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Abstract—This paper proposes a phasor representation of 

electrical networks by using bond graph methodology. A so-called 

phasor bond graph is built up by means of two-dimensional bonds, 

which represent the complex plane. Impedances or admittances are 

used instead of the standard bond graph elements. A procedure to 

obtain the steady-state values from a phasor bond graph model is 

presented. Besides the presentation of a phasor bond graph library in 

SIDOPS code, also an application example is discussed. 

 

Keywords—Bond graphs, phasor theory, steady-state, complex 

power, electrical networks.  

I. INTRODUCTION 

HEN an electric system is operating in steady-state, 

differential equations are not required to describe its 

behavior since all variables are either constants or, in the AC 

case, sinusoidal variations in time with constant frequency. In 

the latter case, a phasor representation [1] is appropriate.  

The use of phasor notation not only brings a significant 

mathematical simplification, but also reduces the capacity 

requirements for computational processing. 

At the other hand, bond graph methodology [2] results in a 

concise graphical representation of energy storage, dissipation, 

and exchange in a system. The overall purpose of this 

methodology is the domain-independent representation of any 

engineering system which is involved in different domains. 

The paper consists of eight sections. In Section II the phasor 

representation and its usage in electrical networks are 

presented. In Section III, we give a brief introduction to bond 

graph methodology. Section IV contains the description of the 

phasor bond graph elements. In section V, the methodology 

proposed to obtain the steady-state values is described, and 

illustrated by means of an example. Section VI shows the 

phasor bond graph elements implementation in SIDOPS code. 

Section VII illustrates the simulation results in 20sim
®
 of an 

electrical network by using phasor bond graphs. Finally, the 

conclusions are stated in Section VIII. 
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II. PHASOR REPRESENTATION 

A. Mathematical Description 

The sinusoidal analysis by means of phasors is an elegant 

way to analyze electrical circuits with sinusoidal inputs and 

responses with a given constant frequency, i.e. when the 

system is in steady-state, without the need to solve differential 

equations. 

A phasor represents the temporal behavior of an electrical 

signal relative to a fixed reference. Similar to a vector, a 

phasor has magnitude and phase. It can be represented as an 

instant in time of a “rotary vector”.  

In general, a sinusoidal function with Â amplitude, θ  phase 

angle, and ω  frequency; can be described by 

 

 ( ) cos( )f t Â tω θ= +                               (1) 

 

where Â may be expressed in root-mean-square (RMS) value, 

A. For sinusoidal waves 2Â A= . It is possible rewrite (1) in 

complex notation by using Euler’s formula, and substituting 

its amplitude value by its RMS value, 

 

  ( ) ( )1

2
( ) { } { }j t j j tF t f t Ae Ae eω θ θ ω+= = ℜ = ℜ      (2) 

 

where ℜ{} is the real operator. The part that does not depend 

on time Ae jθ in (2) is known as a phasor [3]. A phasor F
�

 may 

also be written as, 
 

 (cos sin )jF Ae A A jθ θ θ θ= = ∠ = +
�

      (3) 

 

The time integral of ( )F t  is 

 

 1( ) j j t j tF t dt Ae e dt j F eθ ω ω
ω= = −∫ ∫
�

          (4) 

 

which implies that the integral of the phasor is lagged by π/2 

radians, and scaled by 1/ω. Similarly, the time derivative of 

( )F t is, 

 

 ( ) j j t j td d
dt dt

F t Ae e j Feθ ω ωω= =
�

             (5) 

 

Hence, the derivative of a phasor is leaded by π/2 radians, 

and multiplied by ω. This means that in phasor notation the 

integration and differentiation operations can be performed by 

scaling and phase shifting. 
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B. Application of Phasors to Electrical Networks 

In an electrical network, let the instantaneous voltage and 

the instantaneous current be 

 

 ( ) cos( ); ( ) cos( )v iv t v t i t i tω θ ω θ= + = +           (6) 

 

The phasor representation of (6) may be obtained by using 

(2) and (3), thus 

 

 ;v ij j
v iV V e V I I e Iθ θθ θ= = ∠ = = ∠

� �
          (7) 

 

The impedance, Z, is the relationship between the voltage 

and current. Since this relationship is between two phasors, it 

will be a phasor too. The impedance may be expressed as 

 

 ( )L CZ V I Z R j X Xθ= = ∠ = + −
� � �

                (8) 

 

where θ = θv - θi is called the impedance angle. The real part is 

given by the resistive elements, and the imaginary or reactive 

part, is given by the inductive and capacitive reactances in the 

system, respectively XL and XC. Table I shows a list of the 

three basic elements in an electrical network and their 

impedances. 
 

TABLE I 

IMPEDANCES 

Time Phasor Impedance 

( ) ( )v t R i t= ⋅  V R I= ⋅
� �

 R  

( ) ( )d
dtv t L i t=  

LV jX I=
� �

 LjX j Lω=  

1( ) ( )Cv t i t dt= ⋅∫  
CV jX I= −

� �
 1CjX j Cω− =  

 

Obviously, the impedance of capacitive or inductive 

elements is a function of the constant frequency ω.  

In power engineering, voltages, and currents are often 

represented in a phasor diagram. A phasor diagram is like a 

“picture” at any instant of these rotary vectors, which we can 

determine the angular difference between them at that time. 

C. Complex Power 

The instantaneous power consumed by the network may be 

written as 

 

  ( ) ( ) ( ) cos( )cos( )v ip t v t i t v i t tω θ ω θ= ⋅ = ⋅ + +        (9) 

 

After applying some trigonometric identities [4], we have 

 

( ) (1 cos2( )) sin 2( )v vp t P t Q tω θ ω θ= + + + +        (10) 

 

with  

 

 cos ; sinP V I Q V Iθ θ= =                   (11) 

 

where P  is called real or active power defined in watts (W). 

It represents the absorbed power by the resistive elements in 

the load. At the other hand, Q is referred as reactive power, 

defined in volt-ampere reactive (var), and this power supplies 

the stored energy in reactive elements. 

Since cosθ  plays an important role in the amount of real 

power in the system, it is called power factor [4], [5]. 

Real, and reactive power are represented together as a 

complex or apparent power, S, its unit is volt-ampere (VA) [6]. 

The apparent power may be represented as, 

 

  
2 2| | | | | |S P jQ V I Z I R I jX I∗= + = = = +

� � � � � � �
     (12) 

 

where I ∗
�

 is the conjugate current. These three powers are 

normally described in a so-called power triangle. 

III. BOND GRAPH MODELLING 

The bond graph methodology is a graphical notation of a 

port-based description for modeling dynamical systems. This 

graphical technique is based on representing power transfer by 

means of bonds. Given that energy is a domain-independent 

quantity, it forms the basis for this domain independent 

approach. The labelled nodes of a bond graph describe a 

fundamental behavior with respect to energy like storage, 

transduction, etc. 

In each physical domain, the power is the product of two 

variables, effort and flow. These pair of variables is called 

power variables. These two variables are represented as paired 

signals flowing in opposite direction. Therefore, just one of 

them may be an input. Hence, the bond also represents a 

bilateral signal flow. 

In a bond graph, the way in which these signal are specified 

as input and output is by means of the causal stroke. It is a 

perpendicular line put at one end of a bond indicating the 

direction of the effort signal, or called also causality. 

Momentum and displacement are conserved variables, or 

energy variables. They are obtained by integration of one of 

the power variables, and represent the energy accumulated in 

an ideal energy storage element. 

There are some basic types of elements necessary to 

represent energy behavior in a domain independent way. The 

1-port elements which dissipate power (resistor R), store 

energy (inertia I, capacitor C) and supply power (sources Se, 

Sf). In addition, it is necessary interconnect two or more 

elements in a power conservative way in order to create 

structure. At one hand, we have the transducers elements (2-

port): transformers (TF), and gyrators (GY). At the other hand, 

the interconnection elements (multiport): the 0-junction is a 

node where all the efforts are equal, and represents in an 

electrical circuit a parallel connection; the 1-junction  

describes a series connection in an electrical circuit, it means 

that all the flows are equal. Note however, that series and 

parallel are special cases, while the junctions are more general 

in the sense that they apply to each common flow (1-junction) 

and common effort (0-junction) situation. 

It is possible to obtain the state-space equations of the 

system using a bond graph model. Consider Fig. 1 scheme of a 

multiport linear time-invariant system, which includes the key 

vectors [7]. 
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Fig. 1 Bond graph key vectors

 

In Fig. 1, the state vector 
nx ∈ℜ  is composed of energy 

variables; 
pu ∈ℜ  denotes the system input; 

energy vector; finally r
inD ∈ℜ , and outD

energy exchanges between the dissipation field and the 

junction structure. 

The storage and dissipation field relationships are,
 

 ; out inz F x D LD= =
 

The junction structure relationships are defined by

 

 
11 12 13

21 22 23

31 32 33

in out

x S S S z

D S S S D

y S S S u

     
     =     
          

ɺ

 

where the vector qy ∈ ℜ is the plant output. The entries of the 

matrix take values inside the set {0, ±1, ±m
n are transformer, and gyrator modules; S
skew-symmetric matrices; 

21 12

TS S= −  and 

Conveniently representing the stated equations as

 

 ;x Ax Bu y Cx Du= + = +ɺ

 

where 

 
11 12 21 31 32 21

13 12 23 33 32 23

( ) ( )A S S MS F C S S MS F

B S S MS D S S MS

= + = +

= + = +
 

being 1

22( )M I LS L−= − , with I as an identity matrix.

IV. PHASOR BOND GRAPHS E

The Laplace transform can also be applied to the bond 

graph models [8], [9]. With this transformation, the 1

elements become impedances, or admittances.

If a 1-port has effort-out causality is modelled as 

impedance, while a 1-port with flow-out causality is modelled 

as admittance. We must assume that the constitutive 

relationships of the components are lineal, thus

 

Fig. 2 1-port elements a) impedances, and 

 

Note that the preferred integral causality of an 

admittance. We are now able to build up impedance bond 

 

 

Bond graph key vectors 

is composed of energy 

denotes the system input; 
nz ∈ℜ , the co-

r
out ∈ ℜ  represent the 

energy exchanges between the dissipation field and the 

relationships are, 

out inz F x D LD                         (13) 

The junction structure relationships are defined by 

in out

x S S S z

D S S S D

y S S S u

     
     
     
          

                   (14) 

is the plant output. The entries of the S 

m, ± n}, where m, and 

S11 and S22 are square 

and 
41 14

TS S= − . 

equations as 

x Ax Bu y Cx Du                        (15) 

11 12 21 31 32 21

13 12 23 33 32 23

( ) ( )A S S MS F C S S MS F

B S S MS D S S MS

= + = +

= + = +
   (16) 

as an identity matrix. 

LEMENTS  

The Laplace transform can also be applied to the bond 

. With this transformation, the 1-port 

elements become impedances, or admittances. 

out causality is modelled as 

out causality is modelled 

as admittance. We must assume that the constitutive 

ionships of the components are lineal, thus 

 

) impedances, and b) admittances 

the preferred integral causality of an I-element is an 

are now able to build up impedance bond 

graphs by using these elements, and following the same 

procedure that in the case of dynamic models.

If we substitute s = jω, Fourier operator, the phasor bond 

graph elements are obtained. 

We propose to express the impedances in matrix f

this way, we may represent the phasor elements using 2D 

multibonds [10], [11]. Where, one bond will represent the real 

part of the phasor, and the second bond will represent the 

imaginary part of the phasor. 

impedances in matrix form, see Table II.

 
TABLE

1-PORT IMPEDANCES IN 

Element Phasor

Resistive 
1 0 { }{ }

0 1{ }

V
R

V

   ℜ
=   

ℑ   

��

�

Inductive 
0 1 { }{ }

1 0{ }
L

V
X

V

   ℜ
=   

ℑ   

��

�

Capacitive 
0 1 { }{ }

{ }
C

V
X

V

   ℜ
=   −ℑ   

��

�

ℑ{} is the imaginary operator 

 

Note that in the phasor model, we will keep the same 

preferred causalities as in a dynamic model, effort

capacitors, flow-out for inductors, and indifferent for  

resistors. 

The 2-port elements are modelled 

case of 2D multibonds [11], see Table III.

 
TABLE

2-PORT ELEMENTS IN P

Element Phasor

Transformer 
1 1

2 2

0
;

0

TV I

I V

    
= =    

    

T

T

� �

� �

Gyrator 
1 1

2 2

0

0

TV I

V I

    
= =    

    

G

G

� �

� �

m and n are the scalar modulus of the transformer and gyrator, respectively

 

We can change (7) into its 

obtain the 2D multibond sources

TABLE

SOURCES IN PHASOR 

Source Phasor 

Voltage [cos sin ]v vV V θ θ=
�

Current [cos sin ]i iI I θ θ=
�

V and I are the RMS value of voltage and current, respectively

V. PHASOR BOND 

In this section we will show how to obtain the system 

steady-state values by using the phasor bond graphs. In 

the field structure for a phasor bond graph is depicted,

 

y using these elements, and following the same 

procedure that in the case of dynamic models. 

, Fourier operator, the phasor bond 

 

We propose to express the impedances in matrix form. In 

esent the phasor elements using 2D 

. Where, one bond will represent the real 

part of the phasor, and the second bond will represent the 

 From Table I, we can rewrite the 

impedances in matrix form, see Table II. 

TABLE II 

MPEDANCES IN PHASOR BOND GRAPH FORM 

Phasor 2D multibond 

1 0 { }

0 1 { }

I

I

 ℜ 
  
ℑ    

�

�  

 

0 1 { }

1 0 { }

I

I

 − ℜ 
  
ℑ    

�

�
 

 

0 1 { }

1 0 { }

I

I

 ℜ 
  − ℑ    

�

�
 

 

Note that in the phasor model, we will keep the same 

preferred causalities as in a dynamic model, effort-out for 

out for inductors, and indifferent for  

port elements are modelled in the same way as in 

, see Table III. 

TABLE III 

PHASOR BOND GRAPH FORM 

Phasor 2D multibond 

2 2

0
;

0

m

m

     
= =     

    
T

� �

� �
 

 

1 1

2 2

0
;

0

n

n

     
= =     

    
G

� �

� �
 

 

are the scalar modulus of the transformer and gyrator, respectively 

into its matrix form using (3), so we can 

obtain the 2D multibond sources. See Table IV. 
 

TABLE IV 

HASOR BOND GRAPH FORM 

 2D multibond 

[cos sin ]T
v vθ θ  

 

[cos sin ]
T

i iθ θ  
 

are the RMS value of voltage and current, respectively 

OND GRAPH ANALYSIS 

In this section we will show how to obtain the system 

state values by using the phasor bond graphs. In Fig. 3 

the field structure for a phasor bond graph is depicted, 
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Fig. 3 Phasor bond graph field structure

 

The reactance, and dissipation filed contain the power 

demanding elements of the system, and may be defined as

 

 ; out inz F x D LD= =
� ���� ��� �����

ɺ

 

where F
�

 is filled with the impedance, or admittance of the 

reactive elements. The matrix L
�

 contains the impedance, or 

admittance of the resistive elements. 

The junction structure relationships may be changed, thus

 

 

11 12 13

21 22 23

31 32 33

in out

S S Sx z

D S S S D

y uS S S

  
  

=   
  

    

� � ��
ɺ

� � �� �

� � �� �

 

Equation (18) keeps the same characteristics 

some algebraic manipulations, the system 

 

 
1 1

( ( ) )y C F A B D u− −= − +
�� �� �� �� ��� ��

 

where 

 
11 12 21 31 32 21

13 12 23 33 32 23

A S S M S C S S M S

B S S M S D S S M S

= + = +

= + = +

�� �� �� ����� �� �� �� �����

�� �� �� ����� ��� �� �� �����

 

being 
1

22( )M I LS L−= −
��� ���� ��

. 

In order to clarify this procedure, we will show an example. 

Consider the RLC circuit shown in Fig. 4. 

 

Fig. 4 RLC circuit 

 

We can change the dynamic model to the phasor model by 

using the 2D multibonds, Fig. 5. 

 

Fig. 5 Phasor model of the RLC circuit

 

 

 

Phasor bond graph field structure 

The reactance, and dissipation filed contain the power 

demanding elements of the system, and may be defined as 

out inz F x D LD
� ���� ��� �����

                   (17) 

is filled with the impedance, or admittance of the 

contains the impedance, or 

The junction structure relationships may be changed, thus 

11 12 13

21 22 23

31 32 33

in out

x z

D S S S D

y u

   
   
   
      

� � �
�

� � �� �

� � �� �
               (18) 

ps the same characteristics as (14). After 

system output is given by 

( ( ) )y C F A B D u= − +
�� �� �� �� ��� �

                 (19) 

11 12 21 31 32 21

13 12 23 33 32 23

A S S M S C S S M S

B S S M S D S S M S

= + = +

= + = +

�� �� �� ����� �� �� �� �����

�� �� �� ����� ��� �� �� �����  (20) 

cedure, we will show an example. 

 

 

We can change the dynamic model to the phasor model by 

 

Phasor model of the RLC circuit 

The key vectors are, 

 

 
4 4 43 3 3

3 3 34 4 4

{ } { } { } { }

{ } { } { } { }

T T

T T

x f e f f e e

z e f e e f f

   = = ℜ ℑ ℜ ℑ   

   = = ℜ ℑ ℜ ℑ   

� �� � �� �� � �
ɺ

� � �� � � �� ��

 

 2 2 2

1 1 1

{ } { } ; { } { }

{ } { } ; { } { }

in out

T T

D f f f D e e e

u e e e y f f f

   = = ℜ ℜ = = ℜ ℜ   

   = = ℜ ℜ = = ℜ ℜ   

��� �� �� �� ��� � � �

� � � � �� �� �� ��

 

We can construct the constitutive relations of the 2

bond graph nodes by applying

 

 
0 1 0 1 1 01

, ;
1 0 1 0 0 1

C

L

F diag X L R
X

       
= =      − −       

�� ��

 

and the junction structure is give
 

 

2 2 2 2 2 2
11 12 21

2 2 2 2 2 2

2 2
13 31 22 23 32 33

2 2

0 0
;

0

0
; 0

T

I
S S S

I I

S S S S S S
I

× × ×

× × ×

×

×

   
= = − =   − −   

 
= = = = = = 

 

�� �� ��

�� �� �� �� �� ��

 

Finally, we substitute (21)

obtain the steady-state value of the output:

 

 
(2

1

C L

y u
R X X

=
+ −

�� �

VI. IMPLEMENTATION ON 

Normally, the electrical networks contain a lot of elements, 

and sources. Due to this fact, it would be convenient to 

automate phasor analysis with bond graphs by using a 

software tool. For this purp

software. In Table V we show the SIDOPS code 

effort, and flow. 

TABLE

SOURCES PHASOR BOND 

Element 

Effort 
source 

parameters 
 real V = 1.0 {V};
 real ang = 0.0 {deg};
 
variables 
 real flow[2,1];
 
equations 
 p.u = V * [cos(ang); sin(ang)];
 flow= p.i;

Flow 
source 

parameters 
 real I = 1.0 {A};
 real ang = 0.0 {deg};
 
variables 
 real effort[2,1];
 
equations 
 p.i = I * [cos(ang); s
 effort= p.u;

 

4 4 43 3 3

3 3 34 4 4

{ } { } { } { }

{ } { } { } { }

T T

T T

x f e f f e e

z e f e e f f

   = = ℜ ℑ ℜ ℑ   

   = = ℜ ℑ ℜ ℑ   

� �� � �� �� � �

� � �� � � �� ��
     (21) 

2 2 22 2 2

1 1 1

{ } { } ; { } { }

{ } { } ; { } { }

T T

in out

T T

D f f f D e e e

u e e e y f f f

   = = ℜ ℜ = = ℜ ℜ   

   = = ℜ ℜ = = ℜ ℜ   

��� �� �� �� ��� � � �

� � � � �� �� �� ��
  (22) 

We can construct the constitutive relations of the 2-port 

bond graph nodes by applying (18), (19), and (20), thus 

0 1 0 1 1 01
, ;

1 0 1 0 0 1L

F diag X L R
X

       
= =      − −       

�� ��
        (23) 

and the junction structure is given by 

2 2 2 2 2 2
11 12 21

2 2 2 2 2 2

13 31 22 23 32 33 2 2

0 0
;

; 0

T
S S S

I I

S S S S S S

× × ×

× × ×

×

   
= = − =   − −   

 
= = = = = = 

 

�� �� ��

�� �� �� �� �� ��

 (24) 

), (23) and (24) into (19) and to 

state value of the output: 

)2

C L

C LC L

R X X
y u

X X RR X X

− 
 − 

�� �
 (25) 

MPLEMENTATION ON 20-SIM
®
 

Normally, the electrical networks contain a lot of elements, 

and sources. Due to this fact, it would be convenient to 

automate phasor analysis with bond graphs by using a 

software tool. For this purpose, we will use 20-sim
®
 [12] 

software. In Table V we show the SIDOPS code [9] for the 

 

TABLE V 

OND GRAPH SIDOPS CODE 

SIDOPS code 

real V = 1.0 {V}; 
real ang = 0.0 {deg}; 

real flow[2,1]; 

p.u = V * [cos(ang); sin(ang)]; 
flow= p.i; 

real I = 1.0 {A}; 
real ang = 0.0 {deg}; 

real effort[2,1]; 

p.i = I * [cos(ang); sin(ang)]; 
effort= p.u; 
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The SIDOPS code for the passive phasor elements is shown 

in Table VI. 

 
TABLE VI 

1-PORT ELEMENTS PHASOR BOND GRAPH 

Element SIDOPS code

Resistor 

parameters 
 real r = 1.0 {ohm}; 
 
variables 
 real R[2,2]; 
 
equations 
 R = r * [1, 0; 0, 1]; 
 p.u = R * p.i; 

Inductive  
reactance 

parameters 
 real xl = 1.0 {ohm}; 
 
variables 
 real XL[2,2]; 
 
equations 
 XL = xl * [0, -1; 1, 0];
 p.u = XL * p.i; 

Capacitive 
reactance 

parameters 
 real xc = 1.0 {ohm}; 
 
variables 
 real XC[2,2]; 
 
equations 
 XC = xc * [0, 1; -1, 0];
 p.u = XC * p.i; 

 

Due to the importance of complex power in the analysis of 

electrical networks, it is necessary define a bond graph sensor 

able to determine the complex power during simulation. We 

can rewrite (12) into its matrix form, thus 

 

 

[ ]{ } { } { } { }

{ } { } { } { } { } { } { } { }

S V I V j V j

V V j V V

I I

I I I I

P Q

∗= = ℜ + ℑ ℜ − ℑ

= ℜ ℜ + ℑ ℑ + ℑ ℜ − ℜ ℑ

  

      

� � � � �

� � � �

� �

� � � �

����������� �����������

 

The power sensor is depicted in Fig. 

representation is shown in Table VII. 

 

Fig. 6 Complex power sensor in bond graph

 
TABLE VII 

POWER SENSOR PHASOR BOND GRAPH SID

Element SIDOPS code

Power 
sensor 

variables 
 real P {W}, Q {VAR}, S {VA}, PF;
 real V_mag {V}, I_mag {A};
 real V_ang {deg}, I_ang {deg}, th {deg};
 
equations 
 p2.u = p1.u; 
 p1.i = p2.i; 
 
 P = p1.u[1] * p1.i[1] + p1.u[2] * p1.i[2];
 Q = p1.u[2] * p1.i[1] - p1.u[1] * p1.i[2];

S = sqrt(P^2 + Q^2); 
 th = atan2(Q,P); 
 PF = cos(atan2(Q,P)); 

 

 

The SIDOPS code for the passive phasor elements is shown 

RAPH SIDOPS CODE 

SIDOPS code 

 

1; 1, 0]; 

1, 0]; 

Due to the importance of complex power in the analysis of 

electrical networks, it is necessary define a bond graph sensor 

able to determine the complex power during simulation. We 

 

{ } { } { } { }

{ } { } { } { } { } { } { } { }V V j V V

I I

I I I I

P Q

= ℜ ℜ + ℑ ℑ + ℑ ℜ − ℜ ℑ

  

      
� � � �

� �

� � � �

����������� �����������

 (26) 

Fig. 6, and its SIDOPS 

 

Complex power sensor in bond graph 

SIDOPS CODE 

SIDOPS code 

real P {W}, Q {VAR}, S {VA}, PF; 
real V_mag {V}, I_mag {A}; 
real V_ang {deg}, I_ang {deg}, th {deg}; 

P = p1.u[1] * p1.i[1] + p1.u[2] * p1.i[2]; 
p1.u[1] * p1.i[2]; 

The transformer and gyrator are both already included in 

the 20-sim
®
 library. 

VII. SIMULATION OF A

In this section, we will compare the response of 

bond graph model with a dynamical bond graph model. 

Consider the electrical network shown in 

 

Fig. 7 Electrical network

 

where 
50f Hz=

, 
2ω π=

3 40R = Ω
, 4 50R = Ω

, 1 63.662L mH=

1 318.3098C Fµ=
, 

( ) 2 230cosv t t= ⋅

The circuit is converted into a bond graph by using the 

standard methodology for electrical systems 

 

Fig. 8 Bond graph of the electrical network

 

We added the RMS blocks

order to obtain the real power. 

voltage source, total current

their RMS values. 

We can observe from Fig. 

transient, and the RMS blocks are calculating the RMS value 

directly from the instantaneous signals

 

The transformer and gyrator are both already included in 

AN ELECTRICAL NETWORK 

In this section, we will compare the response of a phasor 

bond graph model with a dynamical bond graph model. 

Consider the electrical network shown in Fig. 7. 

 

Electrical network 

2 fω π=
, 1 10R = Ω

, 2 20R = Ω
, 

63.662L mH
, 2 31.831L mH=

, 

( ) 2 230cosv t tω= ⋅
. 

into a bond graph by using the 

standard methodology for electrical systems [9] in Fig. 8. 

 

Bond graph of the electrical network 

We added the RMS blocks from the 20-sim
®
 library in 

order to obtain the real power. Fig. 9 shows the instantaneous 

current and total power; together with 

Fig. 9 that the system contains a 

transient, and the RMS blocks are calculating the RMS value 

directly from the instantaneous signals. 
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Fig. 9 Voltage, current, and real power in the electric network

 

In order to construct the phasor bond graph we substitute all 

the elements by their equivalent 2D representation. Thus, 

10 shows the phasor bond graph including a complex power 

sensor. 

 

Fig. 10 Phasor bond graph model

 

It is important remark that in phasor bond graph model all 

our signals are RMS values. 

Comparing the responses from the phasor bond graph 

model, with the RMS value given by the blocks in the regular 

bond graph in Fig. 9, we obtain Fig. 11. 

 

Fig. 11 Comparison between the instantaneous 

values 

 

Obviously, the signals from the phasor model are constants, 

while the RMS values of the dynamic model converge to these 

values once the steady-state has been reached by the system. 

One advantage of a phasor model is that the computational 

time has been reduced drastically. Besides, we are now able to 

show the reactive power, the impedance angle, and thus the 

power factor in a more direct manner. Fig. 

three quantities taken from the complex power sensor
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oltage, current, and real power in the electric network 

o construct the phasor bond graph we substitute all 

the elements by their equivalent 2D representation. Thus, Fig. 

shows the phasor bond graph including a complex power 

 

Phasor bond graph model 

It is important remark that in phasor bond graph model all 

Comparing the responses from the phasor bond graph 

model, with the RMS value given by the blocks in the regular 

 

Comparison between the instantaneous responses and phasor 

Obviously, the signals from the phasor model are constants, 

le the RMS values of the dynamic model converge to these 

state has been reached by the system.  

One advantage of a phasor model is that the computational 

time has been reduced drastically. Besides, we are now able to 

e power, the impedance angle, and thus the 

Fig. 11 shows these last 

three quantities taken from the complex power sensor. 

Fig. 12 Reactive power, power

VIII. CONCLUSION

We have given a brief description of the phasor theory, 

widely used in the study of electrical systems. The bond graph 

methodology was introduced, together with the standard 

methodology for obtaining the steady

phasor bond graph model. We saw that the bond graph 

elements could be replaced by their equivalent impedances.

In order to automate the phasor analysis by using bond 

graphs, the Fourier transform was substituted into the 

impedance bond graphs. In this way, we were able to create a 

2D multibond bond graph by splitting the real, and imaginary 

part of the impedances, this model was called phasor bond 

graph. 

The phasor bond graph model allows knowing the angle, 

and magnitude of important varia

complex power. The phasor modelling of the electrical 

networks give us the steady-state behavior of the system. This 

information may be useful for fault studies, stability, and 

widely used in the description of power conversi

electrical machines. 
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ONCLUSION 

We have given a brief description of the phasor theory, 

widely used in the study of electrical systems. The bond graph 

methodology was introduced, together with the standard 
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phasor bond graph model. We saw that the bond graph 

elements could be replaced by their equivalent impedances. 
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2D multibond bond graph by splitting the real, and imaginary 

part of the impedances, this model was called phasor bond 

The phasor bond graph model allows knowing the angle, 

and magnitude of important variables as voltage, currents, and 

complex power. The phasor modelling of the electrical 

state behavior of the system. This 

information may be useful for fault studies, stability, and 

widely used in the description of power conversion of 

CKNOWLEDGMENT 

The authors thank the support given by Controllab
®
 crew, 

, by their help in simulation matters. 

Specials thank to CONACYT (the Mexican National Council 

of Science and Technology), and to SEP (the Mexican 

Secretary of Education) by the funding of this research. 

EFERENCES   

Chas. Proteus Steinmetz, “Complex Quantities and their use in Electrical 

Engineering”, Proceedings of the International Electrical Congress, 
AIEE Proceedings, 1893, pp. 33-74. 

Paynter, H. M., Analysis and Design of Engineering Systems, MIT 

A. Veltman, D.W.J. Pulle, and R.W. De Doncker, Fundamentals of 
, Springer, 2007. 

Power System Analysis, McGraw-Hill, New York, 1999. 
Electrical Power Systems, John Wiley & Sons, 

Electric Machinery Fundamentals, 4th edition, 
Hill, New York, 2005. 

Tanguy, “Structural controllability/observability 

esented by bond graphs”, Journal of the Franklin 
883, 1989. 

Q = 688.6 {VAR}

PF = 0.956

0.03 0.04 0.05
time {s}

theta = 17.022 {deg}



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:7, 2014

1105

 

 

[8] Kypuros, Javier A., System Dynamics and Control with Bond Graph 
Modeling, Taylor & Francis Group, 2013, USA. 

[9] Wolfgang Borutzky, Bond Graphs: A Methodology for Modelling 
Multidisciplinary Dynamic Systems, Springer, London, 2010. 

[10] L. S. Bonderson, “Vector Bond Graphs Applied to One-Dimensional 

Distributed Systems”, 1975, J. Dyn. Sys. Meas. Control 97(1), 75-82. 
[11] P.C Breedveld, “Multibond graph elements in physical systems theory”, 

Journal of the Franklin Institute, 1985, 319(1/2):1–36. 

[12] Controllab Products B.V., 20-sim®, http://www.20sim.com/. 


