International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:8, 2016

An Optimization Algorithm Based on Dynamic
Schema with Dissimilarities and Similarities of
Chromosomes

Radhwan Yousif Sedik Al-Jawadi

Abstract—Optimization is necessary for finding appropriate
solutions to a range of real-life problems. In particular, genetic (or
more generally, evolutionary) algorithms have proved very useful in
solving many problems for which analytical solutions are not
available. In this paper, we present an optimization algorithm called
Dynamic Schema with Dissimilarity and Similarity of Chromosomes
(DSDSC) which is a variant of the classical genetic algorithm. This
approach constructs new chromosomes from a schema and pairs of
existing ones by exploring their dissimilarities and similarities. To
show the effectiveness of the algorithm, it is tested and compared
with the classical GA, on 15 two-dimensional optimization problems
taken from literature. We have found that, in most cases, our method
is better than the classical genetic algorithm.

Keywords—Genetic algorithm, similarity and dissimilarity,
chromosome injection, dynamic schema.

1. INTRODUCTION

LOBAL optimization algorithms are usually categorized

as deterministic or meta-heuristic, see [1]. Meta-heuristic
techniques are useful for many optimization problems where
deterministic algorithms are difficult to apply (for example,
ill-behaving functions with many jumps). Many of the meta-
heuristic algorithms such as Genetic Algorithms (GA), Ant
Colony Optimization (ACO), Bees Algorithms (BA) and
other, which are bio-inspired, have previously been described
in the literature.

The Evolutionary algorithms (EAs) are optimization
techniques modeled on the process of natural evolution. As [2]
observes, different implementations of EAs (e.g., GA, genetic
programming, evolutionary strategy) can essentially be
summarized by the following four steps:

1. Generate an initial population randomly;

2. Produce new solutions based on the current population;
3. Remove bad solutions from the population;

4. Repeat from Step 2 until a stopping criterion is satisfied.

In this paper, a meta-heuristic optimization algorithm is
presented that is inspired by the schema theory and the
mechanism of similarity and dissimilarity of chromosomes.
This procedure depends on dividing each generation into four
equal parts and then applying different genetic operators to
each of them. The presented algorithm is called DSDSC and it

Radhwan Yousif Sedik Al-Jawadi is with the Faculty of Mathematics,
Informatics and Mechanics, University of Warsaw, Poland (permanent
address: Technical College of Mosul, FTE, Iraq; e-mail:
radwanyousif@yahoo.com).

is designed to find optimal solutions to numerical optimization
problems.

The idea of dividing a population into some parts and then
working with schemata and similarity for each part separately
is already known in the literature. For example, [3] divides a
population into three parts depending on the fitness of
chromosomes (the best, the middle and the worst fitness
groups) and then discover the common schema in a population
by using clustering. Next, for the first and the third part of a
population, they calculate the number of chromosomes that
have some similarity with the schema. The similarity between
an individual and a schema is defined as the percentage of
positions on which the individual agrees with the schema.

Yu and Zhou [2] described a new general approach to
estimating the expected first hitting time by analyzing EAs
with different configurations. This method works with three
mutation operators, a recombination operator and a time
variant mutation operator. In a further research, we plan to
examine the possibility of applying a similar theoretical
analysis to our DSDSC algorithm.

Many studies have been suggested different approaches to
be compare with the GA such as [4]-[9].

This paper is organized as follows. In Section II
methodology of DSDSC algorithm are introduced. In Section
111, we describe the DSDSC algorithm and show its flowchart.
Section IV gives the schema analysis of the algorithm. Section
V gives the analysis of experimental results. Section VI
contains descriptions and discussion of figures. Finally,
conclusions are presented in Section VII.

II. METHODOLOGY

The DSDSC algorithm starts with a population of M
elements representing a number of solutions to the problem.
This population is divided into four equal groups and we apply
some different operators to these groups. This will be
discussed in Section III.

Briefly, the DSDSC creates new chromosomes by
exploring dynamic dissimilarity, similarity, dynamic schema
and random generation of new chromosomes.

Table I shows all M chromosomes (Chl..ChM) divided
onto 4 groups (G1, G2, G3, G4).

III. THE DSDSC ALGORITHM

We consider the following optimization problem:

1483

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:8, 2016

f: R"—- R
minimize|maximize f (x4, ..., x,,) subject to
Xi € [ai, bi],i = 1, W, n

where f: R" — R is a given function.

TABLEI

GROUPS OF CHROMOSOMES
Ch,
Ch,
Ch G1: To the first group we apply the
Ch. dynamic dissimilarity operator.
Chwms
Chyyas
Chwara
Ch G2: To the second group we apply the
Ch: similarity operator.
ChM/Z
ChM/ZH
Chmiia
Ch G3: To the third group we apply the
Ch: dynamic schema operator.
ChM/2+M/4
Chyzimast
Chw sz .
Ch G4: The fourth group is generated
Ch: randomly.
Chy

In the algorithm described below, we use a standard
encoding of chromosomes as in the book of Michalewicz [10].
In particular, we use the following formula to decode a real
number x; € [a;, b;]:

bi—ai
2mi—1

x; = a; + decimal(1001..001) =

where m; is the length of a binary string and “decimal”

represents the decimal value of this string. The value of m; for

each variable depends on the length of the interval [a;, b;]. To
encode a point (xy,...,x,), we use a decimal string of length

m =¥ m;.

Let M be a positive integer divisible by 8. The DSDSC
algorithm consist of the following steps:

1) Generate M chromosomes, each
representing a point (xy, ..., x,).

2) Compute the values of the fitness function f for each
chromosome in the population.

3) Sort the chromosomes according to the descending (for
maximization) or ascending (for minimization) values of
the fitness function. Then divide the population into four
equals groups (G1,G2,G3,G4).

4) Copy C times the first chromosome and put it in C
positions in the first half of the population randomly,
replacing the original chromosomes, where C= M/8.

5) Apply the dynamic schema operator to the chromosomes
Chi and Chw (that is, the chromosomes on the positions
1 and M/4, respectively). This operator works as follows
(see Table II):

chromosome

(a) First, we divide each chromosome onto n parts
corresponding to variables (x4, ..., x,), the i-th part having
length m;. Next, for each variable x; , we select a random
integer 7; from the set {3,...,8}, then let R; := round (m;/
1), where “round” means rounding a number to the
nearest integer. We define the “gray” part of x; as the first
segment of length R; of the string corresponding to x;. We
define the “white” part of x; as the second segment of
length m; — R; of the same string.

(b) For the “white” parts of both chromosomes, if the two bits
are not equal, put a star (*) in the schema, then copy this
schema M/4 times and put it in the third part of population
(G3) between positions M/2+1 and M/2+M/4, then put
randomly O or 1 in the positions having *. We keep the
positions marked in gray unchanged.

Note. The name “dynamic schema operator” is justified by
the fact that the lengths of “gray” and “white” segments of
chromosomes may vary from iteration to iteration.

TABLEII
THE DYNAMIC SCHEMA OPERATOR
Before change: an example for finding schema from the first chromosome and
the chromosome on position M/4. Here shadow bits are not destroyed.

No. of Ch. ™ e
Ry my; — Ry R, m; — R,
Ch, 1 1 0 0 1 0 1 0 1 0
Chws 0o 1 1 0 0 1 0 0 0 1
Schema 1 1 * 0 * * 1 0o * *

After finding the schema: put it in M/2.M/2+M/4 positions, then put
randomly 0 or 1 in (¥*) bits

Chypn 1 1 * 0 * * 1 0o * *
Chypin 1 1 * 0 * * 1 0o * *
Ch. ... 1 1 * 0 * * 1 0 * *
Ch. ... I 1 * 0 * * 1 0 * *
Chwpws 1 1 * 0 * * 1 0o * *
After change: put randomly 0 or 1 in (*) bits
Chyn 1 1 1 0 1 0 1 0 0 1
Chwia I 1.1 0 0 0 1 0 1 1
Ch. ... 1 1.0 0 1 0 1 0 1 0
Ch. ... I 1.0 0 0 1 1 0 0 O
Chwpws 1 1 1 0 1 1 1 0 1 1

6) Compare pairs of chromosomes for the first half (G1,G2)
of the population to explore dissimilarities and
similarities. Check each two following chromosomes, i.e.
the first and the second, the second and the third, and so
on, by comparing the respective bits, as follows:

(a) For chromosomes in the first quarter (Gl) of the
population (from 1 to M/4), if the two bits are equal, put a
star (*) in the second (following) chromosome; otherwise,
leave this bit without a change in the second chromosome.
Then put randomly 0 or 1 in the bits with stars (*).
Compare this new second chromosome with the third one,
and so on. This dissimilarity operator also depends on
dynamic part of chromosomes m; /;.

(b) For chromosomes in the second quarter (G2) of the
population (from M/4+1 to M/2), if the two bits are not
equal, put a star (*) in the second (following)
chromosome; otherwise leave this bit without a change in

1484

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:8, 2016

the second chromosome. Then put randomly 0 or 1 in the
bits with stars (*). Compare this new second chromosome
with the third one, and so on. this comparison is started
from bit number 1 for each m; in chromosomes (M/4+1 to
M/2).

TABLE III
THE DYNAMIC DISSIMILARITY OPERATOR
Before change: an example for the first quarter of chromosomes.

my m,
Ry my — Ry R, m, — R,
Ch. A 1 1. 0 0 1 0 1 0o 1 0
Ch.B 1 0 1 0 0 1 0 0o 1 1
Ch. A 1 1 0 0 1 0 1 0o 1 0
Ch.B 1 0 1 * 0 1 1 ¥k]
After change: put randomly 0 or 1 in (*) bits
Ch. A 1 1 0 0 1 0 1 0 1 0
Ch.B 1 0 1 1 0 1 0 1 0 1
TABLE IV

THE SIMILARITY OPERATOR
Before change: an example for the second quarter of chromosomes.

my m,

Ch. A 1 1.0 0 1 0 1 0 1 O
Ch.B o o0 1 0 0 1 0 0 1 1
Ch. A 1 1 0 0 1 0 1 0 1 0
Ch B * * * 0 * * * O 1 *

After change: put randomly 0 or 1 in (*) bits

Ch. A 1 1 0 0 1 0 1 O 1 O
Ch. B 1 0 0 1 00 0 I 0 O

7) All chromosomes B created in this way replace the
original ones in positions from 2 to M/2. The schema is
also generated in the way described at Step 5 from M/2+1
to M/2+M/4. Then generate randomly chromosomes for
the fourth group of the population. These will replace the
fourth group of the chromosomes (on positions from
M/2+M/4+1 to M).

8) Go to Step 2 and repeat until the stopping criterion is
reached.

Fig. 1 represents the flowchart for DSDSC algorithm.
Notes:

(a) We call the genetic operator performing the operations
shown in Table III on a pair of chromosomes A and B the
dynamic dissimilarity operator, and the genetic operator
performing the operations shown in Table IV the
similarity operator.

(b) The dynamic schema operator is shown in Table II, that
uses different sizes of fixed segments (gray color) and
applies a similarity operator on the rest of chromosome.

(c) The stopping criterion for our algorithm depends on the
example being considered, see Section V.

(d) To maintain population diversity, [11] proposed a simple
injection strategy to the population. They use fixpoint
injection, which means that they introduce new randomly
generated chromosomes to the population for certain
numbers of generations. We have applied a similar
strategy in our DSDSC algorithm by generating the last
quarter of each population randomly.

Initialize population with M solutions representing points
(X1, v Xp)-

-

Decode chromosomes to find (x;, ..., x,,), using the formula
—» x, = a + decimal(1001..001) * 2{’:1
range of (x;).

v

Evaluate and sort the population according to fitness function,
copy C times the first solution and insert randomly between
(2..M72).

v

Divide the population into 4 groups: G1, G2, G3 and G4.

v

For the first quarter (M/4) of solutions (G1), apply the
dynamic dissimilarity operator to the first and the second
chromosome, then to the (new) second and the third
chromosome, and so on.

v

For the second quarter (M/4+1..M/2) of solutions (G2), apply
the similarity operator to the first and the second
chromosome, then to the (new) second and the third
chromosome, and so on.

v

For the third quarter (M/2+1..M/2+M/4) of solutions (G3),
apply the dynamic schema generated from Chl and ChM/4,
then generate new solutions by changing (*) to (0,1)randomly.

, where [a, b] is the

v

For the last quarter (M/2+M/4+1..M) of solutions (G4),
generate randomly new chromosomes.

Print the best solution and the number of iterations.

Fig. 1 Flowchart of the DSDSC algorithm.

IV.SCHEMA ANALYSIS

A schema represents a number of similar strings, thus, a
schema can be thought of as a representation of a certain
region in the search space. The schema that represents the
region containing the best solution must increase in the
population to get the solutions in the best region [10], [12].
For example, assume we have a part of the Zbigniew
Michalewicz function f(xy,x,) = 21.5 + xq * sin(4mx,) + x5 -
sin(20mx,), where X1,X2€[0,1], as shown in Fig. 2, it is clear
the maximum solution is between when X:€ [0.6,0.8] in the

1485

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:8, 2016

region [0,1]. This function has two local maximum solutions
of which only one is global, as shown in Fig. 2. Consider this
region [0,1] of X; represented by m bits (1,...,m;), then
assume we have two types of schemata: HO= (0 * * . . .*)
representing the left region where x; € [0,0.5], and H1= (1 * *

. *) representing the right region, where x; € [0.5,1]. Since
we need to find a global optimum solution, we must focus on
schema H1 since it represents the region of global solution.
Also the same thing for X» [12]. However, it is possible that we
do not find the region of global optimal solution this way. In
such a case, the similarity operator and random generation of a
part of chromosomes could help to find a better region.

'.
1
fi

T
Iﬂa\'ﬂm}ﬁfﬁh\‘

Fig. 2 A part of Zbigniew Michalewicz function

V. EXPERIMENTAL RESULTS

In this section, we report on computational testing (by using
the Matlab software) of the DSDSC algorithm on 15 test
functions taken from literature. After each test, the result of
DSDSC has been compared with the known global optimum
and with the result of a classical GA taken from the respective
reference. The results are presented in Table VI.

In Table V, we mention all 15 functions with best solutions.
We have applied the algorithm with 80 chromosomes with the
stopping criterion that the difference between our best solution
the and known optimal solution is less than the threshold
specified in the second column (Table VI).

The DSDSC algorithm has found optimum solutions for
some optimization problems (like Easom, Booth’s, Schaffer,
Schwefel’s, Shubert) that the classical GA cannot solve as
shown in Table VI. Column eight shows 0% success rate by
using classical GA as it has been tested and also mentioned in
[4], [5]. All success rates are 100% with 80 chromosomes for
all problems.

The DSDSC algorithm keeps the best solution from each
iteration at the first position until it is replaced by a better one.

Note that the maximum number of iterations to found the
best solution was especially high (282) for the Schwefel’s
function, for which the classical GA failed to find a solution as
shown in Table VI [4]. Also the maximum number of
generations for Michalewicz problem was 280 compared with
the classical GA algorithm where it was 396 generations to
find the best solution [10]. On the other hand, column three in

Table VI shows the minimum number of iterations for finding
an optimal solution was between 2 and 9 for all 15 test
functions. Column five shows the average number of iterations
for all successful runs.

V1. DISCUSSION OF FIGURES

Fig. 3 shows a two-dimensional view of Easom function. It
can be seen that the DSDSC algorithm has reached the best
solution at the blue point at f(r,) = —1.

fiul =2)

)Q 100" 100 »

Fig. 3 Solutions of Easom problem

Fig. 4 shows a two-dimensional view of Schaffer's function.
It can be seen that DSDSC algorithm has reached the best
solution at the blue point on the focus view in the right up
corner of the figure. For this function, it is difficult to reach an
optimal solution because it contains multi-local minimum
solutions near to the best one.

g

— 06

7

044

s,

0247

100

@ -100 100

x1

Fig. 4 Solutions of Schaffer's problem

Figs. 5-12 show two-dimensional views, Fig. 5 shows
Shubert problem with 18 optimal solution at the blue points
with 50 iterations, Branins's problem with 3 optimum optimal
solution points, Six-hump camel back problem with two
optimum points and Holder Table problem with 4 optimum
points, Michalewicz problem, Drop-Wave problem,

1486

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:8, 2016

Schwefel's problem, Levy N.13 problem with one point
optimum solution, respectively.

TABLE V
TEST FUNCTIONS
Function Name Interval Function Global Optimum Min/max
Easom X,y € f(x,y) = —cos(x)cos(Y)exp(—(x — 1) + (y — m)?)) f(m,m) =—1,min
[-100,100]
Matyas X,y € f(x,y) =0.26(x? + y* — 0.48xy) £(0,0) =0, min
[-10,10]
Beale's X,y€ fO,y) =(15—x—xy)?+ (225 —x + x y?)? + (2.625 — x — xy?)? £(3,0,5) =0, min
[-4.5,4.5]
Booth's X,y € fl,y)=x+2y—7)*+2x+y—5)> f£(1,3) = 0, min
[-10,10]
Goldstein—Price X,y€ fO,y) =0+ (x+y+1)2(19 — 14x + 3x? — 14y + 6xy + 3y?)) = (30 £(0,—1) = 3, min
[-2,2] + (2x — 3y)? (18 — 32x + 12x% + 48y — 36xy
+27y2))
Schaffer N.2 X,y € sin?(x? —y?) — 0.5 £(0,0) =0, min
[-100,100] fGay) = 05+ G0 0010 4972
Schwefel's X1,X2 € n £(1,1) =0, min
[-500,500] fx) = Z —x; .sin(/|xi])
=1
Branins's rcos x; € [-5,10] flx,x)=a - (,—b-x*+c-x;—d)?+e-(1—f) cos(x;) +e f(m,2.275) or
x2€[0,15] 51 5 1 £(9.42478,2.475) or
a=lb=-—zp,c=_.d=6,e=10,f =o— f(—m,12.275) = 0.397887 , min
Six-hump camel x; € [-3.3] (4 s\ . 2 _ 2y, .2 £(-.0898,0.7126) = —1.0316,
back e [22] flxy,x) = (4 2.1x,) X+ x1%, + (—4 + 4x3) - x5 min
Shubert X1,X3 € 5 5 18 global min
[-10,10] flxy, %) = <Z icos[(i+ Vx; + i]) . (Z i cos[(i + Dx, + i]) f=-186.7309 min
i=1 i=1
Martin and Gaddy X1,X2 € fxy,x5) = (¢ — x2)% - ((x1 + x, — 10)/3)? £(5,5) = 0, min
[0,10]

Zbigniew x;€[-3,12.1] f(xy,x3) = 21.5 + x; - sin(4nxy) + x, - sin(20mx,) f(11.631407,5.724824)
Michalewicz x;€[4.1,5.8] = 38.81208, max, [11]
Holder table X,y € [x% + x2 £(8.05502,9.66458) or

[-10,10] £y, ;) = —| sin(x) cos(x) exp (Il +=—1)I £(8.05502, —9.66458) or
£(—8.05502,9.66458)0r
£(—8.05502, — 9.66458) =
-19.2085, min
Drop-wave Xy € 1+ cos(12,/x% — x2) f(0.0)=-1,min
[-5.12,5.12] flxy,x,) = — T0sGir D 2
Levy N. 13 Xy € [y, %) = sin®(3mxy) + (% — D?[1 + sin(Bmxz)] + (xp — D[1 F(1,1)=0,min
[-10,10] + sin(2mx,)]
TABLE VI
BEST VALUE OF FUNCTIONS FOR 50 RUNS OF THE DSDSC ALGORITHM (80 CHROMOSOMES)
Function name Threshold of Min Max Mean no. of Mean of the best Rate of Rate of success classical
best solution number of number of iterations for all solution fitness from success GA
iterations iterations successful runs all successful runs DSDSC
Easom 0.001 6 238 51* -0.99553 100% 0% [4]
Matyas 0.001 2 28 11 0.0004317 100% 70% [5]
Beale's 0.001 5 166 49 0.000634 100% 6% [6]
Booth's 0.005 4 65 20 0.002966 100% 0% [5]
Goldstein—Price 0.001 4 85 34 3.00036 100% 72% [4]
Schaffer N.2 0.001 4 189 71 3.91E-05 100% 0%
Schwefel's 0.01 6 282 41 0.004635 100% 0% [4]
Branins's rcos 0.01 5 203 28 0.398947 100% 100%
Six-hump camel back 0.001 5 127 18 -1.03129 100% 98% [7]
Shubert 1 3 67 19 -185.835 100% 0% [4]
Martin and Gaddy 0.001 4 38 15 4.54E-05 100% 1% [4]
Zbigniew Michalewicz 0.04 9 280 67 38.81046 100% 73% [8]
Holder table 0.001 3 45 12 -19.2036 100% 78% asynchronous EA [9]
Drop-wave 0.001 4 172 48 -0.9954 100% 30%
LevyN. 13 0.001 5 202 45 0.000472 100% 70%

* For Easom function we use R between 4 and 8 instead of 3 and 8.

1487

flul =2)

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:8, 2016

. . . Fig. 8 Solutions of Holder-table problem
Fig. 5 Solutions of Shubert problem 18 optimum solution
S50 e e e :
B0 oo e
250 e R
i ; &)
=
= b |
T NP “““\“\‘\:}\ :
Z oy |
A Y |
00 e \“““‘\“““““\t\“]
I |
a0 ~ .
4 1ﬁ X2 48 .
W2 wl
Fig. 9 Soluti f Michalewi bl
Fig. 6 Solutions of Branins's problem 18 olutions ot Michalewicz problem
;,"' (I
i
e i
ol 5}
!l;,!l,l"'i;l'%%'{ A :
3 /R =
s
Z 103 "
W2 - ’ ¥l
Fig. 7 Solutions of Six-hump camel back problem Fig. 10 Solutions of Drop-wave problem

1488

fixl x2)

Fittness

1800 -

02k

03F

04f

D5}

06}

DTk

08}

09F

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:8, 2016

-500

|

20

40

|
60 80
MNumber Of lterations

100

120

140

Fig. 13 Finding the best solution for Schaffer problem in 140

iterations

389

388 B

38T [eesersvrrrressesy B

3851 B

Fittness

Jg4r B

383F B

3/AF R

38 L I L L L L L L L
0 5 10 15 20 25 30 35 40 45 a0

Mumber Of lterations

Fig. 14 Finding the best solution for Michalewicz problem in 47
iterations

Figs. 13, 14 show how the best fitness values of the
population evolve with the number of iterations. Here the red
color means jumping to a better solution, blue color means
keeping the best solution from the previous iteration. Fig. 13
shows that for the Schaffer problem we have found the best
solution in 140 iterations and Fig. 14 shows that for the
Michalewicz problem we have found the best solution in 47
iterations.

VII. CONCLUSION

In this paper, a new meta-heuristic optimization algorithm
called DSDSC is introduced. DSDSC can be simply
implemented, without too many parameters. It includes three
genetic operators (the dynamic schema, dissimilarity and
similarity operators), population sorting and random
generation of a part of the population.

The experiments have shown quick convergence and the
good global searching ability of our algorithm. The DSDSC
algorithm is easy to understand and uses a simple classical
representation of points in R™.

The DSDSC algorithm has only one parameter to be set by
the user: the number M of chromosomes. Therefore, it is easier
to test than the classical GA where the user must try multiple
runs to test different combinations of parameters. For all our
examples, 80 chromosomes are enough to solve the problem.
As Table VI shows, the rate of success of our algorithm is
much better than for the classical GA that has a lot of
parameters.

ACKNOWLEDGMENTS

The author would like to thank the Ministry of Higher
Education and Scientific Research (MOHESR), Iraq.

REFERENCES

[1] K. Manda, S. C. Satapathy, and B. Poornasatyanarayana, “Population
based meta-heuristic techniques for solving optimization problems: A
selective survey, International Journal of Emerging Technology and
Advanced Engineering IJETAE”, vol. 2, no. 11, 2012.

[2] Y. Yuand Z. H. Zhou, “A new approach to estimating the expected first
hitting time of evolutionary algorithms”, Artif. Intell., vol. 172, no. 15,

1489

(4]

[10]
(1]

[12]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:8, 2016

pp. 1809-1832, 2008.

X. Han, Y. Liang, Z. Li, G. Li, X. Wu, B. Wang, G. Zhao, and C. Wu,
“An Efficient Genetic Algorithm for Optimization Problems with Time-
Consuming Fitness Evaluation”, Int. J. Comput. Methods, vol. 12, no.
01, p. 1350106, 2015.

A. S. Eesa, A. Mohsin, A. Brifcani, and Z. Orman, “A New Tool for
Global Optimization Problems - Cuttlefish Algorithm”, International
Journal of Mathematical, Computational, Natural and Physical
Engineering, vol. 8, no. 9, pp. 1203-1207, 2014.

A. Ritthipakdee, A. Thammano, N. Premasathian, and B. Uyyanonvara,
“An Improved Firefly Algorithm for Optimization Problems”,
ADCONP, Hiroshima, no. 2, pp.159-164, 2014

J. Town, E. Sciences, and A. K. B. Road, “A Novel Function
Optimization Approach Using Opposition Based Genetic Algorithm
with Gene Excitation”, International Journal of Innovative Computing,
Information and Control, vol. 7, no. 7, pp. 4263-4276, 2011.

J. B. Odili, M. Nizam, and M. Kahar, “Numerical Function Optimization
Solutions Using the African Buffalo Optimization Algorithm (ABO)”,
British Journal of Mathematics & Computer Science, vol. 10, no. 1, pp.
1-12, 2015.

G. Mitsuo, Invited Talk: Network Models and Optimization: moGA
Network Models and Optimization, Graduate School of Information,
Production and Systems, WASEDA University, March, 2009.

E. O. Scott and K. A. De Jong, “Understanding Simple Asynchronous
Evolutionary Algorithms”, In: FOGA '15 Proceedings of the 2015 ACM
Conference on Foundations of Genetic Algorithms XIII, pp. 85-98.
Michalewicz Z., “Genetic Algorithms + Data Structures = Evolution
Programs (3ed).PDF.” Springer, Berlin,1996.

R. Mahmod, “Maintaining diversity for genetic algorithm: a case of
timetabling problem”, Jurnal Teknologi (Universiti Teknologi Malaysia)
vol. 44, no. D, pp. 123-130, 2007.

Deb K., “Multi-Objective Optimization Using Evolutionary
Algorithms”, F. Edition, Chichester, U.K.: Wiley, 2001.

1490

