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Abstract—The Linear discriminant analysis (LDA) can be 

generalized into a nonlinear form ─ kernel LDA (KLDA) expediently

by using the kernel functions. But KLDA is often referred to a general

eigenvalue problem in singular case. To avoid this complication, this 

paper proposes an iterative algorithm for the two-class KLDA. The

proposed KLDA is used as a nonlinear discriminant classifier, and the 

experiments show that it has a comparable performance with SVM.
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I. INTRODUCTION

SINCE the support vector machine (SVM) introduced a 

general kernel method, which can transform the input space 

to a higher dimensional feature space via an implicit nonlinear 

mapping function, many linear methods can be generalized into

their nonlinear forms by the kernel trick, such as kernel

principle component analysis (KPCA) [1], kernel linear discri-

minant analysis (KLDA) [2], [3], kernel fisher discriminant

(KFD) [4], etc.

The traditional LDA can find the optimal projection to

preserve the cluster structure in linearly separable data, while

KLDA can overcome the limitation due to non-linearly separa-

ble data. The optimal solution for KLDA is obtained by solving

a general eigenvalue problem, but the within-class scatter

matrix is often singular. The authors in [3] recommended

solving this difficulty by generalized singular value decom-

position.  The authors in [4] added a multiple of the identity

matrix to the within-class scatter matrix, and made it become

positive definite.

In this paper, a fast and stable iterative algorithm for KLDA

in the two-class case is proposed to avoid the eigenvalue

decomposition in singular case. The iteration procedure based

on the conjugate gradient algorithm converges very fast and

stably. The proposed KLDA is used as a two-class classifier

like SVM. And it is compared with SVM classifier in the

experiments.
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II. KLDA IN SINGULAR CASE

Using kernel functions, the linear discriminant analysis

(LDA) can be generalized to nonlinear discriminant analysis.

The nonlinear decision function in the input space is equivalent 

to a linear decision function in the transformed space implied

by the kernel functions [2].

Let be a set of 

training vectors of two classes, where n
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1 and n2 denote the

number of samples in the two classes X1 and X2. Suppose that

the input space X is transformed into a Hilbert space F by a 

nonlinear mapping function . And the between-

class scatter matrix S

)(: xx

b and the within-class scatter matrix Sw in

the space F can be defined by [3]
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denote the mean of class 1, the mean of class 2 and the mean of 

entire data, respectively.

The linear decision function for the two classes in F is

, and w can be obtained by solving a general

eigenvalue problem
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The eigenvectors are linear combinations of F elements [1], 

and all solutions w with nonzero eigenvalues lie in the span of

Thus there exist coefficients )}.(,),({
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n1+n2) that satisfy,
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where , . Substi-

tute w with (4) and left multiply it by and the equation (3) 

can be rewritten as follows
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Now is the eigenvector with the largest eigenvalue in (4).

Using kernel operator , the ),()()( jij
T

iij xxkxxK



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

923

matrixes  and  can be computed by b
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for i=1,⋯,n1+n2; r=1, j=1,⋯,n1; r=2, j=n1+1,⋯,n1+n2. To 

simplify the denotation, we let ,

. Because  is ge-

nerally a singular matrix, cant be computed by applying

eigenvalue decomposition to .
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III. PROPOSED ITERATIVE ALGORITHM

In order to overcome the complication of a singular Tw, we 

propose an iterative optimization algorithm to realize the

nonlinear discriminant classifier.

The classical Fisher criterion function is to maximize the

ratio of the between-class scatter of the projected samples to the

within-class scatter of the projected samples [5], i.e, 
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It is a maximization problem. We can use an iterative 

algorithm  conjugate gradient algorithm to find the maximum

extremum of this criterion function.

The gradient of  at  is )(J )(k
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And the iterative algorithm is as follows:

1. Compute the kernel matrix K;

2. Compute the matrixes YTHb, YTHw, and the scatter matrixes

Tb, Tw;

3. Initialize  by a random vector, and normalize it; )0(

)0()0(/)0()0( KT

4. Compute the gradient ;))0((J

5. Compute the initial search direction;

))0((/))0(()0( JJs

6. Set the initial step length (0)=[c,⋯,c]T, where c>0, and set

the iteration number k=0;

7. While k<N do 

8.    Update , i=1,⋯,n)()()()1( kskkk iiii 1+n2, and 

normalize )1()1(/)1()1( kKkkk T ;

9.     Compute the gradient ;))1(( kJ

10. Update
22
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and normalize )1(/)1()1( ksksks ;

11. Update

,t
ii akk )()( )))1(())((( kJkJsignt ii ,

where a>1, i=1,⋯,n1+n2;

12.  If || (k+1)- (k)||< 1 and |J( (k+1))-J( (k))|< 2, then stop

the iteration;

13. k = k+1;

14. End 

The w is a unit vector in F, i.e. = = =1,

so is normalized by

wwT YY TT KT

KT/ in Step 3 and 8. The 

step length (k) is adapted to each iteration by dynamic

modification. Its initial value (0) in Step 6 can be small to

make a stable iteration. The update step a in Step 11 can be 

chosen from 1<a<2. The Step 12 checks whether the iteration 

can be terminated successfully. 

After obtained, the nonlinear decision function in the input

space X can be defined by
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to denote the class means of the projected samples, and set b as 

2/)( 211 mmb , )/()( 2122112 nnmnmnb , etc. If 

m1>m2 and min1, max2 denote the minimum projection of Class

1 and the maximum projection of Class 2, then the offset

2/)max(min 213b will give a maximal margin between

two separable classes. 

For m classes classification, we can use m decision functions

to separate them by one-against-all, or use m(m-1)/2 decision

functions to separate them by one-against-one.

IV. EXPERIMENTAL RESULTS

A. Synthetic Data

We first perform our algorithm on some synthetic data to

illuminate its convergent speed and behavior according to the 

choice of the kernel function.

The Class 1 is a set of 20 points (x,y), which are generated by

two independent variables such that X ~ N(-2,1), Y ~ N(-2,1).

The Class 2 has 20 points too. Half of them are generated by X

~ N(0,1) and Y ~ N(2,1), and the other half are generated by X ~

N(2,1) and Y ~ N(-2,1). For a comparison purpose, the decision

functions of KLDA (b=b1) and SVM with the different kernel

functions (polynomial kernel , RBF 

kernel

p
ii xxxxk )1(),(

))2/()exp(),( 22

ii xxxxk ) are all shown in 

Fig.1. The SVM classifiers make the maximal margins between

the two classes, whereas the KLDA classifiers give small
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scatters to the sample projections of each class and large

scatters to those of different classes. And this is represented in

the middle case (p=3) in Fig.1 evidently. The proposed 

algorithm converges very fast (c=10-4 in Step 6, a=1.2 in Step 

11), and the results are not sensitive to the initial value (0).

(a) polynomial kernel (p=2)         (b) polynomial kernel (p=3)                    (c) RBF kernel ( =2)

Fig.1 (Top) The decision functions of KLDAs and SVMs; (Bottom) The criterion function J( ) against the number of iterations.

B.  AR Face Database

In the second experiment, we test the KLDA and SVM 

methods on the AR face database [5]. We select 10 different 

individuals randomly from this database. Each individual has 

26 images. All the 260 images are full cropped into the same

size 90×120. We first project the image data into an 

80-dimensional PCA subspace, and then use the first 13 

images of each person for training and the last 13 for testing.

The recognition rates obtained by KLDA and SVM using

one-against-all are listed in Table I. This table shows that it's

better for KLDA to choose b=b2 for polynomial kernel and

b=b3 for RBF kernel. The training time and testing time of the

two methods are near equal in this experiment.

C.  Benchmark Repository

In the third experiment, the results are obtained on the

Benchmark Repository used in [4] and [7]. The Benchmark

Repository consist of 13 artificial and real world data sets:

Banana, Breast Cancer, Diabetis, Flare-Solar, German, Heart, 

Image, Ringnorm, Splice, Thyroid, Titanic, Twonorm and

Waveform, from the UCI, DELVE and STATLOG benchmark

repositories. Each data set is partitioned as a binary classify- 

cation problem, and 100 partitions into test and training set 

were generated. We only select the first partitions of the 13

sets in this experiment.

We compared KLDA with SVM both using RBF kernel

function, and the parameter is found by minimizing the error 

rates of classification. The parameter C in SVM is fixed at 10. 

The test error rates on the 13 data sets and the values of  are 

tabulated in Table II. From this table, we can see that: the

KLDA obtained by the iterative algorithm is competitive to

SVM on almost all data sets (slightly better in 4 cases and

slightly worse in 4 cases); the offset b for KLDA (see (10))

determines the performance of KLDA, and it should be well

estimated. In this experiment, the b1, b2 and b3 are still used.

But the parameter b can be also optimized to minimize the test

errors.

V.  CONCLUSION

In this paper, we proposed a fast and stable iterative

algorithm for the kernel linear discriminant analysis in two-

class case to avoid the general eigenvalue decomposition

TABLE I 

RECOGNITION RATES OBTAINED BY  KLDAS AND SVM ON THE AR FACE

IMAGES

Kernel function 
Method Polynomial

p = 2 

Polynomial

p = 3 

RBF

 = 20 

KLDA  (b = b1) 83.1% 86.2% 90.0%

KLDA  (b = b2) 87.7% 90.8% 88.5%

KLDA  (b = b3) 83.8% 87.7% 90.8%

SVM 89.2% 91.5% 90.0%

TABLE II 

ERROR RATES OBTAINED BY  KLDAS AND SVM USING RBF KERNEL ON THE 

BENCHMARK REPOSITORY.

σ KLDA

(b = b1)

KLDA

(b = b2)

KLDA

 (b = b3)
SVM

Banana 1 11.9% 11.6% 11.8% 11.4%

B.Cancer 1 35.1% 51.9% 28.6% 26.0%

Diabetes 5 24.3% 26.7% 23.0% 23.0%

F.Sonar 5 33.8% 34.3% 34.5% 34.3%

German 5 23.0% 28.3% 20.0% 21.0%

Heart 5 19.0% 19.0% 18.0% 19.0%

Image 1 4.2% 4.8% 3.8% 2.2%

Ringnorm 5 3.7% 4.0% 3.2% 2.4%

Splice 5 10.3% 10.3% 10.3% 9.8%

Thyroid 1 4.0% 2.7% 2.7% 2.7%

Titanic 5 25.8% 25.8% 22.9% 22.9%

Twonorm 5 2.9% 3.1% 3.8% 3.8%

Waveform 5 10.7% 12.7% 10.5% 10.6%
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problem in singular case. The binary classifier KLDA is the

nonlinear form of linear fisher discriminant classifier, which is

an important technique in the statistical pattern recognition.

The result of the iterative algorithm can be controlled not to

overfit the data (for example, Fig.1 (c)). Experimental results

show that if the offset b in (10) is well selected, the perfor-

mance of KLDA is competitive with SVM.

The separate hyperplane found by KLDA in the feature

space is related to all training samples, and this increases the 

computational complexity in the testing procedure. We can use 

some reduced set (similar to support vectors) to approximate

the hyperplane [8], [9], and testing procedure will be expedited

evidently.
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