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Analysis of Periodic Solution of Delay Fuzzy BAM
Neural Networks

Qianhong Zhang, Lihui Yang,

Abstract—In this paper, by employing a new Lyapunov functional
and an elementary inequality analysis technique, some sufficient
conditions are derived to ensure the existence and uniqueness of
periodic oscillatory solution for fuzzy bi-directional memory (BAM)
neural networks with time-varying delays, and all other solutions of
the fuzzy BAM neural networks converge the uniqueness periodic
solution. These criteria are presented in terms of system parameters
and have important leading significance in the design and applications
of neural networks. Moreover an example is given to illustrate the
effectiveness and feasible of results obtained.

Keywords—Fuzzy BAM neural networks, Periodic solution,
Global exponential stability, Time-varying delays

[. INTRODUCTION

I-DERECTIONAL associative memory(BAM) neural
network was first introduced by Kosto [1,2]. These
models generalize the single layer auto-associative Hebbian
correlator to a two layer pattern-matched hetero-associative
circuits. BAM neural networks is composed of neurons ar-
ranged in two layers, the X-layer and the Y-layer. Due to the
BAM neural networks has been used in many fields such as
image processing, pattern recognition, and automatic control
[3]. Recently many researchers [1-16,18-26] have investigated
the dynamics of BAM neural networks, including stability and
periodic solutions. There are many studying results about the
BAM neural networks with and without axonal signal trans-
mission delays [4-16,18-20]. Recently, there are some authors
[16,20,26] studied the BAM neural networks with distributed
delays, which are more appropriate when neural networks have
a multitude of parallel pathways with a variety of axon sizes
and lengths. In this paper, we would like to integrate fuzzy
operations into BAM neural networks. Speaking of fuzzy
operations, T.Yang and L.B.Yang [27 ] first introduced fuzzy
cellular neural networks (FCNNs) combining those operations
with cellular neural networks. So far researchers have founded
that FCNNs are useful in image processing, and some results
have been reported on stability and periodicity of FCNNs
[27-35]. However, to the best of our knowledge, few author
investigated the stability of fuzzy BAM neural networks with
time-varying delays.
In this paper, we investigate global exponential stability
of equilibrium point for the following fuzzy BAM neural
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networks:

wi(t) = —amwi(t) + 3270 iyt — 75(t)))
+ Al iyt = 750(t)))
+ Vit Byifi (i (t — 754(t)))
+ Ajoy Tjiug + Vo, Hyug + I(t)

yi(t) = —=bjy;(t) + 200, dijgi(wi(t — 0y5(t))) v
+ Niy Pijgi(xi(t — 03(t)))
+ Vit @i9i(wi(t — 03(t)))
+ Ay Sijui + iy Lijus + J;(t)

where n and m correspond to the number of neurons in
X-layer and Y'-layer, respectively. For ¢ = 1,2, .- n;j =
1,2,---,m,z;(t) and y,(t) are the activations of the ith
neuron and the jth neurons, respectively. a; > 0,b; > 0,
they denote the rate with which the ith neuron and jth
neuron will reset its potential to the resting state in isolation
when disconnected from the network and external inputs;
o, Bji, Ty and Hj; are elements of fuzzy feedback MIN
template and fuzzy feedback MAX template, fuzzy feed-
forward MIN template and fuzzy feed-forward MAX template
in X-layer, respectively; p;;,qi;,Si; and L;; are elements
of fuzzy feedback MIN template and fuzzy feedback MAX
template, fuzzy feed-forward MIN template and fuzzy feed-
forward MAX template in Y-layer, respectively; A and \/
denote the fuzzy AND and fuzzy OR operation , respectively;
u;,u; denote external input of the ith neurons in X-layer
and external input of the jth neurons in Y-layer, respectively.
external bias I; : R* — R,i=1,2,---,n, and J; : Rt —
R,57 =1,2,---,m, are continuously periodic functions with
period w. i.e..l;(t+w) = I;(t), J;(t +w) = J;(t). The delays
7;i(t) and o;;(t) correspond to finite speed of axonal signal
transmission; they are nonnegative, differential and periodic
functions with periodic w. i.e., 7j; (t+w) = 7;;(t), 04 (t+w) =
0ij(t). SUP;cp0,400) Tji(t) = M < 1L,SUPscpo 400 075 (1) =
Y2 < 1,7 = Supseio,4o0) MAXI<i<n MAX1<j<m T5i(t), 0 =
SUP;e 0, 1 00) MAX1<i<n MaX1<j<m 0ij (1) f(-), gi(+) are sig-
nal transmission functions.
The initial conditions associated with system (1) are of the
form
{ z;(s) = ¢i(s),s € [-0,0], 1,2,

i = cn o
yi(s) = p;(s),s € [-7,0], j=1,2,---,m
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where ¢;(-) and 1;(-) are continuous bounded functions
defined on [—o,0] and [—T, 0], respectively.
Throughout the paper, we give the following assumptions
(A1) The signal transmission functions f;(-),¢;(-)(i =
1,2,---,n;5 = 1,2,---,m) are Lipschtiz continuous on R
with Lipschtiz constants p; and v;, namely , for any z,y € R

Ifi(x) = f()| < pjle =yl |gi(x)

and ;(0) = g:(0) = 0
(A2) f;(-) and g;(-) are bounded on R.

Definition 1.1. If f(t) : R — R is a continuous function,
then the upper right derivative of f(t) is defined as

1
DY f(t) = Jim sup - (F(t+R) = f(2))-

- gi(y)| < wilz —yl,

Lemma 1.1.[27] Suppose x and y are two states of system
(1), then we have

/\ @ijg;(z

and

\/ [7)2]9]

n

Z O‘UHgJ gj(y)‘v

/\ az]g]

\/ ﬁz]g]

Z 1Bijl19;(x) — g;(y)l-

The remainder of this paper is organized as follows. In
Section 2, we will give the sufficient conditions to ensure
the existence of periodic oscillatory solution for fuzzy BAM
neural networks with time-varying delays, and show that all
other solutions converge exponentially to it as ¢ — oo. In
Section 3 an example will be given to illustrate effectiveness
of our results obtained. We will give a general conclusion in
Section 4.

II. PERIODIC OSCILLATORY SOLUTIONS

In this section, we will consider the periodic oscillatory
solutions of system (1) and give their proofs.

Theorem 2.1. Under assumptions (Al) and (A2), there
exists exactly one w—periodic solution of system (1.1) and
all other solutions of system (1.1) converge exponentially to
it as t — oo. if there exist constants \; > 0, \py; > 0(1 =
1,2,---,n;j = 172,~--,m) such that

>\ i + 2(1 1) Zm: Airt (lejil + lovil + 1B5il)
+3 Z] 1 n+7”¢(|dw| + |pis| + laiz]) <0,

“Antibj + 5ty 2iet Anvilldis| + pigl + lais )
5 2y Aim (lejil + gl + [85]) <0 )

Proof. Let C = C([—0,0] x [—7,0], R"™™) be the Banach
space of continuous functions with the topology of uniform
convergence. For any (¢.,¢,)T € C, we define
(e, )" Il = Sup_ \%(9)\ + sup oy (0)],
—0<6<0

77’

where |6 (0)] = 321 (62i(0))*, |0y (0)] = 32721 (0y;(0)).

For any (¢, 0,)7, (6%, goZ)T € C, we denote the solution

of system (1.1) through the initial value ((0,0)7, (¢, ¢,)7T)
and ((0,0)7, (¢, ¢;)") as
ot fo) = (21(E Pa), 22(t @a), -+ n(t 0)) T,
y(t,0y) = Wt 0y) (8 0y) - ym(t )T
a(t, ¢3) = (@1(t, 63), (8, 03), -+ walt, 93)7,
y(t,0}) = (r(t,0}),ya(t, 05, um (t, )

respectively. Define

() = x(t+0,¢z), 0€[-7,0],

yt(SOy) = y(t+ 0, ‘py)v AS [—()'7 0]7 t>0.

From system (1), we get

(zi(t, ¢z) zi(t, ¢3))
- _az(xz(t7¢T) —{E7(t,¢;))
+ 2 eailFi it = mlt). )
—[i(y;(t — 750(t), ¢3)))
+ /\ ajifi(y;(t —75:(2), 0y) (D)
/\ ayi f(y; (t Tji(t))v@gj)
+ \/ Bjifi(y;(t — 750 (t))s py)
- \/ Bjifi(y;(t — 75i(t)), o)
and
(y(t, ¢y) yi(t,ey))

= =b(y;(t, py) —y;(t, 502))
+ Z dij(gi(zi(t — 045(t), ba)
—gila(t — o3y (1), 62)))

+ A pigililt = o5®),0) 6
i=1

n
- /\ Pijgi(wi(t
i=1

+ \/ @i 9i(zi(t

i=1

n
- \/ qijgi(xi(t
i=1

—0y;(t)), #5)

— 0ij(t)), bz)

—0ij(1)), ¢3)
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Since (3) hold, we can choose a small € > 0, such that

Ai(§ = ai) + 5ty ey Aa (gl + logal + 1854)
+36%7 200 Angvildig| + Ipigl + lais]) <0,

At (5 = b)) + gy e AnrsVilldis| + [pis| + laisl)
365 00y N (lejil + lags| + 185]) <0, ©

Consider the following Lyapunov functional
1 n

5 Z Ai (@it 62) =
2

x (yj(s, ©y) — yj(s, 90;‘))266(5”)618}

3D s [t ) -

V() = i(t, 93)) %

i (legil + legil + 1854])

7'_71(t

yi(t, @5))%et (7

<
Il
—

vi(ldj| + pij| + laiz1)
— xi(s, ¢}))2e T ds

Calculate the right upper derivative DTV (t) of V along the
solutions of (4) and (5). we get

- ZAi |5i02) = it 6P
£162) — it 62)) 0,60 —

wg(fegil + leal +165i ) (Wi (s oy) =

i(t, ¢3)) e’

Yj (ta 99;;))2

j=1

e LS 0 ) + b + 185
j=1

x (5 (t = 75:(t), py) — yj (t — 75(t), ‘PZ))Q‘EE(FT"Z‘@HT)}

#3000 00) 350 e

j=1
+(y;(tsoy) =yt 0y)) (W5t 0y) — y;(t, ) e
+% Zl/i(|dij| + pij| + 1qij 1) (@i (t, dz) — l‘i(tyﬁi);-))Q
=1

<) S0 ol (| + o]+ as )

i=1

X (@it — 0ij(t), b)) — @it Uij(t)v¢;))268(t7w(t>+0)}
Et Z)\ |: - — al Il(t, ¢z) - xi(tv ¢:))2

IN

+Zuj<|cm + el + 185 |zi(t, 62) —
j=1
X‘yj(t_T]l( )s ‘Py) (t

zi(t, ¢)|

75i(t), )|

1 ET = *
+3e > wilesil + lagil + 185D (w; (8 @) — vt 03))?

j=1
LSS el + ol + 185
(yy'(t*m(t) oy) = it = m5:(t), ¢3))’]
S A (5 = b (it 20) = wi(t, 9}))?
Jj=1

+ZV1 |diz| + |pis| + laij D1yi(t, ey) — y; (¢ 03l
i=1

Uz]( ) ¢x)_ z( Ulj(t) ¢i;)|

n

1
+5e ;Vz’(|dz‘j| + [pij| + lgi ) (@i(t, dz) —

x|zi(t —

wi(t, 97))?

].—’)/2 ~
- ZVi((|dij| + Ipis| + lais)

2 &
x (@i(t = 035(t), 6a) — 2i(t — 035(1), 9))°]

Applying the elementary inequality 2ab < a? 4 b%, we obtain

D +V()
< EtzA[

+Zuj(|0jz‘\ + lagil + 185:)

=1

1 %\ |2
X (muz(t, ¢"c) - {E,(t,(ﬁzﬂ

wi(t, ¢2) — zi(t, 67))?

1—m .
= 70.0,) = 95t = 0. )P )

1 ET S *
+5e > milesil + lagil + 185D (w; (8 o) — vt 03))?
=1

71*’71

> i (egil + lagl + 185:l)

j=1

(yj(t*Tji(t) Py) — 75i(t), ©3))°]
)(y](t LPy)

+€6t2/\n+] [ -

n
Z (Idij| + pij| + laiz1)

y;(t —

yi(t,¢5))?

x (2 S105(t.0) ~ 3P

41 |sci<tfou< ), 60) — it

s - 05(0.6P)

Z |dlj| + ‘plj‘ + |Qz]|)($i(tv¢w) - Ii(ta¢:))2

i ((Idig| + |pig] + laiz])

xi(t Uzj(t) ¢:))2]

x (@(t — Uzj( )s b)) —
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i(t, ¢2) — zi(t, 67))?

2“: w5

Z (lejil + logal + 1853])

1 ET =
T3¢ Zﬂj

Jj=1
(|Cjz'\ + levil +185il) (y5 (t; y) —
+€€tZAn+] [ =

1 n
+ﬁ > villdis| + il + lais])

72) i
1 n
2 o
+ 565 ;Vv
X(|dij| + pis| + 1aij) (@i(t; b2) — 2i(t, 63))?]
1 m
>
21— Z .
EJZAnJr]VZ
1(t7¢w) - xl(t7 ¢z))2
€ 1 "
Angi(z = b))+ o AntjVi
+J(2 J)+2(1_’Y2)Z +4V

7667' Z )‘lp'j

x(|ejal + leil + 185:])] (; (2, @y) -
< 0

X (xi(t, b)) — x4(t, ¢1))?

b) (s (t, 0y) — it 0}))°

x(y;(t, 0y) — y;(t, 05))

n

= estz )\1(2 *ai)+

i=1
X (lejil + levil + [Bj3l) +

X (|dij| + |psz| + lai;])] (x

m
+et
=1

x(Idij| + pijl + lais])

Therefore V (t) < V(0), ¢ > 0. From (7), we have

1 n
> Zptt : . . o * (2
m
+ 3 1yt ey) —y5(t o)l
j=1
On the other hand
V() = —Z/\ (¢i — 0%, +Z/ 0"
754 (0

X(Jejil + logil + 185:) (yi (s, 04) —

X es(erT)ds}

+z/

yj(s? 90;;))2

1 m
+5 Z Ants (s = 235)°
j=1

|dlj| + ‘pm‘ + |q”|)

x (zi(s, ¢z> — (s, 61)) 2+ ds|
< L Ai A
) 11’£I?<Xn + lmza Xn vi)e*o Z nti

x max (|dij| + [pij| + lqz-jl)} 62 — %]
G”TZA

< ma (sl + il + 193D ey = 5]

1
+— | max A

9 |, 2 +J+ max

1<y <7n

Then it follows easily that, for all ¢ > 0.

Z(xz(ta (b”c) - )2 + Z(yj (ta ‘Py) -

i=1
< M(l¢e =03l +lloy —@yle™ ®
where
1
M = maxq————— [ max \; + max (v;)e*%c
ming <j<pim(Ai) \1<i<n 1<i<n
Z/\nﬂ max (‘du| + |piz| + laijl) | -
j=1
! Ats + max (u;)e=”
min1§i§n+m(/\i) 1<m3%X nti Igzaéxm Hi)e T
n
Z; Ai 12%”('6""' + [yl + ﬁjil)) }
i—
> 1

Hence we have

n

D (@it ¢x) =it 83))° < M2 =2l + oy — oy e

i=1
Y Wiltoy) =i (6, 25))? < M(llde— 03+ oy — o5 l)e ™
Jj=1

Therefore, for all ¢t > 0,

|z(¢a) — 22(93)] < Me =7 (||gp, —

ol + ey — @5 ll)

[ye(2y) = v (@Il < Me™*C 7 (g — @3] + oy —

We can choose a positive integer k such that

eyll)

1
Me —e(kw—1) ~ =
4
Define a Poincare mapping P : C — C by P((¢,,py)T) =
(2(¢2), Yo (py))T. Then we can derive from system (1) that

IP* (62, 04) ") =P (0%, @) I < QH(%%) G

This implies that P* is a contraction mapping, hence there
exists a unique fixed point (¢%*, cp;j*)T € C such that

PE((03,9,)T) = (03", 03T

1
Me—=the=o) < =
‘ ~4

Note that

PE(P((03",9,)") = P(PH((6:",¢3)")) = P((63",9,) 7).
This shows that P((¢:*,¢;*)") € C is also a fixed
point of P*. and so P(( e gp%f)T) = ( ;*,@Z*) . ie.,
(lw(¢m )7yUJ(SDy ) _( x 7(10y )
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Let (x(t, %), y(t, @Z*)T be the solution of system (1.1)
through ((0,0)", (¢3*, ¢5*)"), then (z(t + w,¢3*), y(t +
w, goZ*))T is also a solution of system (1.1). Obviously

(140 (D5), v ()" (2e(20(95)), e (v (o3 )T

= (ze(e2") weloy )T

for ¢t > 0, hence

(@(t 4w, ¢37), y(t +w, 0 N" = (@(t, ¢5%), y(t, 05"))".

This implies (z(t, ¢5*), y(t, ©}*))" is exactly one w—periodic
solution of system (1), and it follows from (8) that all other
solutions of system (1) converge exponentially to it as ¢ — oo.
The proof is completed.

Remark 2.1 If we don’t consider fuzzy AND and fuzzy OR
operations in system (1), then system (1) becomes traditional
BAM neural networks with time-varying delays. it is clear that
Theorem 1 [36] is corollary of Theorem 2.1. Therefore our
results generalizes the known results.

III. AN ILLUSTRATIVE EXAMPLE

In this section, we will give an example to illustrate feasible
of our result.

Example 3.1 Consider the following fuzzy BAM neural
networks with time-varying delays

Tt) = —amit) + X ifi (it - mi0))
+ Ajor i (93 (= 756(1)))
+ Vi By (s (¢ — m5a(1)))
+ NIy Tyiug + Vo) Hyjuy + I(t)
)]
i) = —byys(t) + Xl diggi(wi(t — 03 (1))
+ NIy pigi(@i(t — 035(1)))
+ Vs @igi(@i(t — 055(1))
AL Sijui 4+ Voo, Lijui + J;(t)
where

1 1
7;:(t) = g(sint—&— 1),045(t) = i(cost—&— 1),i,5=1,2.

fi(r) = falr) = g1(r) = g2(r) = %(\Wr 1 —=[r—1)

I, (t) = Ix(t) = sint, J1(t) = J2(t) = cost. It is obvious that
f(-),g(") satisfy assumption (A1) and (A2), v1 = &,72 = 1

Z?
p1=pg =vy =vo =1 Let Tj; = Hj; = Sij = Lijj = u; =

uj =1(i,j = 1,2).

5 1 1 3 3 1 3 2
(0% = —, = —. = ——. = - = - = -
11 37 21 37 12 47 22 47 11 37 21 37
By = 15 _3. _4 _ 1 . 2 _3'
12 = 1’ 22—471711—37]921— 471712— 7]922—47
2 2 1
q11 371121 37(112 3,Q22 3701 , a2 )
2 1 1 3
=4. =5. == == == ==
by 7,by = 5.3, c11 3021 = 3,012 = 1502 = 7,
1 2 2 3
di1=—=,dis=—,doy = —,dos ==, \; =1,i=1,2,3,4
11 3’ 12 3’ 21 5’ 22 5’ ? 3

By simply calculating, we can get

(lejil + laga| +18511)

1
—a] + ——
2(17’}/1) 1

2

2

<

(|duj| + |p1jl + lqu]) = —0.2 <0
1

1
2

J

2
1
—az + 20—71) Z(\Cjﬂ + laje| + |Bj2])

i=1

<

2
1
+3 E 1(|d2j| + |p2j| + |g25]) = —0.25 < 0
o

2
1
b+ d; i i
1 5Ty 2_(dal+ Ipaa] + laa )

=1

2
1

+§ ;(‘CM + |ag| + |Buil) = —0.514 < 0

1 2
b= d, Z_ i
2+ 50 =) 1:21(| 2| + |pia| + [gizl)

12

5 Z(‘CM + |agi| + |B2i]) = —0.275 < 0

i=1

Since the all conditions of Theorem 2.1 are satisfied, therefore
the system (9) has an unique 2m-periodic solution, which is
exponential stable.

IV. CONCLUSION

In this paper, we have studied the existence, uniqueness and
exponential stability of the periodic solution for fuzzy BAM
neural networks with time-varying delays. Some sufficient
conditions set up here are easily verified and these conditions
are correlated with parameters and time delays of the system
(1). The obtained criteria can be applied to design globally
exponentially periodic oscillatory fuzzy BAM neural networks.

ACKNOWLEDGMENT

This work is partially supported by the Doctoral Foundation
of Guizhou College of Finance and Economics and supported
by the Scientific Research Foundation of Guizhou Provincial
Science and Technology Department.

268



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:3, 2011

REFERENCES

[1]1 B. Kosto, Adaptive bi-directional associative memories, Appl. Opt. 26
(1987) 4947-4960.

[2] B. Kosto, Bi-directional associative memories, 1EEE Trans.Syst. Man
Cybernet.18(1988)49-60.

[3] B. Kosto, Neural Networks and Fuzzy Systems:A Dynamical Systems
Approach to Machine Intelligence, Prentice-Hall, Englewood Cliffs,
NJ, 1992,38.

[4] K. Gopalsmy and X. Z. He, Delay-independent stability in bi-directional
associative memory networks, IEEE Trans. Neural Networks 5 (1994)
998-1002.

[5] J. Cao and L. Wang, Periodic oscillatory solution of bidirectional
associative memory networks with delays, Phys. Rev. E 61 (2000)
1825-1828.

[6] B. Liu and L. Huang, Global exponential stability of BAM neural
networks with recent-history distributed delays and impulse, ~ Neuro-
computing 69 (2006) 2090-2096.

[7] J. Cao and L. Wang, Exponential stability and periodic oscilatory
solution in BAM networks with delays, 1EEE Trans. Neural Networks
13 (2002) 457-463.

[8] H. Zhao, Global exponential stability of bidirectional associative memory
neural networks with distributed delays, Phys. Lett. A 297 (2002) 182-
190.

[9]1 J.  Zhang and Y. Yang, Global stability analysis of bidirectional
associative memory neural networks with time delay, Int.J.Ciruit
Theor.Appl.29(2001)185-196.

[10] X.F. Liao, K.-W. Wong and S. Z. Yang, Convergence dynamics of hybrid
bidirectional associative memory neural networks with distributed delays,
Phys. Lett. A 316 (2003) 55-64.

[11] X. F. Liao and J. B. Yu, Qualitative analysis of bi-directional associative
memory with time delay, Int. J. Circ. Theory Appl. 26(1998)219-229.

[12] J. Cao and Q. Jiang, An analysis of periodic solutions of bi-directional
associative memory networks with time-varying delays, Phys. Lett. A
330 (2004) 203-213.

[13] A. Chen, J. Cao and L. Huang, Exponential stability of BAM neural
networks with transmission delays, Neurocomputing 57 (2004) 435-454.

[14] A. Chen, L. Huang, J. Cao, Existence and stability of almost periodic
solution for BAM neural networks with delays, Appl. Math. Comput.
137 (2003) 177-193.

[15] A. Chen, L. Huang, Z. Liu and J. Cao, Periodic bidirectional
associative memory neural networks with distributed delays,  Journal
of Math. Analys. and Appl. 317 (2006) 80-102.

[16] Z. Liu, A. Chen, J. Cao and L. Huang, Existence and global
exponential stability of almost periodic solutions of BAM neural networks
with continuously distributed delays, Phys. Lett. A 319 (2003) 305-316.

[17] S.J. Guo, L. H. Huang, B. X. Dai and Z. Z. Zhang, Global existence
of periodic solutions of BAM neural networks with variable coefficients,
Phys. Lett. A 317(2003) 97-106.

[18] J. Cao, A set of stability criteria for delayed cellular neural networks,
IEEE Trans. Circuits Systems I 48 (4) (2001) 494-498.

[19] J. Cao, Global stability conditions for delayed CNNs,
Circuits Systems I 48(2001) 1330-1333.

[20] J. Cao and J. Wang, Global asymptotic stability of general class
of recurrent neural networks with time-varying delays, IEEE Trans.
Circuits Systems I 50 (2003)34-44.

[21] J. Cao, New results concerning exponential stability and periodic
solutions of delayed cellular neural networks, Phys. Lett. A 307 (2003)
136-147.

[22] J. Cao and J. Wang, Absolute exponential stability of recurrent neural
networks with Lipschitz-continuous activation functions and time delays,
Neural Networks 17 (2004) 379-390.

[23] J. Cao and J. Wang, Global exponential stability and periodicity of
recurrent neural networks with time delays, IEEE Trans. Circuits
Systems I 52 (2005)920-931.

[24] J. Cao and D. W. C. Ho, A general framework for global asymptotic
stability analysis of delayed neural networks based on LMI approach,
Chaos Solitons Fractals 24 (2005) 1317-1329.

[25] J. Cao, D. Huang and Y. Qu, Global robust stability of delayed
recurrent neural networks , Chaos Solitons Fractals 23 (2005)221-=229.

[26] Q. Song, Z. Zhao and Y. Li, Global exponential stability of BAM neural
networks with distributed delays and reactionCdiffusion terms, Phys Lett.
A 335(2005)213-225.

[27] T. Yang and L. B. Yang, The global stability of fuzzy cellular neural
networks,  IEEE Trans. Circ. Syst. I 43(1996)880-883.

IEEE Trans.

[28] T. Yang,L. B.Yang.,.C. W.Wu and L. O.Chua, Fuzzy cellular neural
networks: theory, Proc. IEEE Int Workshop Cellular Neural Networks
Appl.(1996) 181-186.

[29] T. Yang, L. Yang,C. Wu, L. Chua, Fuzzy cellular neural networks:
applications,  Proc. IEEE Int. Workshop on Cellular Neural Neworks
Appl. (1996)225-230.

[30] T. Huang, Exponential stability of fuzzy cellular neural networks with
distributed delay, Phys. Lett. A 351(2006) 48-52.

[31] T. Huang, Exponential stability of delayed fuzzy cellular neural net-
works with diffusion,  Chaos Solitons Fractals 31 (2007) 658-664.

[32] Q. Zhang and R. Xiang, Global asymptotic stability of fuzzy cellular
neural networks with time-varying delays, Phy. Lett. A 371 (2008)
3971-3977.

[33] Q. Zhang and W. Luo, Global Exponential Stability and Periodic
Solutions of FCNNs with Constant Delays and Time-varying Delays,
Proceeding of 2009 International Joint Conference on Computational
Sciences and Optimization, Volume 2,659-662.

[34] Y. Wu and Q. Zhang, Global Exponential Stability of Fuzzy Cellular
Neural Networks with Variable Delays and Distributed Delays,  Pro-
ceeding of the 6th Conference of Biomathematics,2008, 695-699.

[35] K. Yuan,J. Cao and J. Deng, Exponential stability and periodic solutions
of fuzzy cellular neural networks with time-varying delays, ~Neurocom-
puting 69 (2006) 1619-1627.

[36] J. Cao and Q. Jiang, An analysis of periodic solutions of bi-directional
associative memory networks with time-varying delays, — Physics Lett.
A 330(2004)203-213.

269



