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Abstract—This research aims to create a model for anaysis of
student motivation behavior on e-Learning based on association rule
mining techniques in case of the Information Technology for
Communication and Learning Course at Suan Sunandha Rajabhat
University. The model was created under association rules, one of the
data mining techniques with minimum confidence. The results
showed that the student motivation behavior model by using
association rule technique can indicate the important variables that
influence the student motivation behavior on e-Learning.
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|. INTRODUCTION

OWADAY'S, the web-based educationa system, with no

longer barrier by space and time, has been increasingly
used as asignificant tool to support students and teachers. The
benefits of the system are to facilitate information sharing and
collaboration and to communi cate between student and teacher
in a course. Student can take a web-based class to enhance
their knowledge and understanding and teacher can easily
monitor student’s performance as well. Moodle is a well
known Learning Management System (LMS) that educator
able to create the effective online courses. However, it
accumulates a huge of information daily which in turn is very
valuable for analyzing student’'s pattern behavior [1].
Student’s logs in a Moodle can show students’ interactions
like reading, writing, taking exam, and doing various tasks[2].
Therefore, it is very difficult to analyze this data manually and
although there are some tools that help to report useful
information, they do not offer specific features teacher need to
track and evaluate al the students’ activitiesin class [3]. Data
Mining Techniques is the promising methodology to extract
valuable information in this objective. Data Mining can
analyze relevant information results and produce different
perspectives to understand more about the students' activities
so as to customize the course for student learning.

The paper presents a prediction model of student motivation
behavior by using Moodle in the Information Technology for
Communication and Learning Course a Suan Sunandha
Rajabhat University. The remainder of this paper is organized
as follows. Section 2 reviews about the related literatures and
the related methodologies used in this work. Section 3
presents the implementation based on the purposed data
mining techniques.
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In section 4 the result and discussion is presented. Finally,
we conclude the paper with future research issues in section 5.

I1.RELATESWORKS AND THE METHODOLOGIES

In this section, we illustrate the literature search and the
specified methodol ogies used in this project.

A. Relates Works

A literature search shows that most of the related researches
have deployed data mining techniques to analyze student’s
learning behaviors by following this: According to C. Romero
a el [4], the research was shown the usefulness of the data
mining techniques in course management system and the rules
can help to classify students and to detect the sources of any
incongruous values received from student activities. Data
mining techniques like association rule mining were applied in
[5].[6] to extract the patterns and to evaluate the activities of
on line course and classification and association rule mining
algorithms are discussed and demonstrated in [7]. Also there
are many researches that have been investigated in the on-line
learning environment. For example, West et a investigated
impact of learning style on e-learning by using Statistics [8]
and Kerdprasop et a used Rule induction rough set to Classify
student knowledge level [9].

B. The Methodol ogies

Data Mining is the data anayzing process from different
perspectives a'so summarizing the useful information results.
The data mining process uses many principles as machine
learning, statistics and visualization techniques to discover and
present knowledge in an easily comprehensible form. There is
another definition as “the nontrivial process of identifying
valid, novel, potentially useful, and ultimately understandable
patternsin data’ [10], [11].

Association rule mining is one of the most popular data
mining approaches. It is used to discover interesting
relationships between variables in databases. According to
Agrawal et a [12], an association rule explains a close
correlation between items in a database in the form of x =y
where x and y are sets of Item set | (xandyO]l)and
Xxny=¢. =13 I ... I, isaltem set of m distinct
attributes. Theruleisindicated x impliesy whereby x is called
antecedent and y is caled consequent. There are two
importance thresholds for measurement association rule
mining, minimum support and minimum confidence. The
support of arule x =y is the probability of the Item set {x,

y} that means the relevance of the rule and the confidence of a
rule x = yis the conditional probability of y given x that

indicate the accuracy of therule.

support({x, y}) &

Confidence (X = y) =
support(x)

and
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_ support({xy})
Support = 2

pport &= y) Totalnumbelof transaconin D @
Set of transactions: D = {dd,, . . ., ¢} eachd; O

Hence, confidence is a significant measure of thoows

association rules to indicate how to strength & thined
rules. If the confidence of the association rule> y is 80%,

it means that 80% of the transactions that conkaialso
contain y, based on users to indicate the specifisdmum
confidence [13].

Apriori Algorithm is an influential algorithm forssociation
rule mining, purposed by proposed by Agrawal [1glshown
in Fig.1. The Apriori Algorithm is used level-wisearch for
frequent item sets, the sets of items that haveinmoim
support

Let G is Candidate itemsets of size k andi& itemsets of
size k.

1) L, = {large 1-itemsets};
2) for (k=2; Ly_1 # 0; k++ ) do begin
3) Cy = apriori-gen(Ly_1); // New candidates

1) forall transactions ¢t € D do begin

5) 't = subset(Cy, t); // Candidates contained in ¢
6) forall candidates ¢ € C; do

7) c.count++;

8) end

9) Ly = {c € Cy | c.connt > minsup}

10) end

11) Answer = | J, Ly
Fig. 1 Apriori Algorithm [14]

I1l.  EXPERIMENTAL SETUP

In our research, we collected the student’s datenfthe
Information Technology for Communication and Leami
Course at Suan Sunandha Rajabhat University, intwhoe
semesters of 2011. The number of students was 3002
data is composed of personal records, course {faface)
records and students’ log file from e-Learning egstMoodle
has been used for this course. Moodle is an welivknopen
source software for learning management system dfiats
teacher create and manage online classes effgctivedm
this Course, in the class (face-to —face) roongestti must be
required to attend in course room, to do exercigesgke post
exams in class, and to work in group for doing @ctj Also,
in e-Learning class, student needs to take prepastiquizzes
online, to review and use materials on e-Learniygjesn and
to participate in exercises as shown in Fig.2 (a) @).

TN oA whoaylad  dadiy dasmsin Taya

GES1001 2010 $wnem 14 15:62 58.9.183.191  wnoamuauisn wmdanm 3_7301 53127301026 quiz close attempt  wuumadtay inoit 4 matulai
GES1001 2010 fumem 14 16:61 11016416360 wnoamian  avkaod 3 7312_63127312042  upload upload d\AppSen/wwwldatalges 1001
GES1001 2010 funem 14 15:51 110.164.163.50  waamisuan  aiod 3 7312_53127312042  assignment upload ot wiandi 3 saumeain
GES1001 2010 fumen 14 15:50 58.11.26.107  wnommmnmnsal sy 2 3436 53123436041 upload upload d\AppSen/wwwidataiges 1001
GES1001 2010 fumaw 14 16:60 68.11.26.107  waamnansal wruy 2_3436 63123436041 assignment upload ot wianvi 4 matuTadiay
GES1001 2010 funen 1415:50 61.90.77.213  wnaamAuewn  wanssas 1_3403 53123403050 quiz attempt wumazay mid 4 watiiai
GES1001 2010 fumen 14 15:49 192.168.101.108 wnomnuadan  wiudn 2 3420 53123420030 upload upload d\AppSenwwidatalges 1001
GES1001 2010 fumaw 14 16:49 192.168.101.108 wioaasan  wluiin 23420 63123420030 assignment upload ot mitavi 4 matuTadiay
GES1001 2010 $wnan 14 15:48 56.9.183.191  wwamuawisn wmsana 3_7301 53127301026 quiz attempt wuumamay mivd 4 watiiai
GES1001 2010 fumen 14 15:48 11016416350  wnomueurisn  admid 3 7312 53127312029 upload upload GEN-ED TA sui2

GES1001 2010 fuman 14 15:48 110.164163.50  waommarisr aania 3_7312 63127312029 assignment upload ot wiznvt 3 stumafain
GES1001 2010 fumem 1415:48 58.11.26.107  wnomnwilan  mnn 2_3436_53123436061  upload upload d\AppSen/wwidatalges 1001
GES1001 2010 funen 14 15:48 58.11.26.107  wamwiin w1 2_3436 63123436061 assignment upload ot wiandi 4 metuTaday
GES1001 2010 fumen 14 15:47 192.168.101.108 woevtadan  wTuie 2_3420_63123420030  upload upload d\AppSenwwidatalges 1001
GES1001 2010 funem 14 15:47 192.168.101.108 wiomadan  wiuiin 23420 63123420030 assignment upload ot wiaavi 3 ssumeSonin
GES1001 2010 funen 1416:46 58.9.183.191  wwaamdaws  vaue1 3_7301_63127301030  quiz continue attemp

GES1001 2010 fumen 14 15:46 58.9.483.191  waaafows aush 37301 63127301030 quiz close attempt  wuumadau wibe 4 matulai
GES1001 2010 fumem 14 16:45 110.164.242.227 wnommeusis)  gamic 3_7312_63127312029 upload upload d\AppSen/wwwldatalges 1001
GES1001 2010 funem 14 15:45 110.164.242.227 wumnamaurion 73 7312_63127312029  assignment upload ot wiandt 3 scumeanin
GES1001 2010 fumen 14 15:43 110164.242.227 wnoartunnsal favisn 37313 63127312039 upload upload d\AppSen/wwwidataiges 1001
GES1001 2010 funem 14 16:43 110.164.242.227 wnamiiwanasal favsn 3_7312_63127312039  assignment upload ot et 3 stumeSain
GES1001 2010 funew 141543 58.9.163.191  wwaamiows  aue1 37301 63127301030 quiz attempt wuumasay miwd 4 watuiai
GES1001 2010 fumen 14 15:42 58.11.26.407  wnomsim  eniaii 2 3436 53123436060  upload upload d\AppSenwwidatalges 1001

Fig. 2 (a) Students’ log Moodle
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Fig. 2(b) Students’ log Moodle

Also, the results of students’ grade are colledtethe last.
From Fig.3, the data is preprocessed, and transfbra be
appropriated format in order to apply data miniaghiniques
to discover association rules.

DATAPREPARATION

Using eLearning

Student

l Cleaning and integration

CLEANED
DATA

l Transformation

PREPARED
DATA

Fig. 3 the data preparation process

The table | presents the important information bist
research and then all continuous attributes haven be
transformed to nominal attributes so as to convelye
discover the rules and to easily understand. Therevarious
methodologies to transform numerical attributesdiscrete
attributes like equal width, equal frequency, abuistg
principles and etc. In our case, we used the equdth
method to partition the value of continuous attrésuinto five
nominal values: VERY LOW, LOW, MEDIUM, HIGH and
VERY HIGH.

TABLE |
IMPORTANT ATTRIBUTES

Name
PreTest_numb
PostTest_number
Result-PreTest_number
Result-PostTest_number
Time-of-PreTest_number
Time-of-PostTest_number
SumofPreTest
SumofPostTest
Time-of-viewing —material
Time-of-upload—-materia
number-of-Attendance
Assignment_Number
Result_ Assignment_Number
InClassTest_number
Result_ InClassTest_number
Project_score
Midterm-score
Final-score
Grade

Description
Identification numbe of pretes
Identification number of posttest
Mark obtained from pretest

Mark obtained from posttest
Time spent on pretest
Time spent on posttest
Total mark obtained from all pretest
Total mark obtained from all posttest
Total time spent on viegimaterial
Totaltime spent oupload materi
Number of Attendance in class
Identification number of assignmie
Mark obtained from assigmnt
Identification number of in clastest
Mark obtained fromasskest
Mark obtained from project
Mark obtained fromidterm
Mark obtained fronfrinal
Final mark obtain from this class
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After preparation data, we apply the associatide mining
algorithm to discover valuable patterns. Data wesdyaed by
WEKA. WEKA, the Waikato Environment for Knowledge
Analysis, is a collection of machine learning algon to
analyze data set for data mining tasks [15]. Aisgmn rule
mining is very useful for educational objectivescéese it
presents significant relationships between theviiets of
students on this class and their final scores [¥giriori
algorithm has been used for this research and atedwith a
minimum support of 0.2 and a minimum confidence0d.
Fig 4 shows examples from the results of Apriogioaithm.

Best rules found:

. Midium=Very Low 409 ==> Count-Test-P=Very Low 397 conf: (0.98)

. Count-P-test=Height 469 ==> Count-Test-P=Very Low 448 conf: (0.98)
. Count-P-test=Height Midium=Low 341 ==> Count-Test-P=Very Low 324 [«
. Count-P-test=Very Height Count-Test-P=Very Low Grade=High 347 ==> Cou
. Count-P-test=Very Height Grade=B+ 406 ==> Count-assign=Very Height 38
. Count-Test-P=Very Low Grade=B+ 374 ==> Count-assign=Very Height 353

. Grade=High 433 ==> Count-assign=Very Height 408 conf: (0.97)

. Count-assign=Very Height Grade=High 408 ==> Count-P-test=Very Height
9. Grade=High 433 ==> Count-P-test=Very Height 406 conf:(0.97)

. Final=Medium Grade=High 341 ==> Count-assign=Very Height 319 conf:
11. count-assign=Height 441 ==> Count-Test-P=Very Low 412 conf: (0.97)
12. Count-assign=Very Height Count-Test-P=Very Low Grade=High 353 ==> Cou
13. Count-assign=Very Height In-Class=Very Height Project=Very Height 371
14. Final=Medium Grade=High 341 ==> Count-P-test=Very Height 317 conf:

Fig. 4 Results of Apriori algorithm

@~ oV W

IV. RESULTSOF EXPERIMENTAL

Due to a huge number of discovered rules, theraramey
unnecessary rules teachers are not interested omever,
there are also many interested rules teacher canfas
enhancing their classes. Hence, for this reseahehselected
rules are explained in the Fig.5, based on decisiaeacher.

Discovered rules Conf.
Count-P-test=Very High Final=Medium Count-assign=Yery High 0.58
==> Grade= Very Hich
Final=Mediurn Count-assign=Very High ==> Grade= Very High 0.58
Count-assign=Very High In-Class=Very High Count-P-test=Very High 0.58
==> (Grade= Very High
Count-P-test=High Project=High Count-Test-P=Very Low 0.58
==> Grade= Very High
Count-assign=Very High Final=Medium Count-Ptest=Very High ==> Grade= Very 0.58
High
In-Class=Very High Count-Ptest=Very High ==> Grade= Very High 0.87
Count-P-test=Very High In-Class=Very High Count-assign=Very High 0.97
==> Grade= Very High
Count-P-test=Very High Count-assign=Very High ==> Grade= Very High 0.97
In-Class=Very High Count-assign=Very High ==> Grade= Very High 0.97
Count-Test-P=Very Low Medium=Low Count-assign=Very High ==> Grade= High 0.97
Count-P-test=Very High Medium=_Low Count-assign=Very High ==> Grade= High 0.97
Mid=Low Count-assign=Very High ==> Grade= High 0.96
Mid=Very Low Count-Test-P=Very Low ==> Grade= High 0.56
Final=Medium Count-assign=Very High Count-P-test=Very High 0.96
==> Grade= Very High
Count-P-test=Very High In-Class=Very High Count-assign=Very High 0.95
==> Grade= High

Fig. 5 Results of selected rules

Though numbers of attributes have been defined; oné
attribute, “Grade”, is significantly attributed tstudent
motivation behavior. Accordingly, it was being distized in
to five levels: VERY LOW, LOW, MEDIUM, HIGH and
VERY HIGH. Based on the derived testing result, 36Pthe
data set used for training, the result is depiateeigure 6.

L Accuracy
Student Motivation .
i Testing set Nurmber of Percentage
Behavior Levels
Record

Very High 224 187 835
High 284 254 8%.44
Medium 164 125 76.22
Lows 112 87 77.68
Very Low 117 73 66.67
Total 901 731 81.13

Fig. 6 Results of testing mined rules

V.CONCLUSION AND FUTURE WORK

In this paper, we presents the preliminary resuttveng a
promising progress in this prototypes model for dmgoing
improvement of e-Learning course and also thisehodn be
beneficial to similar courses to share and discetadents’
motivation behavior. However, in term of the future
experiments, we are looking forward to researchutlother
data mining techniques to enhance this projectadsal apply
the tool to help teachers in their class.
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