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 
Abstract—This paper is concerned with the single-item 

continuous review inventory system in which demand is stochastic 
and discrete. The budget consumed for purchasing the ordered items 
is not restricted but it incurs extra cost when exceeding specific 
value. The unit purchasing price depends on the quantity ordered 
under the all-units discounts cost structure. In many actual systems, 
the budget as a resource which is occupied by the purchased items is 
limited and the system is able to confront the resource shortage by 
charging more costs. Thus, considering the resource shortage costs as 
a part of system costs, especially when the amount of resource 
occupied by the purchased item is influenced by quantity discounts, 
is well motivated by practical concerns. In this paper, an optimization 
problem is formulated for finding the optimal (r, Q) policy, when the 
system is influenced by the budget limitation and a discount pricing 
simultaneously. Properties of the cost function are investigated and 
then an algorithm based on a one-dimensional search procedure is 
proposed for finding an optimal (r, Q) policy which minimizes the 
expected system costs. 
 

Keywords—(r, Q) policy, Stochastic demand, backorders, limited 
resource, quantity discounts. 

I. INTRODUCTION 

HE (r, Q) policy also known as reorder-point/order-
quantity policy is one of the most common practical 

policy in inventory control systems. In an (r, Q) inventory 
system, the inventory position of the item is reviewed 
continuously and a fixed quantity Q is ordered when the 
inventory position drops to the reorder point r or lower. The 
purpose of an (r, Q) inventory control system is to determine 
the values of r and Q which minimize system costs. Such (r, 
Q) inventory models under various practical assumptions and 
constraints have been extensively studied in the literature. The 
basic (r, Q) policy was first introduced by Galliher et al. [1]. In 
spite of a large number of heuristics, the first efficient 
algorithm for finding optimal (r, Q) policy in a discrete 
inventory system with backorders for shortages, was proposed 
by Federgruen and Zheng [2] after almost 30 years. This 
algorithm is based on the unimodality of the cost function. For 
lost sales inventory models, studies can be referred to [3] and 
the references cited therein. The last study for properties of 
optimal policy in (r, Q) inventory systems were derived by 
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Federgruen and Wang [4]. They have provided general 
conditions for monotocity of the optimal policy parameters as 
a function of various model primitives and extend the results 
both to standard inventory models and to the models with 
general shelf age and delay dependent inventory costs. (r, Q) 
policies continue to be studied under various important 
extension of the base model. Olsson [5] considered an 
inventory system with continuous review (r, Q) policy under 
the assumption of Poisson demand and perishable items with 
fixed lead times and lifetimes. The resource constraint is one 
of the important and practical extensions of (r, Q) inventory 
models. In practice, the resource available in inventory system 
is usually limited. So, making a decision about a 
replenishment policy under the resource constraint is one of 
the most important issues in real inventory systems. As 
described by [6], "Practical applications are budget 
constraints, where the total amount of capital tied up in 
inventories at any time is limited by corporate strategy in 
industry or by law/regulation in government/military 
applications". Thus, in regard to practical concerns, 
considering a constraint on the budget used by all items is one 
of the most significant issues in inventory management. 
Nevertheless, as mentioned by [7], yet studies on inventory 
systems with limited and sharable-common resource (like 
budget) are limited. Moreover the literature on stochastic 
continuous review (r, Q) models can be separated into two 
categories: discrete and continuous demand model. There are 
major differences between the properties of discrete model 
cost function and the continuous demand version. Ang et al. 
[8] have made a comprehensive study on the behavior of these 
two types of inventory models. Based on the discrete 
convexity concept, the non-convexity of discrete (r, Q) system 
is proved and also they show that the significant properties 
which are applied to analyze the continuous models no longer 
hold in discrete counterparts. Hence, the analysis of the 
various extensions of inventory models with discrete demand 
is more complicated than the continuous demand models. This 
can partly explain why most of existing studies on (r, Q) 
models in the literature are focused on continuous demand. On 
the other hand, it was shown that the cost function of 
continuous demand model is an adequate approximation of the 
cost function in discrete demand model only when the order 
quantity is large enough [9]. So, considering continuous cost 
function instead of discrete cost function is not efficient for all 
cases in systems with discrete demand. Now we refer to 
literature on continuous review system with limited resource 
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and continuous demand. Minner and Silver [6] considered a 
continuous review inventory system with zero lead times and 
common budget or space limitation, in which backorders are 
not permitted. Thus, when the inventory level of a product 
drops to zero, the product is replenished. With such 
assumptions, the on-hand inventory equals the inventory 
position. They derived a semi-Markov decision formulation for 
the problem under Poisson demand, which can be solved 
optimally for small instances of the problem and they proposed 
heuristics to solve the problem by referring to the economic 
ordering quantity (EOQ). Ghalebsaz-Jeddi et al. [10] 
considered a stochastic inventory system under continuous 
review with backordered shortages and marginal shortage 
costs, in which the purchasing costs are paid upon order arrival 
and budget/storage space is limited. Due to considering 
continuous demand instead of discrete quantities, the cost 
function in their proposed model is approximate. They use a 
Lagrange multiplier technique to solve the problem. Hariga 
[11] investigate a single-item continuous review inventory 
system with the stochastic continuous demand and a space 
restriction, in which the over-ordered quantity is returned to the 
supplier at a certain cost. They consider the approximate 
expression of the expected holding cost, which is affected by 
the storage space limitation. Betts and Johnston [12] proposed 
a multi-item (r, Q) inventory model under the capital constraint 
with an approximate objective function. They develop a new 
approach to determine replenishment policy by obtaining an 
optimal trade-off between maximizing profit and reducing risk 
of failure. An approximate solution approach is presented to 
solve the model. Kundu and Chakrabarti [13] considered a 
stochastic continuous review inventory model with budget 
constraint and mixture of backorders and lost sales, in which 
the distribution of demand and lead time are unknown and 
purchasing costs are paid upon order arrival. The cost function 
is approximate and a Lagrange multiplier technique is applied 
to solve the problem.  

For the discrete demand systems, only a few studies have 
dealt with these systems under continuous review and resource 
constraint. Zhao et al. [14] studied an (r, Q) model with 
discrete stochastic demand and a constraint on storage-space 
for on-hand inventory. The solution approaches for finding an 
optimal policy in single-item system and undominated solution 
in multi-item case have been developed. Zhao et al. [7] studied 
an (r, Q) model with discrete stochastic demand and limited 
sharable-common resource for both single-item and multi-item 
cases. They proved that an existing algorithm can be applied to 
find the optimal solution of single-item case. Also they 
developed an algorithm for finding an optimal/near optimal 
replenishment policy for the multi-item case. We consider the 
same assumption as [7] did for the resource constraint in our 
model. Because of the resource limitation, most of the actual 
inventory systems may be encounter resource shortage. 
Additionally, one of the common strategies to confronting the 
resource shortage in practice is that the inventory systems 
usually rent extra resource temporarily to provide the extra 
resource requirement more than the available resource. In this 
case the resource constraint is applied as a soft constraint and 

the corresponding shortage cost should be considered in the 
cost function. Studies on systems with soft resource constraint 
are limited while their use in real inventory systems is 
widespread. Applying the resource limitation as a soft 
constraint and modeling the resource shortage cost as a part of 
the cost function can make the model more practical than 
models with hard resource constraint which must be fulfilled. 
Moreover, the first case can cover the second one by changing 
the cost parameters. On the other hand, in many actual 
inventory systems (especially the ones with competitive supply 
market) usually several quantity discount opportunities are 
offered by suppliers. Katehakis and Smit [15] consider a 
single-item inventory system with continuous review (r, Q) 
policy and stochastic discrete demand under both all-units and 
incremental quantity discounts. They proposed sufficient 
algorithms for computing the optimal policy. Feng and Sun 
[16] considered a single-item continuous review inventory 
system with stochastic demand and discount opportunities. 
They assume that discount opportunities occur according to a 
Poisson process. They proposed an algorithm based on a 
bisection search procedure to find the optimal replenishment 
policy. For other literature on inventory management with 
quantity discount, we can refer to [17] and [18] 

Though limited resource and quantity discounts are two 
common characteristics in inventory management, very few 
works consider both in a continuous review model. Most of the 
existing literature on inventory systems which faces both a 
limited resource and quantity discount, have been devoted to 
inventory models with constant demand (see, for example [19]- 
[22])  

Since the available budget is spent on purchasing items, the 
amount of budget occupied by a unit of goods is equal to the 
unit purchasing price which is a function of the quantity 
ordered when a quantity discount is available. In the other 
words, the resource shortage cost depends on quantity discount 
parameters and they could effect on the system policy 
conversely. Therefore, the consideration of the limited budget 
and a quantity discount opportunity simultaneously in the 
model, in spite of increasing its complexity to find an optimal 
policy, makes the model more practical. Thus, the major issue 
in such inventory systems is the determination of r and Q 
values which lead to a trade-off between all types of costs 
consist of holding, resource shortage, ordering, purchasing and 
inventory shortage costs. 

In this paper, we consider a single-item (r, Q) inventory 
systems with stochastic discrete demand, backorder, constant 
lead time, all-units discount and limited budget in which the 
resource shortage can be offset via charging extra costs. Based 
on the properties of the cost function an algorithm for finding 
the optimal (r, Q) policy is proposed. 

The remainder of the paper is organized as follows. In 
Section IIII, we review the single-item (r, Q) inventory systems 
with limited resource and provide some existing results which 
are the foundation for analyzing the presented models in this 
paper. Section IIIIII, analyzes the single-item (r, Q) system 
with limited budget under all-units discount. Then based on the 
cost function properties, an algorithm with one-dimensional 
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search procedure is presented for finding the optimal solution 
in Section IV. Section V contains concluding remarks and 
future directions.  

II. SINGLE-ITEM SYSTEM WITH LIMITED RESOURCE 

In this section a single-item system with limited resource 
which was introduced by [7] is reviewed first. Then, we 
provide some existing properties on the system cost function 
and then based on these properties the problem with both 
budget constraint and all-units discount will be analyzed in the 
subsequent sections.  

A. System Description 

The single-item inventory system, which consists of a 
supplier and customers, is controlled by applying an (r, Q) 
policy, where r is a finite integer and Q is a finite positive 
integer. Customer demands arrivals occur based on a renewal 
process with a mean λ, the expected value of arrivals per time 
unit. Demands arise discretely on a unit-by-unit basis. The 
demands that cannot be satisfied immediately are backordered. 
Inventory level, denoted by Il, is equal to the amount of on-
hand inventory minus the number of backorders. More than 
one outstanding order can be exist at a time. The inventory 
position, denoted by Ip, is defined as the inventory level plus 
all outstanding orders. The inventory position of the item is 
reviewed continuously and a fixed quantity Q is ordered to the 
manufacture when the inventory position drops to the reorder 
point r or lower. After a constant lead time L since an order is 
placed, the replenishment goods are received from the 
supplier. Because of the Poisson demand arrival, the inventory 
position process (Ip) can be described by a continuous time 
Markov Chain with state space  Qrrr  ,,2,1  . Since all 

transition rates of this Markov Chain are equal, for the 
inventory position at time t, denoted by Ip(t), we have 

  QytIprob p
t

1)(lim 


, for all Qrrry  ,,2,1  . 

Consequently, in the steady state, the inventory position Ip, is 
uniformly distributed on  Qrrr  ,,2,1  . (See e.g., [2], 
[23]) 

Since the resource is occupied when an order is placed, the 
amount of resource occupied depends on the inventory 
position not the on-hand inventory. It is assumed that a 
customer pays for the order when the customer can be 
satisfied immediately by a unit of goods in on-hand inventory 
or when a unit of goods in outstanding orders is assigned to 
the customer. When the customer pays for the goods the 
corresponding resource occupied by the goods is released. 
Note that a unit of outstanding orders can only be assigned to 
one customer. Based on the customer payment strategy, the 
resource is occupied only by the unassigned goods in on-hand 
inventory and outstanding orders that is given by Ip

+=max{0, 
Ip}. It means that when the inventory position Ip is non-
positive, no unassigned good exists in inventory system and in 
consequence the resource is entirely available and there is no 
resource occupied. Assume that the amount of resource 

occupied by each unit of goods is denoted by c . For a given 
(r, Q) policy the maximum amount of resource that can be 

occupied is equal to c  (r+Q)+. When the available resource 
is not enough to provide the resource requirement, it is 
possible to offsets the resource shortage via renting extra 
resource. Due to this act a resource shortage cost that is 
proportional to the amount of the rented resource is incurred. 

Let, B and a , denote respectively the amount of available 
resource and the resource shortage cost of one unit of extra 

resource. A resource shortage occurs when c Ip
+> B . Thus, 

the amount of resource shortage is given by ( c Ip
+– B )+. 

Consequently, the expected resource shortage cost per time 

unit is given by a .E( c Ip
+– B )+. Without loss of generality, 

we rewrite a .E( c Ip
+– B )+ as E(cIp

+–B)+ by rewriting a. 
c  as c and a . B as B as Zhao et al [7] did. Since the 
inventory position Ip, is uniformly distributed on 
 Qrrr  ,,2,1  , we have: 
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Four types of costs are considered in the model: ordering 

cost, holding cost, inventory shortage cost and resource 
shortage cost. Let,  
 DL= demand during a lead time with a mean λL 
 K= ordering (set-up) cost per order (K>0) 
 h= holding cost per unit of goods per time unit 
 p= penalty cost per demand backordered per time unit 
 g(y) = sum of expected holding and shortage costs per time 

unit 
Consequently, for the given (r, Q) policy the long-run 

average system cost per time unit can be expressed as 
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and, 
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Let, f denote the set of all feasible (r, Q) policies defined as 
  QrQrf 1,),( . The problem is as follows: 

Problem I. Find (r, Q) in f to minimize the long-run average 
cost C(r, Q). 

B. Properties of the Cost Function C(r, Q) 

This subsection explains some existing and structural 
properties of the cost function C(r, Q) which are used to 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:7, 2015

2465

 

 

analyze the (r, Q) inventory model with both resource 
limitation and all-unit discounts in the subsequent sections.  

Let, G(y) =g(y) + (cy+–B)+. Zhao et al. [7] have shown that 
all of the desired properties of g(y) hold for the developed 
function G(y)[7]. Hence the following results in the literature 
can be extended to the cost function C(r, Q). 
Property I.G(y) is convex with respect to y and –G(y) is a 
unimodal function with 


)(lim yG

y
 [7]. (See Fig. 1) 

Definition I. 
a) y* is refer to the maximal minimizing point of G(y) i.e., 

 )1()(:max*  yGyGyy . 

b) Let )(),(),( 21 QyGyGyG   be the Q smallest values of the 

G(y), then based on the unimodality of G(y), 

 Q
Q
G yyy ,,, 21   contains Q successive integer with 

Qyyy  *
1 . 

c) Let GQ denote the Q-th smallest value of G(y) function 
over all integers for y. 

d) r(Q) is refer to the optimal reorder point for given order 
quantity Q with corresponding cost function 

),(min)( QrCQC r . 

Property II. For any given integer 1Q : 
a) C(r, Q) is convex with respect to r, therefore there is a 

minimizing point r(Q), such that 
 )(),(:min)( QCQrCrQr   [14]. 

b) C(r, Q) is minimized with respect to r when 

1)(min)(  Q
GQr   [2]. 

c) r(Q) is decreasing in Q with 


)(lim Qr
Q

 [4]. 

d)  –C(Q) is a unimodal function with respect to Q where 
)),(()( QQrCQC   [2]. 

e) The optimal order quantity denoted by Q* is the smallest 
integer value of Q for which )()( 1 QyGQC  [2]. 

f) *QQ   if and only if )()( 1 QCyG Q   [4]. 

As a result we have   )),((),(min **
),( QQrCQrCfQr   which 

refers to the optimal solution of Problem I. Based on the above 
properties an efficient algorithm has been proposed to find the 
optimal solution of the Problem I by Federgruen and Zheng [2] 
which can be summarized as follows: 
Algorithm I. 
Step1. Find y* which minimizes G(y). 
Step2. Set Q=1 and r = y*–1. 
Step3. If   ),()1(),(min QrCQrGrG  , then stop. Otherwise 

go to step 4. 
Step4. If )1()(  QrGrG , then 1:  rr . 

Step5. 1: QQ , go to step 3. 

 

Fig. 1 The graphical view of G(y) and related notations 

III. SINGLE-ITEM SYSTEM WITH LIMITED BUDGET UNDER 

ALL-UNITS DISCOUNT 

In this section, we introduce the single-item system faces 
both a budget constraint and all-units discounts offered by the 
supplier. Consider a single-item inventory system which 
operates in the same way as the limited resource system 
explained in Section IIII but with a major difference, which is 
that the unit purchasing cost (unit price) depends on the order 
quantity Q. When the quantity discount in purchasing is 
offered by the supplier, the unit purchasing price depends on 
the order size Q. Since the available budget as a resource is 
spent on purchasing items, the amount of budget occupied by 
each unit of goods is equal to the unit purchasing price which 
is depends on the order quantity Q. Consequently, the resource 
shortage costs is affected by discount pricing structure While 
this assumption makes the model more practical, it increases 
the complexity of analysis. In such case, resource shortage 
cost and purchasing cost depends on the quantity discount 
parameters and could exert influence conversely on the 
optimal value of r and Q. Let, 
 j(Q) = the unique discount level j for which ),[ 1 jj qqQ , 

nj ,,1   

 n = number of discount levels with 1n , ( 01 q  and 

1nq )  

 cj = unit purchasing price when Q is in the discount level j, 
for nj ,,1  

Similar to (2), for the given (r, Q) policy the long-run 
average system cost per time unit with limited budget under 
all-units discount can be expressed as 
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where, g(y) is defined by (3). In this case we have an 
optimization problem as follows: 
Problem II. Find (r, Q) in f to minimize CA(r, Q). 

Let (r*, Q*) denote the optimal solution of Problem II. In 
remainder of this section the properties of the expected system 

y* 

G
(y

)
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r(Q*)+Q* Q* 

r(Q*)

r(Q*)+1



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:7, 2015

2466

 

 

cost function, CA(r, Q) are analyzed and based on them, a 
solution approach is developed for finding (r*, Q*) in the 
subsequent section. 

We can rewrite CA(r, Q) as follows: 
 

)())(|,(),( QjA cQjQrCQrC   (6) 
 
where, 

.,...,2,1 ,)(
1

)|,(
1

njyG
QQ

K
jQrC

Qr

ry

j  

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  
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and, 

njBycygyG jj ,...,2,1 ,)()()(    (8) 

 
The idea behind these functions, is that for a given j, the 

cost function )|,( jQrC  is treated as C(r, Q) defined in (2). 

Therefore, this representation of CA(r, Q) breaks Problem II 
down into at most n several instances of Problem I in which 
the parameter c in cost function C(r, Q) is converted to cj for 
j=1,2,…,n. Now, the important issue is how to obtain the 
optimal policy (r*, Q*) by solving these n sub problems. Let 

)),(( * 
jjj QQr  denote the optimal policy under cost function 

)|,( jQrC  and )(Qrj  be the optimal reorder point for a given 

order quantity Q under cost function )|,( jQrC  for j=1,2,…,n. 

Also, let j
~ be the highest discount level for which jj qQ ~~   i.e.

}:max{
~

jj qQjj   . The following lemma obtains some 

lower bounds for CA(r, Q) in different discount levels. Based 
on these lower bounds a solution approach is constructed to 

find the optimal solution of Problem II. 
Lemma I. 
a) If 1

~~ 
  jj qQ then )),((),( ~~~  jjjAA QQrCQrC for  jQQ ~  

b) If
1

~~ 
  jj qQ the )),((),(

1
~

1
~1

~


jjjAA qqrCQrC for 
1

~


j
qQ  

c) )),((),( jjjAA qqrCQrC  for njjj ,...,2
~

,1
~  and 1 jj qQq  

Proof. Let
1

~~ 
  jj qQ . By definitions, for a given (r, Q) we 

have: 
 

)()()( ))(|),(())(|,(),( QjQjQjA cQjQQrCcQjQrCQrC    (9)
 
Since )|,( jQrC is non-increasing on j, j=1,2,…,n, and 

jQj
~

)(  therefore, 
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The last term is larger than or equal to
jjjj cjQQrC ~~~~ )

~
|),((  . 

Hence, we have: )),((),( ~~~  jjjAA QQrCQrC  and the proof of 

(a) is then completed. Now, let 1
~~ 

  jj qQ , therefore by 

convexity of )
~

|),(( ~ jQQrC j , it is non-increasing over 

1
~0  jqQ  and we have 
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|),(( 1
~

1
~~~ jqqrCjQQrC jjjj   (11) 

 
By the definition of )( 1

~
1

~  jj qr and by the fact that )|,( jQrC is 

non-increasing on ,…,n, j=j 21, , we can write 
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By (9), (10), (11) and (12) we can conclude that: 
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then the proof of (b) is completed. For part (c), note that 

jj qQ   for jj
~ by definition of j

~
, therefore, for jj

~ and

1 jj qQq  we have )|),(()|),(( jqqrCjQQrC jjjj  because 

by Property II-d )|),(( jQQrC j is a unimodal function with 

respect to Q. The last inequality can easily be changed to 

jjjjj cjqqrCcjQrC   )|),(()|,( by (9) which implies that

)),((),( jjjAA qqrCQrC  and the proof of part (c) is completed. 

Theorem I. If 


  1
~~
jj qQ then } ...,, ,, { 2

~
1

~~ njjj qqqQQ 
  ; 

otherwise } ...,, ,{ 2
~

1
~ njj qqqQ 

  . 

Proof. Let },min{ ~
1

~ 
 jjf QqQ . 

)),(( )( ffQj QQr
f

 is a feasible policy and by parts (a) and (b) of 

Lemma I its cost is lower than or equal to any other policy (r, 
Q) with fQQ  , therefore, by optimality of (r*, Q*), we have: 

 

},min{ ~
1

~ 


  jjf QqQQ  (13) 

 

If 
1

~~


 
jj qQ , obviously )

~
|),(( ~ jQQrC j

is non-decreasing over 

1
~~ 

  jj qQQ , therefore, )),((),( ~~~  jjjAA QQrCQrC for 

1
~~ 

  jj qQQ . Therefore, we have: 

 

),( 1
~~ 

  jj qQQ  (14) 

 
Lemma I-c states that the start point of each discount level j, 

njjj ,...,2
~

,1
~  , has the lowest cost in the discount level, 

therefore, we can conclude that: 
 

njjjqqQ jj ,...,2
~

 ,1
~

 ,),( 1  
  (15) 

 
Considering (13), (14) and (15) the proof is completed. 

By Theorem I, the search region for the optimal order 
quantity Q* reduces to an enumerable finite set which has at 
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most n member. Based on Theorem I, in order to solve 
Problem II, it is sufficient to find the optimal policies 

)),(( 
jjj QQr  under cost function )|,( jQrC  until j

~
is obtained. 

Since during each discount level j, j=1,2,…,n, i.e. 

1 jj qQq , the purchase price and the resource usage per 

unit of goods are constant, )),(( 
jjj QQr  can be obtained by 

using Algorithm I. After computing j
~

, there are several 
candidates for optimal policy in which the one with minimum 

cost under ),( QrCA is ),(  Qr . The details of this approach are 

described in subsequent sections. 

IV. ALGORITHM 

Now we can propose our algorithm for finding the optimal 
solution of Problem II. The procedure is as follows. Start from 
the last discount level j, i.e. j=n, utilize Algorithm I to find the 

optimal policy )),(( 
jjj QQr  under cost function )|,( jQrC . If 

jj qQ   then the procedure is stopped and j is returned as j
~ , 

otherwise, set *
jQQ  then find 1Q

jG  and let Q=Q+1 , 

continue the procedure until jqQ  and so Q
G j

  contains qj 

points. The optimal reorder point 1)(min)(  j

j

q
Gjqr   is 

obtained and the policy )),(( jj qqr is saved as a candidate of 

optimal solution. Then set j=j-1 and continue the procedure. 

After computing j
~

, the algorithm is stopped, now if 



  1
~~
jj qQ  then the policy )),(( ~~~


jjj QQr  is added to the 

candidate solution set. The optimal solution is the policy with 
minimum cost between all candidate solutions. The pseudo 
code of the presented algorithm is as follows. 
Algorithm II. 

nj : ; Falsecheck : ; 

CAN (set of candidate policies for optimality) 

While Falsecheck : Do 

           Compute )),(( 
jjj QQr using Algorithm I 

            If jj qQ  then 

                     Truecheck : ; jj :~

                      If 1
  jj qQ  insert )),(( 

jjj QQr  to CAN 

            Else  

 ;:  jQQ , )(:  jj Qrr  

                     While jqQ  Do 

                           If )()}1(),(min{ rGQrGrG jjj 
 

then 1:  rr
                               1:  QQ  
                     End While 

insert )),(( jjj qqr  to CAN; j:=j-1 

            End If 
End While 

)},({min),(
),(

QrCArgQr A
CANQr 

   

End 

V. CONCLUSION AND FUTURE STUDY 

In this paper, we have investigated the (r, Q) inventory 
system under both all-units discount and a budget limitation 
which is considered as a soft constraint in the system cost 
function. It is assumed that the shortage of resource can be 
satisfied by renting the extra resource and so a resource 
shortage cost that is proportional to the amount of rented 
resource is incurred.  

Some essential properties of the cost function were prove 
and based on these properties an algorithm with a one-
dimensional search procedure is proposed to find the optimal 
solution of the problem. In this paper we analyze a single-item 
system under all-units discount. Considering the system with 
the incremental discount, deteriorating item or in multi-item 
case can be the other practical situations. Also, other than the 
continuous review (r, Q) policy, studies on periodic review 
models with resource constraint and discount in the same 
situation as this paper can be future research directions. 
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