
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1062

Abstract—As more people from non-technical backgrounds 
are becoming directly involved with large-scale ontology 
development, the focal point of ontology research has shifted 
from the more theoretical ontology issues to problems 
associated with the actual use of ontologies in real-world, 
large-scale collaborative applications. Recently the National 
Science Foundation funded a large collaborative ontology 
development project for which a new formal ontology model, 
the Ontology Abstract Machine (OAM), was developed to 
satisfy some unique functional and data representation 
requirements. This paper introduces the OAM model and the 
related algorithms that enable maintenance of an ontology that 
supports node-based user access.  The successful software 
implementation of the OAM model and its subsequent 
acceptance by a large research community proves its validity 
and its real-world application value. 

Keywords—Ontology, Abstract Machine, Ontology Editor, Web-
based Ontology Management System. 

I. INTRODUCTION

A perusal of ontology-related literature in computer science 
clearly reflects that the research focus and problems relating to 
ontologies in information systems have changed over the 
years. The focal point has shifted from the more theoretical 
ontology issues to problems associated with the actual use of 
ontologies in real-world, large-scale collaborative 
applications. For example, substantive research efforts have 
been spent on the development of formal languages that can 
be used to define ontologies and exchange information 
inherent to them. Open Knowledge Base Connectivity 
protocol [2] and Knowledge Interchange Format [3] are two 
of the most comprehensive languages that have been 
developed for these purposes. 

Leong Lee, Jennifer Leopold, Julia Albath, Alton Coalter are affiliated 
with the Department of Computer Science, Missouri University of Science 
and Technology, Rolla, MO 65409 USA (e-mail: {llkr4, leopoldj, jgadkc, 
abcp7c}@mst.edu). 

As the use of ontologies has become more pervasive in 
diverse domains, there also have been considerable efforts to 
facilitate ontology content development. A number of 
ontology editors have been developed, and their 
functionalities have been compared in various research papers 
(e.g., [4] compares Protege, Chimaera, OBO-Edit and OilEd, 
and [5] discusses Ontolingua, WebOnto, Protege, OntoSaurs, 
ODE and KADS22). Although most ontology editors are 
stand-alone file-based applications, there are also some 
ontology servers that take advantage of the World Wide Web 
to provide service to geographically distributed groups (e.g., 
the Ontolingua server [6] and the IBM ontology management 
system [7]). 

In particular, ontology editor tools have been critical for 
supporting community-based efforts to create re-usable 
ontologies. For example, OBO Foundry is a project with the 
goal of creating a suite of orthogonal interoperable reference 
ontologies in the biomedical domain [8], [9]. As these 
community-based ontologies become larger and more 
complex, the issues of ontology merging and alignment have 
emerged as critical needs. Although a considerable amount of 
preliminary research has already been done in this area, there 
are still many open questions [10]. In fact, attempts have been 
made to classify different problems associated with combining 
ontologies; see [10], which also provides an overview of some 
of the unresolved issues.  
 As an example of a large ontology project that required the 
use of collaborative editing and a degree of modularity, in 
2007 the National Science Foundation funded a project to 
build collaboratively an ontology of amphibian anatomy 
(AmphibAnat [11]). After determining that existing ontology 
editors/servers did not meet all of their needs, the biologists 
associated with the project requested the design and 
construction of a new Web-based ontology management 
system  (RDBOM [12]). 
 To facilitate the implementation of that system, a novel 
theoretical ontology model, an Ontology Abstract Machine 
(OAM), was developed which meets the collaborative and 
modular needs of the AmphibAnat project.  In this paper, the 
OAM model is introduced; the motivation for developing the 
new model is examined, and various algorithms and examples 
associated with the AmphibAnat project are presented. 

II. RELATED WORK

In [13], the authors discuss the need for the evolution of 
formal ontology languages to accommodate modular 
ontologies. The authors of [14] describe P-OWL, an extension 
of OWL that supports modular design, adaptation, and reuse 
of ontologies. P-OWL improves upon OWL by translating 
OWL entities and relationships into P-OWL 

An Ontology Abstract Machine 
Leong Lee, Jennifer Leopold, Julia Albath, and Alton Coalter 

PHILOSOPHER Barry Smith has defined an ontology as “…the 
science of what is, of the kinds and structures of objects, 
properties, events, processes, and relations in every area of
reality. For an information system, an ontology is a 
representation of some pre-existing domain of reality which: 
1) reflects the properties of the objects within its domain in 
such a way that there obtains a systematic correlation between 
reality and the representation itself; 2) is intelligible to a 
domain expert; 3) is formalized in a way that allows it to 
support automatic information processing” [1].  



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1063

modules/packages. As with programming languages that 
support modularization via package and library constructs, P-
OWL promotes decentralized development of ontologies. 

Like databases, controlled user access to the various parts 
of an ontology also must be considered. In [15], the authors 
discuss the need for security in several applications owing to 
the private/sensitive information contained in the data. The 
authors point out that the need for controlled access is critical 
to the collaborative processes involved in the development 
and usage of ontologies; different collaborators play different 
roles, and different roles require different security access. The 
authors propose a semantics driven policy to enforce security. 

In addition, many applications require selective sharing of 
information with users. The authors in [16] introduce the 
notion of a privacy-preserving reasoner that can be used to 
check whether a particular user can view certain information 
within an ontology (depending on the user’s access rights) 
when querying information.  

In developing the OAM model, both the nature of the 
modularity constructs that were developed for P-OWL, as 
well as the controlled access needs discussed in [15] and [16], 
were considered. 

III. MOTIVATION

A. The AmphibAnat Project 
The Amphibian Anatomical Ontology (AmphibAnat)

project is dedicated to semi-automatically constructing an 
amphibian anatomy ontology. In AmphibAnat, small 
ontologies are constructed manually by domain experts. Data-
mining software is then used to mine electronic media for 
instances of concepts and properties to be added to the 
ontologies (using skeletons of the small ontologies as seed 
data) [17]. Draft semi-automatically constructed ontologies 
are made Web-accessible and are presented for community 
modification, enhancement, and curation.  

Constructing an ontology of amphibian anatomy that is 
acceptable to the community requires multiple iterations and 
considerable effort. There are thousands of species of 
amphibians, each having a unique anatomical system. 
Numerous related publications, images, and specimens 
maintained by different researchers around the world must be 
considered and integrated into the process. Many of the 
researchers have developed their own small (formal or 
informal) ontologies related to their specialized research area 
that must be combined and resolved with the AmphibAnat
ontology. Additionally, there are constant discussions and 
debates among amphibian researchers, with topics ranging 
from specific anatomical problems to the basic definition of an 
ontology. Traditionally, OBO-Edit and Protégé have been the 
two most common ontology editors used by these biologists. 
However, neither these tools nor any other available ontology 
maintenance tools fully met all of the centralized, community-
curation needs for this project.  

B. Relational Database Ontology Maintenance (RDBOM) 
Based on the user requirements provided by the amphibian 

anatomy researchers, a collaborative ontology management 
system was developed. Relational Database Ontology 
Maintenance (RDBOM) is a Web-based software system that 
exploits the traditional features of a relational database 
management system in terms of concurrency control, security, 
and consistency checking in order to facilitate querying and 
updating an ontology. The details of the relational database 
design and the system architecture of RDBOM are discussed 
in [12]. The amphibian research community currently uses this 
system for their collaborative ontology construction effort, 
and the feedback gathered during the most recent yearly 
conference has been very positive.  

C. Collaborative Ontology System 
This new ontology system satisfies the following basic 

properties: 
1) It is a Web-based, multi-user ontology system. 
2) It provides user login and security features. This allows 

for user-level permissions and control of different 
ontology classes and instances. In a collaborative editing 
environment, only users with permission granted can edit 
the parts of the ontology for which they are responsible.   

3) The basic ontology definition is customizable to satisfy 
the special requirements of the amphibian research 
community. This allows future evolutions of the 
amphibian anatomy ontology and provides the foundation 
to extend the system to other biology research 
communities. 

4) It allows users to import any parts of the ontology from 
(and export to) other common ontology data formats such 
as OBO (used by OBO-Edit) [18] and OWL (used by 
Protégé) [19], [20]. 

5) It allows users to merge two ontologies, and to calculate 
the differences between two ontologies.  

6) It allows users to swap in (and out) a subset of an 
ontology as a module. It should be noted that an ontology 
module normally has links to other parts of the ontology, 
and that those links should be preserved as much as 
possible during these swapping operations.  

IV. ONTOLOGY ABSTRACT MACHINE (OAM) 

A. The Need for a Mathematical Model 
In the initial design of the RDBOM system, one of the main 

challenges was the development of an appropriate formal 
model. An implementation-independent mathematical model 
was needed to represent the various ontology constructs (i.e., 
terms, relations, attributes, etc.), and to facilitate algorithms 
that would support multi-user access, node-based security, a 
customizable ontology definition, importing/exporting to other 
data formats, module swapping, and merging/calculating the 
difference of ontology modules. Hence, a mathematical model 
called an Ontology Abstract Machine (OAM) was designed, 
and it became the foundation for implementing RDBOM.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1064

B. Special User Requirements 
The main objective of building the RDBOM system (and 

hence designing the underlying mathematical model) was to 
serve the needs of a community of hundreds of amphibian 
biologists. The use of a directed acyclic graph G = (V, E) to 
represent the ontology was considered, where V is a set of 
vertices (nodes / terms) and E is a set of edges (relationships), 
similar to the approach used in OBO-EDIT [18]. Although the 
definition of a directed graph can be modified to implement 
requirements like multi-user support and node-based security, 
a directed graph does not readily accommodate some of the 
other requirements for the AmphibAnat project.  

Representation of the AmphibAnat data required two types 
of relationships. The first class of relationships forms the base 
structure or backbone of the ontology (e.g., is_a and part_of
relations), and, for this application, should not allow cycles. 
But there is also a second class of extended relationships in 
this ontology wherein cycles should be allowed. This 
requirement affects the semantics of the ontology; the base 
relationships represent mainly the domain knowledge, 
whereas the extended relationships represent a mixture of 
domain knowledge (in terms of properties), data 
representation, and data integration. Effectively, this could be 
implemented using two different instantiations of a directed 
graph for the ontology. But (as will be seen later) the two 
directed graphs would need to be connected for some 
functions, and separated for other functions. These special 
requirements were the main motivations for developing a new 
model.  

C. OAM Definition 
The OAM model is defined in a format similar to that used 

for a finite state automaton. This format makes it very 
straightforward to accommodate the two classes of 
relationships and to implement functionality such as 
importing/exporting modules, swapping modules, and 
merging/calculating the difference of ontologies (the 
algorithms for which are presented in Section V). 

Definition 1. Ontology Abstract Machine (OAM) 
OAM is a 5-tuple representation of an ontology. 
M = (Q, , , Q0, F) 

Q: set of nodes; Q = Qc Qi Qv

Qc = set of classes 
Qi = set of instances 
Qv = set of values 

: set of relationship types 
 = B E

B = set of base relationship types, e.g. {is_a, part_of}
E = set of extended relationship types, e.g. 

{is_from_literature, contains_image, is_from_image, …}
Q0: set of source nodes: These are nodes with no incoming B

edge. This set can be identified from . Q0 is a subset of (Qc

Qi). Source nodes can only be elements of the set of 
classes or elements of the set of instances.  

F: set of root nodes, i.e. nodes with no outgoing B edge. e.g. 
F = {Concepts}, F is a subset of Qc.

: set of relationships in the form of edges (node, relationship 
type, node), Q x  -> Q; hence each element is a child 
node, a relationship type, or a parent node. 

Another set U = {u1, u2, … ui … un} is used to represent 
individual user ids in order to implement security features. 
Any elements of U can be associated with any node in Q.

B is a set of base relationship types. It can be used as links 
(among classes and instances) to generate the main graph view 
of an ontology. This main graph view cannot have any cycles. 
Two of the most common base relationship types are is_a and 
part_of.

E is a set of extended relationship types. The member 
elements can be used as links between values and classes, or 
as links between values and instances. In other words, they are 
used to link attributes to classes and instances. Another 
required function is the ability to link classes and instances. 
This is in response to a special request from the AmphibAnat
project coordinators to allow users to create a link between 
classes and instances (without affecting the main structure of 
the ontology). 

Here an example of using the OAM to represent an 
ontology is presented. 

Example 1: OAM representation of an ontology  
OAM instance M1 = (Q1, 1, 1, Q01, F1):
Q1 = {Concepts, e, b, g, i, f};

all nodes are classes in this case 
1 = B1 E1 = {is_a, is_contained_in_image,  

image_contains}   
B1 = {is_a}; E1 = {is_contained_in_image,  

image_contains} 
Q01 = {b, g, f}
F1 = {Concepts}

1 = {(e, is_a, Concepts), (b, is_a, e), (g, is_a, e), (i, is_a, 
Concepts), (f, is_a, i), (f, image_contains, g), (g, 
is_contained_in_image, f)}

Fig. 1 Ontology M1

Please refer to Fig. 1 for the graphical OAM representation 

Concepts

embryonic

structure

(e)
blastoderm

(b)

germ ring

(g)

is_a is_a

is_a

image

(i)

fig_04_Gau

pp_1896

(f)is_ais_a

is_contained

_in_image

image_

contains



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1065

of this ontology. Note that this is a simple example with only a 
few nodes. In the AmphibAnat project the OAM is used to 
represent ontology modules which each contain thousands of 
nodes.

For the RDBOM implementation, the OAM data are stored 
in a relational database. However, the OAM model is 
implementation independent and could be stored as a flat file 
or simply stored in system memory (for a small ontology).  

V. THE ALGORITHMS

To provide the functionality required by the AmphibAnat
project to manipulate the ontology, the following algorithms 
were developed. 

A. Multi-User Access 
Multi-user access and node-based security access for the 

OAM model are addressed in Algorithms 1.1, 1.2 and 1.3. 
User access is controlled at the level of class nodes and 
instance nodes. In other words, user ids are only attached to 
elements of sets Qc and Qi. As a result, in the algorithms given 
below, parent/child navigation is only done within the main 
graph view (classes Qc and instances Qi linked by base 
relationship types, B).

Algorithm 1.1. Grant access to a node for a user.
Input: An OAM instance, a user id ui, and a node q.
Output: An updated OAM instance. 
Algorithm:
if q is an element of (Qc Qi) then proceed, else exit 
result = check_up (q, ui)    // check_up is declared below 
// determine if user permission already exists 
if result is "found" then 

exit 
else
begin 

attach ui to q as user access record 
check_down (q, ui)    // check_down is declared below 
//check if there is any lower level permission record 

end

check_up (test_node, ui)
begin 

if ui is attached to test_node then 
return "found" 

else if test_node is a root then 
return "not_found" 

else
    for each parent of test_node 
    begin 
     result = check_up (parent_node, ui)
        if result is "found" then 
         return "found" 
    end for loop 
    return "not_found" 
end if/else 

end check_up 

check_down (test_node, ui)
begin 

if there are children of test_node then 
begin 

for each child_node of test_node 
begin 

      if ui is attached to child_node then 
            remove access to child_node for ui

        else 
            check_down (child_node, ui)
        end if/else 
    end for loop 
end if 

end check_down 

Example 2: Grant permission to a node for a user 
Please refer to Fig. 2 for the graphical OAM representation of 
this example. 

Request A:
If permission is to be granted to user id u1 for node “b”, on 
ontology M1, the following steps take place: 
1. check_up (b), result is “not_found” 
2. attach u1 to b as user access 
3. check_down (b), nothing is done 

Request B:
If permission to be granted to user id u1 for node “Concepts”,
on ontology M1, the following steps take place: 
1. check_up (Concepts), result is “not_found” 
2. attach u1 to b as user access 
3. check_down (Concepts), remove access to b for u1

Fig. 2 Grant user permission to a node for M1

Algorithm 1.2. Check if a user has access to a node. 
Input: An OAM instance, a user id ui, and a node q.
Output: If ui have access to q, Yes/No. 

Concepts

embryonic

structure

(e)
blastoderm

(b)

germ ring

(g)

is_a is_a

is_a

image

(i)

fig_04_Gau

pp_1896

(f)is_ais_a

is_contained

_in_image

image_

contains

u1

accessaccess

2. Request B: attach u1

to Concepts u1

1. Request A: attach

u1 to b

3. Request B: remove

access to b for u1



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1066

Algorithm:
result = check_up (q, ui)   // it is declared in algorithm 1.1 
if result is "found" then ui has access to node q
else ui does not have access to node q

Algorithm 1.3. Delete user access from a node. 
Input: An OAM instance, a user id ui, and a node q.
Output: An updated OAM instance. 
Algorithm:
result = check_up (q, ui)   //it is declared in algorithm 1.1 
if result is "found" then  

exit //operation not allowed 
else
begin 
 if ui is attached to q as user access record then 

remove access to q for ui

 else 
check_down (q, ui) //it is declared in algorithm 1.1 

end

To date, the association of access rights with ontologies is a 
research area that has not been thoroughly investigated. In 
[21], the authors propose a method for representing general 
role-based access control in OWL. The OAM-based approach, 
specifically provides access rights for users, allowing a much 
more detailed level of security. 

B. Customize Ontology 
During the AmphibAnat workshop, the participants 

requested the ability to customize the basic ontology 
hierarchy; that is, the users (with appropriate authority) 
wanted to be able to add/delete/modify the relationship types 
(both base and extended) during the ontology building 
process. This functionality is formalized for the OAM in 
Algorithms 2.1.1-2.1.3 and 2.2.1-2.2.3. 

Algorithm 2.1.1. Add a base relationship type. 
Input: An OAM instance, a new base relationship type b.
Output: An updated OAM instance. 
Algorithm:
If b is not an element of B then  

add b to set B

else
 return “b exists, nothing is done” 
end if/else 

Algorithm 2.1.2. Delete a base relationship type. 
Input: An OAM instance, an existing base relationship type b.
Output: An updated OAM instance. 
Algorithm:
if b is not an element of B then 
 return “b does not exist, nothing is done” 
else
begin 
 if b is used in any current edge then 

  return “b is used in edge(s), nothing is done” 
 else 
  remove b from set B

end if/else 

Algorithm 2.1.3. Modify a base relationship type. 
Input: An OAM instance, an existing base relationship type b,
a new base relationship type b’.
Output: An updated OAM instance. 
Algorithm:
if b is not an element of B then 
 return “b does not exist, nothing is done” 
else
begin 
 change b to b’ in set B

 update all existing edges using b (change b to b’)
end if/else 

Algorithm 2.2.1. Add an extended relationship type. 
Input: An OAM instance, a new extended relationship type e.
Output: An updated OAM instance. 
Algorithm:
If e is not an element of e then  

add e to set e

else
 return “e exists, nothing is done” 
end if/else 

Algorithm 2.2.2. Delete an extended relationship type. 
Input: An OAM instance, an existing extended relationship 
type e.
Output: An updated OAM instance. 
Algorithm:
If e is not an element of e then 
 return “e does not exist, nothing is done” 
else
begin 
 if e is used in any current edge then 
  return “e is used in edge(s), nothing is done” 
 else 
  remove e from set e

end if/else 

Algorithm 2.2.3. Modify an extended relationship type. 
Input: An OAM instance, an existing extended relationship 
type e, a new extended relationship type e’.
Output: An updated OAM instance. 
Algorithm:
If e is not an element of e then 
 return “e does not exist, nothing is done” 
else
begin 
 change e to e’ in set e

 update all existing edges using e (change e to e’)
end if/else 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1067

C. Basic Ontology Construction 
The basic functions that most users need to perform during 

ontology construction are to add/delete/modify nodes and to 
add/delete/modify edges. The algorithms for the construction 
of nodes and edges are intuitive. For example, to add a child 
node to an existing ontology just requires the creation of the 
node, and the creation of a new directed edge (child node, 
relationship type, existing parent node). The extra 
consideration here is checking to make sure that the user 
performing this operation has appropriate user access to the 
existing node(s). To check if a user id ui has such access to the 
involved node(s), Algorithm 1.2 can be used (i.e., to check to 
see if a user has access to a particular node, recursively as 
necessary). 

D. Import/Export an Ontology  
An ontology is an explicit specification of a 

conceptualization of a domain [22]. Changes in the 
specification can occur when an ontology is translated from 
one language to another. For the AmphibAnat project, some 
parts of the ontology were initially developed in OWL by 
several distinct groups of biologists while other parts were 
developed in OBO. In order to facilitate the community-based, 
collaborative ontology construction effort, these OWL and 
OBO ontologies were converted to the OAM model. But 
OWL and OBO not only differ in their syntax, but also in their 
semantics and expressivity. As a result, the main focus of our 
translation task was to try to preserve the semantics of both 
representations.  

As an example, synonyms are handled very differently in 
OWL and OBO. The OAM model adopts a representation 
similar to that used by OWL, but still preserves the more 
expressive synonym categorization utilized by OBO. In 
general, export from the OAM model to either the OWL or 
OBO languages tries to preserve the original semantics of the 
ontology as much as possible. In the algorithms presented in 
this section the import/export to OBO function is used as an 
example of the more general process of importing/exporting 
an ontology to another format such as OWL. 

Algorithm 3.1. Import an ontology. 
Input: An OBO file. 
Output: An OAM instance. 
Algorithm:
1. Place values corresponding to the default set of OBO 

relationships into B and E.
2.  Get all terms tagged as OBO names. Place those from 

"[Term]" stanzas in Qc, those from "[Instance]" stanzas in 
Qi, and those from "[Typedef]" stanzas in either B or E

as appropriate. 
3. Get all terms tagged as OBO ids and place them in Qc.
4. Create edges between the terms created in step 2 above to 

the corresponding ID terms created in step 3 above using 
the appropriate value from E.

5. For each term get all tags corresponding to values from 
B (base relationship types) and create edges between the 

term and its parent(s). 
6. Add the term "Concepts" to Qc.
7. Create an edge between each term in Qc (other than 

"Concepts") that had no edge created in step 5 above (that 
is, those terms with no parent) and the term "Concepts" 
using the "is_a" relationship from B.

8. For all other tags previously unused, create an edge 
between the term and its associated value or term using 
the corresponding value from B or E, placing that value 
into Qv. All terms at this time will already exist in Qc or 
Qi as a result of previous steps. 

Algorithm 3.2. Export an ontology. 
Input: An OAM instance. 
Output: An OBO file. 
Algorithm:
1. Get all root nodes from F, and create OBO tags.
2. Get associated values (elements of Qv) for all root nodes, 

using edges (value Qv, extended relationship type E, root 
node F); create OBO tags for values and edges found. 

3. Starting from root nodes, recursively find all nodes in the 
main graph view (classes Qc and instances Qi linked by 
base relationship types, B), and create OBO tags for 
nodes found. Elements of Qc are related to "[Term]" 
stanzas in OBO, and elements of Qi are related to 
"[Instance]" stanzas. 

4. Use different OBO tags for OBO specific semantics 
exceptions (e.g. synonyms representation in OBO). 

5. For each node found in step 3, get the associated edges 
linking classes and instances, (classes Qc and instances Qi

linked by base relationship types, B; and classes Qc and 
instances Qi linked by extended relationship types, E),
and create OBO tags for edges found.  

6. For each node found in step 4, get the associated values, 
(elements of Qv) using edges (value Qv, extended 
relationship type E, node Qc or Qi), and create OBO tags 
for values and edges found. 

7. Get all values from B and from E, and create OBO 
tags. These tags will be related to OBO "[Typedef]" 
stanzas.

E. Merge Ontologies 
Prior to the use of RDBOM, there were situations where 

two or more biologists working on the AmphibAnat project 
started building an ontology together, then traveled to 
different geographical areas, continuing to add extensions to 
their own copy of their original ontology. This was one 
example of the need to be able to compare and/or merge two 
ontologies for later consolidation. The algorithms presented 
below address this task for the OAM model. 

Algorithm 4.1. Merge two ontologies. 
Input: OAM instances M1 and M2.
M1 = (Q1, 1, 1, Q01, F1); 1 = B1 E1

M2 = (Q2, 2, 2, Q02, F2); 2 = B2 E2

Output: OAM instances M3, M3 = M1 M2.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1068

Algorithm:
M3 = (Q3, 3, 3, Q03, F3)
Q3 = Q1 Q2

3 = B3 E3

B3 = B1 B2; E3 = E1 E2

3 = 1 2

Q03 is to be determined from scanning 3.
F3 = F1 F2

Example 3: M3 = M1 M2

Please refer to Fig. 1 for ontology M1, Fig. 3 for ontology M2

and Fig. 4 for ontology M3.
Ontology M2:
Q2 = {Concepts, a, e, b, i, f, d};

Qc2 = {Concepts, a, e, b, i, f }; Qi2 = {}; Qv2 = {d}
“d” is a value node 

2 = B2 E2 = {is_a, is_contained_in_image,  
image_contains, is_definition}   

B2 = {is_a}; E2 = { is_contained_in_image,  
image_contains, is_definition} 

Q02 = {a, b, f}
F2 = {Concepts} 

2 = {(a, is_a, Concepts), (e, is_a, Concepts), (b, is_a, e), (i, 
is_a, Concepts), (f, is_a, i), (f, image_contains, b), (b, 
is_contained_in_image, f), (d, is_definition, a)}

Fig. 3 Ontology M2

Ontology M3: M3 = (Q3, 3, 3, Q03, F3)
Q3 = Q1  Q2

= {Concepts, e, b, g, i, f}  {Concepts, a, e, b, i, f, d} 
= {Concepts, a, e, b, g, i, f, d} 

Qc3 = {Concepts, a, e, b, g, i, f }; Qi3 = {}; Qv3 = {d}
3 = B3 E3 = {is_a, is_contained_in_image,  

image_contains, is_definition}
B3 = B1 B2 = {is_a}
E3 = E1 E2 = {is_contained_in_image,  

image_contains, is_definition}
3 = 1 2 = {(a, is_a, Concepts), (e, is_a, Concepts), (b, 

is_a, e), (g, is_a, e), (i, is_a, Concepts), (f, is_a, i), (f, 
image_contains, g), (f, image_contains, b), (g, 

is_contained_in_image, f), (b, is_contained_in_image, f), (d, 
is_definition, a)}
Q03 = {a, b, g, f}. 
F3 = F1  F2 = {Concepts}

Fig. 4 Ontology M3

Algorithm 4.2. Find the difference between two ontologies. 
Input: OAM instances M1 and M2.
M1 = (Q1, 1, 1, Q01, F1); 1 = B1 E1

M2 = (Q2, 2, 2, Q02, F2); 2 = B2 E2

Output: OAM instances M4, M4 = M1 M2.

M4 = (Q4, 4, 4, Q04, F4)
4 = 1 2

Q4 is to be determined from analyzing 4;
Qc4 = Q4  (Qc1  Qc2);
Qi4 = Q4  (Qi1  Qi2); 
Qv4 = Q4  (Qv1  Qv2). 

4 is to be determined from analyzing 4;
B4 = 4  ( B1 B2);
E4 = 4  ( E1 E2). 

Q04 is to be determined from analyzing 4.
F4 is to be determined from analyzing 4.

Example 4: M4 = M1 M2

Please refer to Fig. 1 for M1, Fig. 3 for M2, and Fig. 5 for M4.
4 = 1 - 2

= {(g, is_a, e), (f, image_contains, g), (g, 
is_contained_in_image, f)} 

Q4 = {g, e, f} 
4 = {is_a, image_contains, is_contained_in_image} 

B4 = 4  ( B1 B2) = {is_a}
E4 = 4  ( E1 E2) = {image_contains, 

is_contained_in_image} 
Q04 = {g} 
F4 = {e, f}

Concepts

anatomical

system

(a)

embryonic

structure

(e)

blastoderm

(b)

is_a

is_a is_a

image

(i)

fig_04_Gau

pp_1896

(f)is_ais_a

is_contained

_in_image

image_

contains

germ ring

(g)

is_a

is_contained

_in_imagedef 1

(d)

is_definition

Concepts

anatomical

system

(a)

embryonic

structure

(e)

blastoderm

(b)

is_a

is_a is_a

image

(i)

fig_04_Gau

pp_1896

(f)is_ais_a

is_contained

_in_image

image_

contains

def 1

(d)is_definition



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1069

Fig. 5 Ontology M4

The work in [23] describes several approaches to ontology 
merging and the calculation of differences. Regarding 
ontology merging, PROMPT and OntoMerge are discussed. 
PROMPT also includes an algorithm for difference 
calculation. Additionally, the authors of [23] introduce a 
practical approach for ontology merging and calculation of 
difference. RDBOM also provides for ontology merging and 
difference calculation. However, the RDBOM  implementation 
is based on the OAM, while the work in [23] is based on 
description logic (DL).

F. Subset of an Ontology  
Some of the more challenging requests that were received 

for the AmphibAnat project involved the ability to manipulate 
a subset of an ontology. For example, a user may want to 
import or export a subset of an ontology to a separate file, or 
to “swap” one part of an ontology for part of another 
ontology. The latter case is particularly tricky because 
presumably the user wants to keep all possible existing edges 
which link the subset ontology to/from the rest of the larger 
ontology. This required the definition of a subset of an OAM. 

Definition 2. Subset of an OAM 
Given an OAM, M = (Q, , , Q0, F); Q = Qc Qi Qv;  = 

B E,  a subset of M is defined as a pair (M, a), where 
a (Qc Qi). “a” is provided by user as part of the subset 
request. Thus, (M, a) = (Q’, ’, ’, Q0’, F’)

Q’ = Qc’ Qi’ Qv’ (Qc’ Qc, Qi’ Qi, Qv’ Qv)

(Qc’ Qi’) = {a}  set of descendant nodes of “a” in M,
elements of set Qv’ = elements of Qv connected to 
elements of (Qc’ Qi’) by edges in M.
’ = set of relationships (n1, r, n2), where n1  Q’, n2

Q’, r , and (n1, r, n2)  in M.
’ = B’ E’ ( B’ B, E’ E), elements in B’

and E’ are derived from ’.
Q0’ = set of source nodes which are derived from ’.
F’ = set of root nodes which are derived from ’.

Note:  
To find descendant nodes of “a”, start from node “a”, and 
recursively find all nodes in the main graph view (classes 
Qc and instances Qi linked by base relationship types, B).
To form B’ and E’, for each relationship (n1, r, n2) of 
’, if r is an element of B, add r to B’, else add r to E’.

Example 5: Subset of an ontology. 
Given OAM instance M5 (Fig. 6), find subset (M5, g) where 
M5 = (Q5, 5, 5, Q05, F5)
Q5 = {Concepts, e, b, h, ep, g, i, f};

all nodes are classes in this case 
5 = B5 E5 = {is_a, part_of, is_contained_in_image,  

image_contains}   
B5 = {is_a, part_of}; E5 = {is_contained_in_image,  

image_contains} 
Q05 = {b, h, ep, f}
F5 = {Concepts}

5 = {(e, is_a, Concepts), (b, is_a, e), (h, is_a, e), (h, part_of, 
g), (ep, is_a, e), (ep, part_of, g), (g, is_a, e), (i, is_a, 
Concepts), (f, is_a, i), (f, image_contains, g), (g, 
is_contained_in_image, f)}

Fig. 6 Ontology M5

subset (M5, g) = (Q5’, 5’, 5’, Q05’, F5’) 
Q5’ = Qc5’ Qi5’ Qv5’ = {g, h, ep} 

(Qc5’ Qi5’) = {g}  set of descendant nodes of “g” 
(Qc5’ Qi5’) = {g, h, ep}; Qv5’ is empty 

5’ = {(h, part_of, g), (ep, part_of, g)} 
5’ = B5’ E5’ = {part_of} 

B5’ = {part_of}; E5’ is empty 
Q05’ = {h, ep} 
F5’ = {g} 

Concepts

embryonic

structure

(e)

blastoderm

(b)

germ ring

(g)

is_a

is_a

is_a

image

(i)

fig_04_Gau

pp_1896

(f)is_ais_a

is_contained

_in_image

image_

contains

hypoblast

(h)

epiblast

(ep)

part_of

embryonic

structure

(e)

germ ring

(g)is_a

fig_04_Gau

pp_1896

(f)

is_contained

_in_image

image_

contains



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1070

Fig. 7 subset (M5, g)

It is important to note that the terms module and subset
are semantically similar. In [24], the authors proposed a 
definition of a module for an ontology that is intended to be 
reused. Based on this definition, the authors showed that 
determining whether a portion of an ontology is a module for 
a given vocabulary is undecidable even for rather restricted 
sub-languages of OWL DL. However, the authors provided 
two approximation algorithms for finding small modules of 
ontologies.  

The module definition in [24] is somewhat different from 
the subset definition given in this paper; a module is designed 
for knowledge reuse based on description logic, whereas the 
OAM subset definition is intended to facilitate particular 
ontology operations for a multi-user ontology management 
system based on the OAM model. However, the minimal 
module problem in [24] does provide interesting future 
research opportunities for the OAM model, and hence future 
possible extension for the RDBOM system. 

Algorithms 5.1 and 5.2 use the definition of a subset 
OAM to perform export and import functions on an ontology. 

Algorithm 5.1. Export a subset of an ontology. 
Input: OAM instance M and a node “a”, a (Qc Qi).
Output: OAM instance subset (M, a), as an output file (e.g. 
OBO file). 
subset (M, a) = (Q’, ’, ’, Q0’, F’)
1. Find descendant nodes of “a”. Start from node “a”,

recursively find all nodes in the main graph view (classes 
Qc and instances Qi linked by base relationship types, B).
Put these nodes and node “a” in (Qc’ Qi’).

2. Find elements of Qv connected to elements of (Qc’ Qi’)
by edges in M. Put these elements in Qv’.

3. Q’ = Qc’ Qi’ Qv’
4. for each element / relationship (n1, r, n2) of  (from M)

if  ((n1 is a member of Q’) and (n2 is a member of Q’) ) 
then put (n1, r, n2) in ’
end for 

5. for each element / relationship (n1, r, n2) of ’
if r is an element of B then add r to B’
else add r to E’

 end for 

6. ’ = B’ E’
7. for each element / relationship (n1, r, n2) of ’

if n1 has no incoming edge then add n1 to Q0’
8. for each element / relationship (n1, r, n2) of ’

if n2 has no outgoing edge then add n2 to F’
9. subset (M, a) is now a complete OAM instance  
10. Use Algorithm 3.2. (export ontology) to complete the 

export process using subset (M, a) as input to Algorithm 
3.2.

Importing an ontology as a subset is an easier task than 
exporting a subset. Basically an imported ontology is treated 
as a subset and is attached to a specified node. 

Algorithm 5.2. Import an ontology as a subset. 
Input: Existing OAM instance M and a node “a”, a (Qc

Qi).
An input file (e.g. OBO file) to be imported and attached to 
node “a” of M.
Output: Updated OAM instance M.
1. Use Algorithm 3.1. to complete the import process, use 

the input file as input to Algorithm 3.1. The output of 
Algorithm 3.1 is called OAM instance M’.

2. Since M’ only has one root node “Concepts”, attach M’ to 
M by replacing node “Concepts” of M’ by node “a” of M.
Thus M’ is attached to node “a” of M, and become part of 
M.

Swapping a subset of an ontology is different from 
combining the actions of exporting a subset of an ontology, 
deleting the subset (and related edges), and importing a new 
ontology as a new subset. If the old subset is simply deleted, 
all the edges linking the subset and the rest of the ontology 
will be lost. The new imported subset will not have these 
edges linked to the rest of the ontology. Hence, a new 
algorithm, Algorithm 5.3, was developed to swap a subset of 
an ontology. 

Algorithm 5.3. Swap a subset of an ontology. 
Input: OAM instance M and a node “a”, a (Qc Qi); M = 
(Q, , , Q0, F). An input file (e.g. OBO file) is to be 
imported and replace subset (M, a).
Output: Updated OAM instance M, called M’. M’ = (Q’, ’,
’, Q0’, F’).

1. Use Algorithm 3.1. to perform the import process, and 
use the resulting file as input to Algorithm 3.1. The 
output of Algorithm 3.1 is called OAM instance N. N is 
the OAM instance to be used to replace subset (M, a).

2. Initialize M’ to be an empty OAM, M’ = (Q’, ’, ’, Q0’,
F’).

3. Add nodes to M’, Q’ = Q - nodes of subset (M, a) {a}

4. Add edges to M’.
for all edges (n1, r, n2) in  of M
  if both n1, n2 are in Q’ of M’ then add (n1, r, n2) to ’
end for 

germ ring

(g)

hypoblast

(h)

epiblast

(ep)

part_of



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1071

5. Use Algorithm 5.2. to attach N to M’.
6. Add edges to M’

for all edges (n1, r, n2) in  of M (that has not been added 
to ’ in step 4 above) 
  if ((n1 is not node “a”) and (n2 is not node “a”)) then 

   if ((n1 is a node in M and n2 is a node in N) then 
add (n1, r, n2) to ’

   elseif (n1 is a node in N and n2 is a node in M) then 
add (n1, r, n2) to ’    

   end if 
  end if 

end for 
7. ’ is determined by analyzing ’ and comparing with .
8. Q0’, and F’ are to be determined from analyzing ’.

Example 6:  Swap a subset of an ontology. 
Given OAM instance M5 (Fig. 6), to swap subset (M5, g).
subset (M5, g) is to be replaced by OAM instance N. The 
output of this example is M6.
M5 = (Q5, 5, 5, Q05, F5); it is shown in Example 5 and Fig. 
6.
Use Algorithm 5.3, step 1 to get N.
N = (Q, , , Q0, F), which is shown in Fig. 8. 
Q = {Concepts, h, s, ax};

all nodes are classes in this case 
= B E= {part_of}   

B = {part_of}; E is empty 
Q0 = {ax, s}
F = {Concepts}
 = {(s, part_of, Concepts), (h, part_of, Concepts), (ax, 

part_of, h)}

Fig. 8 Ontology N

Use Algorithm 5.3, step 2 to initialize M6 to be an empty 
OAM, M6= (Q6, 6, 6, Q06, F6). Use Algorithm 5.3, step 3 to 
add nodes to M6.
Q6 = Q5 - nodes of subset (M5, g) {g}

Nodes of subset (M5, g) = {g, h, ep}

Q6 = {Concepts, e, b, i, f, g}
Use Algorithm 5.3, step 4 to add edges to M6.

6 = {{(e, is_a, Concepts), (b, is_a, e), (g, is_a, e), (i, is_a, 
Concepts), (f, is_a, i), (f, image_contains, g), (g, 
is_contained_in_image, f)} 
At this point M6 is shown in Fig. 9. 

Fig. 9 Updated Ontology M6 (subset swap, step 4) 

Use Algorithm 5.3, step 5 to attach N to M6. Now M6 has the 
following nodes, Q6 and edges, 6. At this intermediate stage 
M6 is shown in Fig. 10.   
Q6 = {Concepts, e, b, i, f, g, s, h, ax} 

6 = 6  {(s, part_of, g), (h, part_of, g), (ax, part_of, h)} = 
{(e, is_a, Concepts), (b, is_a, e), (g, is_a, e), (i, is_a, 
Concepts), (f, is_a, i), (f, image_contains, g), (g, 
is_contained_in_image, f), (s, part_of, g), (h, part_of, g), (ax, 
part_of, h)}

Fig. 10 Updated Ontology M6 (subset swap, step 5) 

Use Algorithm 5.3, step 6 to add edges to M6.
6 = 6 {(h, is_a, e)} 

Now determine 6, Q06, and F6.
As shown in Fig. 11, M6 is the completed OAM instance after 
the subset swap operation. 
M6= (Q6, 6, 6, Q06, F6)
Q6 = {Concepts, e, b, i, f, g, s, h, ax} 

6 = {(e, is_a, Concepts), (b, is_a, e), (g, is_a, e), (i, is_a, 
Concepts), (f, is_a, i), (f, image_contains, g), (g, 
is_contained_in_image, f), (s, part_of, g), (h, part_of, g), (ax, 

image

(i)

fig_04_Gau

pp_1896

(f)

Concepts

embryonic

structure

(e)
blastoderm

(b)

germ ring

(g)

is_a

is_a

is_a

is_ais_a

is_contained

_in_image

image_

contains

image

(i)

fig_04_Gau

pp_1896

(f)

Concepts

embryonic

structure

(e)

blastoderm

(b)

germ ring

(g)

is_a

is_a

is_a

is_ais_a

is_contained

_in_image

image_

contains

hypoblast

(h)

shield

(s)

part_of

axial

hypoblast

(ax)

part_of

Concepts

hypoblast

(h)

shield

(s)

part_of

axial

hypoblast

(ax)

part_of



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1072

part_of, h), (h, is_a, e)}} 
6 = B6 E6 = {is_a, part_of, is_contained_in_image,  

image_contains}   
B6 = {is_a, part_of}; E6 = {is_contained_in_image,  

image_contains} 
Q06 = {b, ax, s, f}
F6 = {Concepts}

Fig. 11 Completed ontology M6 (after subset swap) 

Although Algorithm 5.3. satisfies the basic requirements of 
the AmphibAnat project, it also presents some interesting 
algorithm-related issues and future research opportunities. 

As illustrated in Example 7, Algorithm 5.3 is efficient for 
replacing a subset of an ontology, and re-establishing edges 
(relationships) between the swapped subset and the original 
ontology. This is done under the assumption that the nodes 
(elements of Q) and relationships types (elements of ) are 
not updated (renamed) during the subset swap operation. 
Although in the AmphibAnat project such update operations 
are extremely rare during subset swaps, in general that 
assumption should not be made for the OAM algorithms. 

There are basically two common types of possible updates 
(case 1 and case 2 below) during subset swaps. The cases are 
described below with reference to Algorithm 5.3 and Example 
6.

Case 1:
Some elements of  in N are the results of updated elements 
of  in M. For example, 5 of M5 = {part_of, …};  of N = 
{is_part_of}; part_of and is_part_of have the same meaning 
for the updated ontology. 

Case 2:
Some elements of Q in N are the results of updated elements 
of Q in M. For example, Q5 of M5 = {s, …}; Q of N = {s’…};
s’ is the updated s in the ontology. 

For case 1, a swap table is used to map the original 
relationship types to the updated relationship types when the 
relationship types of M and N do not exactly match. The user 

also has a choice of choosing one of the two relationship types 
for the updated ontology. The construction of the swap table 
and the final relationship type decision must be done before 
the execution of Algorithm 5.3. This is a simple operation 
(that can be done manually) because the size of  is typically 
very small; for the AmphibAnat ontology modules, | B| has a 
value of 2 to ,4 and | E| has a value of 20 to 40.

In Example 6, if the user chooses is_part_of as the new 
relationship type for M6, the final value for 6 = B6 E6 = 
{is_a, is_part_of, is_contained_in_image, image_contains}; 

B6 = {is_a, is_part_of}. The rest of M6 is thus updated 
accordingly.

For case 2, different techniques could be used. The OAM-
based initial approach was to use a swap table to store the 
original node names, updated node names, and the final node 
names. The user also can augment the swap table with a list of 
synonymous names. This approach is easy to implement 
technically, but requires the user’s time to thoughtfully 
consider what synonyms should be added for the affected 
terms. The AmphibAnat ontology modules each have |Q| of 
around 5,000 to 10,000, so the future need for automating the 
synonym selection task is important. Another approach that 
could be used to automate the construction of an enhanced 
swap table is to use existing natural language processing 
algorithms to identify similar elements by matching Q of M
and Q of N. User feedback will likely still be needed to 
validate the swap table, but this technique should significantly 
reduce the users’ time for the overall task. 

VI. SUMMARY 
In this paper an ontology model called an Ontology 

Abstract Machine (OAM) and its related algorithms for 
various ontology maintenance tasks have been presented. The 
OAM model is not intended as a replacement for any ontology 
language; it is an abstract model, defined in a format similar to 
that for a finite state automaton. The objective of developing 
this model was to provide a framework for constructing a 
collaborative, Web-based ontology management system that 
required modularity and distinct relationship classifications. 
The successful implementation of the RDBOM software 
system (and its subsequent acceptance by a large research 
community) validates the OAM model and its real-world 
value.  

The similarity between the OAM model and a 
nondeterministic finite automaton (NFA) [25] provides many 
interesting future research opportunities. NFA and regular 
language research is a well-studied computer science research 
area. Can those established theories and algorithms help 
answer unsolved ontology questions or identify new ontology 
challenges? A much more detailed analysis and comparison 
(between OAM and NFA) will be conducted in the future in 
the hopes of further enhancing the usefulness and usability of 
ontologies. 

image

(i)

fig_04_Gau

pp_1896

(f)

Concepts

embryonic

structure

(e)

blastoderm

(b)

germ ring

(g)

is_a

is_a

is_a

is_ais_a

is_contained

_in_image

image_

contains

hypoblast

(h)

shield

(s)

part_of

axial

hypoblast

(ax)

part_of



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1073

ACKNOWLEDGEMENTS 

This work was supported by NSF under award DBI-
0640053.

REFERENCES

[1] Buffalo Ontology Site: http://ontology.buffalo.edu/ 
[2] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, J. P. Rice, "OKBC: A 

programmatic foundation for knowledge base interoperability," in Proc. 
15th national conference on artificial intelligence (AAAI-98), 1998. 

[3] M. R. Genesereth, R. E. Fikes, Knowledge Interchange Format Version 
3.0 Reference Manual: http://logic.stanford.edu/kif/Hypertext/kif-
manual.html 

[4] P. Lambrix, M. Habbouche, M. Pérez, "Evaluation of ontology 
development tools for bioinformatics," Bioinformatics, vol. 19, no. 12, 
August 2003, pp. 1564–1571. 

[5] A. J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa, V. R. Benjamins, 
"WonderTools? A comparative study of ontological engineering tools," 
International Journal of Human-Computer Studies, vol. 52, no. 6, June 
2000, pp. 1111–1133. 

[6] A. Farquhar, R. Fikes, J. Rice, "The Ontolingua Server: a tool for 
collaborative ontology construction", International Journal of Human-
Computer Studies (1997), pp. 707–727. 

[7] J. Lee, R. Goodwin, "Ontology Management for Large-Scale Enterprise 
Systems", Electronic Commerce Research and Applications, vol. 5, Iss. 
1, Spring 2006, pp. 2–15. 

[8] B. Smith, et al., "The OBO Foundry: coordinated evolution of ontologies 
to support biomedical data integration," Nature biotechnology, vol. 25, 
iss.11, pp.1251, 2007. 

[9] Open Biological Ontologies: http://www.obofoundry.org/ 
[10] M. Klein, "Combining and relating ontologies: an analysis of problems 

and solutions," in Proc. IJCAI workshop on Ontologies (IJCAI-2001).
[11] AmphibAnat: http://www.amphibanat.org/ 
[12] J. Leopold, A. Coalter, and L. Lee, "A Generic, Functionally 

Comprehensive Approach to Maintaining an Ontology as a Relational 
Database", ICOSE 2009: International Conference on Ontological and 
Semantic Engineering, in review. 

[13] J. Bao and V. Honava., “Divide and conquer semantic web with modular 
ontologies - a brief review of modular ontology language formalisms,” 
in Proc. ISWC2006 International Workshop on Modular Ontologies 
(WoMo2006).

[14] J. Bao and V. Honavar, “Ontology Language Extensions to Support 
Localized Semantics, Modular Reasoning, and Collaborative Ontology 
Design and Ontology Reuse,” Technical Report, Department of 
Computer Science, Iowa State University, 2004. 

[15] P. Kodeswaran, S. B. Kodeswaran, A. Joshi, T. Finin, “Enforcing 
security in semantics driven policy based networks,” ICDE Workshops 
2008, pp. 490–497. 

[16] J. Bao, G. Swlutzki, V. Honavar, “Privacy-Preserving Reasoning on the 
Semantic Web,” IEEE/WIC/ACM International Conference on Web 
Intelligence, pp. 791–797, 2007. 

[17] H. Luong, S. Gauch, and Q. Wang, “Ontology Learning Through 
Focused Crawling and Information Extraction," International 
Conference on Information, Process, and Knowledge Management,
Cancun, Mexico, Feb. 1-7, 2009. 

[18] OBO Edit: http://www.oboedit.org/ 
[19] OWL Web Ontology Language Guide: 

http://www.w3.org/TR/2004/REC-owl-guide-20040210/
[20] Stanford medical informatics Home page: http://protege.stanford.edu 
[21] T. Finin, A. Joshi, L. Kagal, J. Niu, W. H. Winsborough, B. 

thuraisingham, “ROWLBAC – Representing Role Based Access Control 
in OWL”, in Proc. SACMAT'08, 2008. 

[22] T. R. Gruber, "A translation approach to portable ontology 
specifications," Knowl .Acquis, vol. 5, no. 2, pp.199–220, June 1993. 

[23] J. de Bruijn, M. Ehrig, C. Feier, F. Martíns-Recuerda, F. Scharffe, and 
M. Weiten, “Ontology Mediation, Merging, and Aligning”, in Semantic
Web Technologies, July 2006, pp. 95-113. 

[24] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler, “Just the right 
amount: extracting modules from ontologies”, in Proc. 16th 

International Conference on World Wide Web, ACM, New York, NY, 
pp. 717-726. 

[25] P. Linz, "An Introduction to Formal Languages and Automata", Jones & 
Bartlett, 4th edition, 2006, pp. 49–54. 

[26] J. D. Richter, M. A. A. Harris, M. Haendel, S. Lewis, "OBO-Edit—an 
ontology editor for biologists", Bioinformatics, vol. 23, no. 16, 2007, pp. 
2198–2200. 


