuance of
studies on water quality of lakes [16].

Although Landsat sensors were not designed for aquatic
applications [22], [23], we find numerous examples of
applications of Landsat images for estimating and/or
monitoring lake water quality. Several studies have proposed
reliable algorithms between Landsat data and water quality
parameters, including chlorophyll; phytoplankton and PC
concentrations [24]-[30], water clarity [31]-[35], CDOM [24],
[36], [37], blooms of cyanobacteria [28], macrophyte [38] and
total suspended sediments [39]-[43]. Few studies, though, have
attempted to monitor and model nutrient data, since those data
do not have optical properties and the regression models yielded
statistically insignificant results [44]-[46] in [47]. In particular,
[44] used Landsat TM imagery to attempt to predict nitrogen
and phosphorus concentrations in Tiahu Lake, China with some
successful results for phosphorus and less successful results for
nitrogen [47].

In general, the aforementioned studies considerably increase
knowledge of water quality and most of their developed
algorithms are commonly based on empirical relationships
using classical simple linear regression models between
remotely sensed reflectance values and measurements collected
simultaneously in the field.

In contrast to the clear oceanic waters (case-1 waters),
retrieval problems of some water quality parameters have arisen
for coastal and inland waters (case-2 waters) [48]. Monitoring
of water quality parameters in case 2 waters is not an easy task
due to runoff and discharges from rivers/streams, which add to
the complexity of the water constituent retrieval process.
Inflows from streams introduce different organic/ inorganic
particles, known as total suspended solids (TSS). As opposed
to particles, Chlorophyll-a and particularly CDOM are

absorbing components of water with CDOM absorbing the
greatest in short wavelengths (350-440 nm) and Chlorophyll-a
representing two absorption peaks in the blue and the red
regions of the spectrum (nm) [49]. Whereas Chl-a in case-1
waters can be accurately estimated on the basis of the pigment's
absorption peak in the blue, in oligotrophic case-2 waters,
estimation on the basis of the Chl-a absorption peak in the red
can be no alternative due to the overwhelming absorption by
water of the red and near-infrared (NIR) wavelength bands [48].

As well, lake water clarity can be estimated more accurately
in eutrophic and mesotrophic than oligotrophic lakes, due to the
absence of suspended particles in oligotrophic lakes that are
evident by satellite sensors [50]. In oligotrophic lakes, water
clarity is primarily controlled by the concentration of coloured
organic matter (dissolved organic carbon DOC) [51]-[54] in
[55], which, in turn, affects a wide range of chemical, physical
and biological processes. These include thermal structure, light
transmission for photosynthesis, attenuation of damaging levels
of ultraviolet light, vertical distribution of plants and animals,
as well as the form and availability of toxic metals [53], [56]-
[60] in [55]. This study presents the analysis of the quite
recently launched Landsat 8 OLI imagery in combination with
simultaneous field data to conduct basic spatial assessment of
various water quality parameters in a natural lake. The main
objective is to develop predictive algorithms and determine
chlorophyll-a concentration (Chl-a), CDOM absorption at 420
and 440 nm (acdom(420); acdom(440)) and nutrient concentrations
in the deep oligotrophic Lake Trichonida (Greece), using
multiple linear regression. Selected optimal algorithms were
applied to another L8 image of different date but with available
in-situ Chl-a, nutrient and CDOM absorption data, in order to
validate the results. Satellite derived values were compared to
in-situ ones and the initial results indicated the weakness
(depending on the parameter) of the L8 imagery for accurately
assessing the concentrations of the above mentioned optically-
active water quality components in an oligotrophic lake,
characterized by particularly low concentration values and the
absence of strong spatial and temporal variability.

II. METHODOLOGY

A. Study Area

Trichonis Lake is the largest natural freshwater body in
Greece and it is subjected to pollution from several unnatural
activities, especially from intensive farming practices, urban
sewages, grazing and small industries. Even though large
quantities of fertilizers are applied in the lake’s catchment, the
trophic status of the lake is oligotrophic to oligomesotrophic
[61]-[63]. Trichonis Lake is a deep freshwater body which has
a surface area of 97 km?, a maximum depth of 58 m and a
potential water volume of approximately 2.8x109 m® (Fig.1)
[64].

A significant hydrogeologic aspect of Trichonis lake’s
catchment is that groundwater inflows to the lake during the dry
periods are considerably high, which enhances the water
abstraction potential for anthropogenic activities [65].

Trichonis Lake’s catchment is a 399 km? semi-mountainous
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area in Western Greece (Fig. 1). The regional climate is
characterized as semi-arid to arid Mediterranean with an
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average annual rainfall of 936 mm and an average annual
temperature of 17 °C which fluctuates by 19 °C annually [66].
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Fig. 1 Trichonis Lake’s catchment and bathymetry and chl-a, CDOM and nutrients’ sampling stations of 30-31/10/2013 and 30/08/2014

B. Water Sampling

Since the timing of field observations and satellite overpass
is often considered to be critically important, [67], [68] in [69],
water samplings were conducted the same date as the satellite
overpass. A total of 22 water samples were collected across the
lake Trichonis’s surface (5-10 cm) with NIO samplers of 1.5 1
capacity in 29-30/10/2013 and 30/08/2014. Following
collection, the water samples for nutrient analysis were
preserved by the addition of HgCl, and then were filtered and
analyzed for nutrients’ concentrations. Samples were filtered
through 0.45 pm cellulose acetate filters that had been pre-
cleaned with 10% hydrochloric acid (pH = 2) followed by
rinsing with Milli-Q water.

A specific quantity of water samples for chlorophyll-a
(usually 1 L) was filtered through Whatman GF/F filters
immediately after collection. These filters were maintained in a
dry and dark environment at —15 °C and then transferred to
HCMR laboratories for further analysis.

Water samples for CDOM absorption were filtered through
0.22 pum polycarbonate filter immediately after sampling.
Filtered water was transferred into acid-cleaned (HCL 10%, 12
h) glass bottles and stored in the dark at ~-20 °C. Before
measurement, the samples were allowed to stand until reaching
room temperature.

C.Chemical Analyses

Concentrations of nutrients (NO3~, NO,~, NH4*, and POy 3 )
were determined in the soluble fraction using an ion analyser
Metrohm, the automatic analyzer Radiometer and the
photometer Merck Nova 400. The chlorophyll-a concentrations
were determined with a TURNER 00-AU- 10U fluorometer
according to the method of [70], modified by [71]. CDOM
absorption spectra were obtained between 250 and 700 nm at 1
nm increments using a dual beam UV-visible
spectrophotometer (Perkin Elmer, Lambda 25) equipped with 5
cm quartz cells and referenced to Milli-Q water. A baseline
correction was applied by subtracting the average sample
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absorbance between 690 and 700 nm from the entire spectrum.
In addition, a blank scan containing Milli-Q water was
subtracted from each spectrum. Absorption units were
converted to absorption coefficients using the relationship:

a(d) =2.303*A(A)/I 1)

where a()) = absorption coefficient (m™) , A(A) = absorbance, 1
= cell’s light pathlength (m).

D.Satellite Data and Pre-Processing

Landsat 8 Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) images consist of 9 spectral bands with
a medium spatial resolution (30 meters) for Bands 1 to 7 and 9.
The ultra-blue Band 1 is advantageous for coastal and aerosol
research. Furthermore, Band 9 is expendient for cirrus cloud
observation. The resolution for Band 8 (panchromatic) is 15
meters (Table I) [72]. Two Landsat 8 OLI images of Lake
Trichonis (Path 184, Row 33) of 30 October 2013 and 30
August 2014 were used for this study. According to the large
size of the Trichonis Lake, the number of sampling stations (22)
were considered to be adequate for monitoring variability of
CDOM, chl-a and nutrient concentrations. The satellite images
were acquired from the USGS (United States Geological
Survey) Data Centre (http://glovis.usgs.gov/).

The image processing was completed in ENVI software
(EXELIS Visual Information Solutions, Version 5.1) while
further data elaboration and analysis were conducted in ESRI’s
software (ArcGIS v. 10.1). Prior to applying the atmospheric
correction, the satellite scenes underwent radiometric and
geometric corrections.

Each band for both Landsat 8 images was radiometrically and
geometrically corrected (using GCP). After conducting an
assessment of geometric accuracy for the two images with our
Global Position System measurements (coordinate data) taken
in the study area, the geometrical accuracy was determined to
be less than one half pixel (<15 m). Finally, each band was
converted to top-of-atmosphere reflectance with sun angle
correction using radiometric calibration coefficients provided
in the metadata file to normalize the images for comparison
between different days. For atmospheric correction, dark object
subtraction (DOS) technique was used, which takes the
minimum value in each band and removes it from each pixel
[28], [73], [74]. Although this method was used very often in
the past, it still constitutes a simple and reliable manner to
exclude the atmospheric bias from the image.

E. Development of Models Relating Landsat 8 and Water
Quality Data

Numerous studies have investigated single bands, band
combinations and band ratios to estimate mainly chl-a
concentration, CDOM absorption and to a lesser extent nutrient
concentrations in freshwater bodies [1], [26], [27], [29], [36],
[47]. Multiple linear regression was used in this study to
develop relationships between remotely sensed reflectance data
(independent) and chl-a, CDOM and nutrient values
(dependant).

TABLEI
LANDSAT 8 BANDS, WAVELENGTH AND THEIR RESOLUTION
Bands (irometor) _ (eters
Band 1 - Ultra Blue (coastal/aerosol) 0.435-0.451 30
Band 2 - Blue 0.452-0.512 30
Band 3 - Green 0.533 - 0.590 30
Band 4 - Red 0.636 - 0.673 30
Band 5 - NIR 0.851-0.879 30
Band 6 - Shortwave Infrared (SWIR) 1 1.566 - 1.651 30
Band 7 - Shortwave Infrared (SWIR) 2 2.107 -2.294 30
Band 8 - Panchromatic 0.503 - 0.676 15
Band 9 - Cirrus 1.363 - 1.384 30
Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30)
Band 11- Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30)

Initially, attempts were made to find combinations,
transformations, or logarithmic transformations of Landsat 8
OLI bands which would provide more information about the
under study parameters in the lake than only one band. Such
combinations are: ratios of B1/B2, B1/B3, B2/B3, B1/B4, B1/
BS5, B4/B1, B3/B1, B3/B2, B2/B1, B2/B4, B2/BS5, B3/B5, B4/
B2, B3/B4, B4/B3, and B5/B4; multiplications of B1*¥*B4 and
B2*B4; math combinations of B3-B2, B3-B4, (B1-B3)/B2,
(B2+B3)/2, (B1+B2)/2, (B2-B4)/(B2+B4), (B2-B3)/(B2+B3),
aver(B2,B4), (B2-B4)/B3, (B2+B4)/2, (B3+B4)/2, (B2/B4)/2,
B2/(B1+B2+B3) and (B1-B4)/(B3-B4) and the logarithmic
(and natural logarithmic) transformations of log(B1/B2),
log(B1/B3), log(B1/B4), log(B2/B3), log(B2/B4), logB2/
logB3, logB2/logB4, logB3/logB4, In(B2/B4), In(B4/B2),
In(B3/B4), In(B4/B3). Subsequently, pixel values of each
transformed image were retrieved from those regions where the
22 sampling stations are located. The transformed variables
were denoted as log(Chl-a), In(acpoma20)) and In(acdom440).

The first criterion taken into account in order to select the
best predictive model was the calculation of the predictor
importance conducted in IBM SPSS software Statistics v. 23.0.
The predictor importance chart contributes to indicating the
relative importance of each predictor in estimating the model,
it does not relate to model accuracy but to the importance of
each predictor in making a prediction. (IBM SPSS, Statistics
Base 23). Subsequently, after having selected the predictors
with the highest importance for each under study water quality
parameter, they were further elaborated in a series of stepwise
and backward linear regressions. Criteria of multicollinearity
and acceptable values of tolerance factor, variance inflation
factor (VIF) and condition indices (CI) were applied to a subset
of strategic models to further help compare them and select
more straightforward models versus models with higher
accuracy (higher R) but more complexity to pick an optimal one
to assess water-quality attributes across Trichonis Lake. Then,
the optimal predictive models developed based on field
sampling of 30 August 2014 and satellite image L8 of the same
date, were applied to the Landsat image of 30/10/2013 (L8) in
order to assess and validate their efficiency by comparing the
resulting estimates with the respective available in situ
measurements. Those in situ data were collected in 29 and 30
October 2013 at the same sampling stations (Fig. 1).
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2014 were measured as lower than the detection limit of the
instrument used, hence no statistical elaboration was conducted.
Data distributions for the rest parameters were skewed with
mostly low values and without extremely high values or outliers
(Table II). In general, most values of all parameters of 2013
were measured slightly higher than the values of 2014, without
indicating great differences or existence of water quality
deterioration in 2013.

III. RESULTS

A.Statistical Summary of Trichonis lake’s In-Situ

Measurements and Water Quality Classification

In situ dataset of both sampling campaigns covered wide
ranges of water quality key indicators: chlorophyll-a (chl-a), a
acpoM20), acpoma40), total phosphorus, total nitrogen, nitrate,
nitrite, phosphate and ammonium concentrations. In-situ
nitrate, nitrite, phosphate and total nitrogen concentrations of

TABLE II
DESCRIPTIVE STATISTICS OF IN SITU DATA OF 2013 AND 2014
Skewness
Minimum Maximum Mean Std. Deviation
N Statistic Std. Error
2013 2014 2013 2014 2013 2014 2013 2014 2013 2014 2013 2014

Chla (pg/) 22 5 0.2 1.4 .88 1.07 .39 22 .14 -.51 2.15 49 .49
Acdom(420) 22 1 .08 4 4 .19 22 .09 .09 1.35 46 49 49
Acdom(440) 22 .07 .06 33 38 .16 18 .07 .09 1.34 97 49 49
TP (mg/l) 22 .03 .01 .08 .06 .04 .02 .013 012 1.2 1.9 49 49
NH4" (mg/l) 22 .02 .01 .06 .09 .03 .03 .01 .02 2.1 1.99 49 49

In order to classify the water quality of Trichonis lake, the
EPA classification system was used [75]. According to this
scheme, the classification of lake water quality is based on the
total phosphorus concentration, water transparency and trophic
index (Trophic State Index—TSI). Trophic index TSI is
calculated for each classification quality parameter as follows
[76]:

TSI(SD) = 60—14.41*In(SD) @
TSI(Chl —a) = 9.81*In(Chl —a) +30.6 3)
TSI(TP) = 14.42*In(TP) + 4.15 o

where SD is the Secchi disk (m) and Chl-a and TP (ug/1) are the
concentrations of chlorophyll-a and total phosphorus,
respectively. In the context of this study, there are no available
data of Secchi disk. Therefore, it should be noted that this water
quality classification effort is developed in order to better
understand the prevailing conditions during the sampling
periods and not to definitely classify the water quality of the
Trichonis Lake. Taking into account the concentrations of total
phosphorus and chlorophyll-a and the estimated average
Trophic Index (TSI) of both the sampling campaigns, Trichonis
Lake is characterized as oligotrophic to oligomesotrophic in
2013 and oligotrophic in 2014 (Table III).

TABLE III
EPA CLASSIFICATION SYSTEM AND ESTIMATED TSI FOR TRICHONIS LAKE
TSI TSI (Chl- TSI . .
Date (TP) a) average Classification
2013 574 3126 443 oligotrophic to
oligomesotrophic
2014  47.35 21.36 344 oligotrophic

B. Predictive Algorithms

To develop predictive Chl-a, ACDOM(420)s  ACDOM(440) and
nutrient algorithms, we established different regression models
and MLR relating in situ data and reflectance values of the

selected bands and band combinations. Several regressions
resulted in unsuccessful results accompanied by statistically
insignificant correlations. Taking into account certain
aforementioned statistical indices, optimal models were
recorded for each studied water quality parameter (Table IV).
MLR model including the spatial correlation structure and
involving Landsat8 bands 2 (blue), 3 (green) and 4 (red) proved
to be the most suitable for predicting CDOM absorption at 420
nm in Trichonis Lake. Correlation coefficient equals to 0.48
while Durbin-Watson value indicates independence of
residuals. The optimal estimating model of ammonium
concentration includes the bands 1 (ultra-blue), 3 (green), and 4
(red), while the value of the correlation coefficient is equal to
0.26. Collinearity statistics (Tolerance and VIF) of the
coefficients are 1, excluding the possibility of multicollinearity.
Concerning the chl-a predictive model, coefficients
B2/(B1+B2+B3) and (B1+B2)/2 (Table IV) were used
presenting acceptable multicollinearity statistics with values of
tolerance and VIF 0.96 and 1.04, respectively.

TABLE IV
WATER QUALITY PARAMETERS’ PREDICTIVE MODELS SUMMARY
Std. Errorof R?  Durbin-
the Estimate Change Watson

Model R R?

acdom420 =-2.195—

(859.4%B3)+(3426.1%B4)— 048 023  0.08 023 175
497.51*[(B2+B4)/2]

NH4+=-0.32+

0.14%[(B_B4)(B3_B4y 020 007 002 07 233
CHL-a=-38.62+

92.05*[(B2/(B1+B2+B3)] 044 0.19  0.13 019 25

+2239.7*[(Bl+B2)/2]

C.Algorithm Validation

In order to explore the reliability of the final predictive
models, regressions between Landsat 8-estimates of Chl-a,
acpom@20) and ammonium concentrations in Trichonis Lake
versus respective in-situ measurements of 2013 were calculated
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(Fig. 2). Several models (linear, logarithmic, quadratic, cubic,
power and exponential) have been applied in order to detect the
best potential agreement between the observed and satellite-
estimated values with the cubic model presenting the highest
correlation coefficients for all parameters (Table V).
Nevertheless, the moderate fit between in-situ and predicted
water quality parameters by each selected MLR indicated the
moderate and low predictive capacity of these models. In
particular, the highest correlation coefficient concerning the
chl-a estimation was equal to 0.45 with standard error of
estimates equal to 0.21 pg/l. Following, correlation coefficients
of acpom20)and ammonium concentrations were calculated 0.3
and 0.7 with standard error of estimates 0.17 m and 0.004
mg/l, respectively (Table V).

IV. DISCUSSION AND CONCLUSIONS

Remote sensing provides suitable information concerning

TABLE V
MODELS SUMMARY FOR WATER QUALITY PARAMETERS’ PREDICTIVE
MODELS VALIDATION

Chl-a R R?  Adjusted R Square Std. Error of the Estimate
linear 0.200 0.040 -,017 ,220
logarithmic  0.223  0.05 -0.006 0.218
quadratic  0.440 0.194 0.093 0.207
cubic 0.447 0.199 0.099 0.207
power 0226 0.051 -0.005 0.094
exponential 0.202 0.041 -0.016 0.095

Acdom420 R R?>  Adjusted R Square Std. Error of the Estimate
linear 0.11 0.012 -0.037 0.162
logarithmic  0.131 0.017 -0.032 0.162
quadratic  0.196 0.038 -0.063 0.164
cubic 0.258 0.067 -0.089 0.166
power  0.136 0.018 -0.031 0.106
exponential 0.118 0.014 -0.035 0.106

NHs" (mg/l) R R?

Adjusted R Square Std. Error of the Estimate

water quality and aquatic systems management. In this study, linear ~ 0.325 0.106 0.061 0.005
we demonstrated the limited feasibility of Landsat 8§ OLI logarithmic  0.252 0.064 0.017 0.006
imagery in combination with in situ water quality parameters’ quadratic  0.611 0.374 0.308 0.005
concentrations to identify relevant algorithms for water quality cubic  0.689 0.474 0.387 0.004
characterization in an oligotrophic waterbody, Trichonis power 0421 0.177 0.136 0379
reservoir. exponential 0.505 0.255 0.217 0.360
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Fig. 2 Scatterplots among observed and satellite-derived data

Water samples from Trichonis Lake were analyzed twice in

2013 and 2014 regarding its concentrations of

chl-a,
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ammonium and CDOM concentration, which then was
determined as the absorption at 420 nm, acpom420), €xtrapolated
from the absorption spectra. According to lab measurements,
Trichonis Lake is not only characterized as an oligotrophic lake
but also illustrates a relatively low quantitative, temporal and
spatial variability.

Multiple linear regressions were conducted among available
data and the majority of models were characterized by
insignificant statistical correlations. Optimal models were
selected based on statistical criteria and indices but presented
low coefficients and unsuccessful results. The selected
predictive model of chl-a concentration involves the
combination of ultra-blue (B1), blue (B2) and green (B3) OLI
bands of Landsat 8 satellite sensor. These results are in
accordance with those of [77], who attempted to map OLI’s
spectroradiometric sensitivity to changes in optically active
components (OACs), such as Chl-a, for a nominal solar zenith
angle 0s=40°, (solar zenith angle in our study equals to 0s=35°).
According to [77], the blue band (B2) shows the highest
sensitivity to changes in chl-a, in particular on average for
changes greater than 0.5 pg/l. This implies difficulties in
detecting changes smaller than 0.5 units of chl-a on the focal
plane using this single band. While the Ultra Blue (B1) and the
green bands (B3), on average, exhibit similar sensitivity to the
changes in chl-a, the B1 band is slightly better for waters with
low chl-a concentrations.

At the same study [77], the detection limits associated with
CDOM absorption at 440 nm were explored. While our study
resulted in a predictive model for CDOM absorption at 420 nm
combining the blue, green and red bands, [77] found out that in
waters  with relatively low CDOM concentrations,
(acpom@40)<0.5 m"), the blue and the green bands exhibit the
highest sensitivity whereas the red band was found insensitive
to the changes in CDOM absorption. In general it was found
that OLI is, on average, sensitive to changes in chl-a and
CDOM absorption larger than 0.5 ug/l and 0.1 m™, respectively.
Although actual retrievals can be improved by the use of
multiple bands, the fact that in our case detected changes in chl-
a concentrations and to a lesser extent in CDOM absorption are
marginally equal to the aforementioned threshold values, could
be the main reason of not managing high-precision assessment
results. Furthermore, [49] applied a physics-based approach to
fully examine the potential of OLI in terms of its enhanced
features in a water constituent retrieval framework. Based on
their observations they concluded that the disparity between the
response functions of OLI is more noticeable in turbid waters
than in clearer waters when mapping CDOM absorption.
Development of reliable methods to retriecve CDOM
information from spectral reflectance data is difficult. Indeed,
among the major water quality variables measurable by remote
sensing (e.g., suspended solids, chlorophyll, Secchi depth), for
several reasons CDOM may be the most difficult to measure
accurately in inland waters. CDOM absorbs but does not scatter
or reflect light while it has no absorbance troughs or peaks, such
as are found for plant pigments; instead light absorption by
CDOM follows a simple quasi-exponential decrease with
increasing wavelength. There are no wavelength bands in the

visible spectrum uniquely associated with CDOM that can be
used for measurement purposes. Thus, measurement of low to
moderate levels of CDOM in optically complex Case-2 waters
is especially difficult because light scattering by these particles
dominates their reflectance spectra [36].

Predicting ammonium concentration in inland waters can be
a hard task since very few studies have attempted to monitor
data with non-optical properties, such as nutrient
concentrations. Furthermore, not many previous studies have
been able to provide total nitrogen models with statistically
significant results or reasonable adjusted R? values [47]. Our
research resulted in the ammonium predictive model
incorporating ultra-blue, green and red bands yielding a
regression coefficient equal to 0.7, regarding the validation
process. Similar results, regarding the utilized wavelengths,
presented [45] and [47], who detected the strongest correlation
among total nitrogen and Landsat TM bands 1 (blue) and 2
(green). [44] predicted total nitrogen concentrations with
Landsat TM bands 1 (blue), 2 (green), 3 (red), and 4 (NIR),
however these results were not very successful (R>=0.24) [47].

[47] also supported that Landsat band ranges can be the most
significant for nutrient predictions in eutrophic lakes, but except
for Landsat sensor, [78] in [48] attempted to estimate chl-a
concentration by using MERIS images and they concluded that
the application of MERIS FLH algorithms in oligotrophic
waters may indeed be precluded because of too low signal to
noise ratio.

From a management perspective, in particular eutrophic and
mesotrophic lakes are of greater interest owing to their
susceptibility to development-related eutrophication [23]. In
the context of this research effort, it has been proved that greater
assessment accuracy was especially hindered from the
extremely low concentrations which strongly characterize
Trichonis lake and the lack of any value differentiation among
the sampling stations. Nevertheless, although some model
predictions applied to oligotrophic lakes are less accurate [23],
these models increase knowledge of their water quality and may
be particularly useful indicators of their water quality
deterioration.
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