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Abstract—Recently, the issue of machine condition monitoring 

and fault diagnosis as a part of maintenance system became global 

due to the potential advantages to be gained from reduced 

maintenance costs, improved productivity and increased machine 

availability. The aim of this work is to investigate the effectiveness 

of a new fault diagnosis method based on power spectral density 

(PSD) of vibration signals in combination with decision trees and 

fuzzy inference system (FIS). To this end, a series of studies was 

conducted on an external gear hydraulic pump. After a test under 

normal condition, a number of different machine defect conditions 

were introduced for three working levels of pump speed (1000, 1500, 

and 2000 rpm), corresponding to (i) Journal-bearing with inner face 

wear (BIFW), (ii) Gear with tooth face wear (GTFW), and (iii) 

Journal-bearing with inner face wear plus Gear with tooth face wear 

(B&GW). The features of PSD values of vibration signal were 

extracted using descriptive statistical parameters. J48 algorithm is 

used as a feature selection procedure to select pertinent features from 

data set. The output of J48 algorithm was employed to produce the 

crisp if-then rule and membership function sets. The structure of FIS 

classifier was then defined based on the crisp sets.  In order to 

evaluate the proposed PSD-J48-FIS model, the data sets obtained 

from vibration signals of the pump were used. Results showed that 

the total classification accuracy for 1000, 1500, and 2000 rpm 

conditions were 96.42%, 100%, and 96.42% respectively. The results 

indicate that the combined PSD-J48-FIS model has the potential for 

fault diagnosis of hydraulic pumps. 
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I. INTRODUCTION

HE technique of early fault diagnosis is used to prevent 

serious damages in a mechanical system. Rotating 

machinery such as internal combustion engines, gearboxes, 

electromotor, pumps, and air compressors can have their 

vibration and acoustic emission signals monitored for early 

fault diagnosis [1]-[2].  

Vibration analysis has been used in rotating machines fault 

diagnosis for decades. By measuring and analyzing the 

vibration of a machine, it is possible to determine both the 

nature and severity of the defect, and hence predict the 

machine’s useful life or failure point [3]-[4]. In [4], it is 

claimed that vibration monitoring is the most reliable method 

of assessing the overall health of a rotor system. Machines 

have complex mechanical structures that oscillate and coupled 

parts of machines transmit these oscillations. This results in a 

machine related frequency spectrum that characterizes healthy 

machine behavior. When a mechanical part of the machine 

either wears or breaks up, a frequency component in the 

spectrum will change. In fact, each fault in a rotating machine 

produces vibrations with distinctive characteristics that can be 

measured and compared with reference ones in order to 

perform the fault detection and diagnosis [5]. 

Vibration is often measured with multiple sensors mounted 

on different parts of the machine. For each machine there are 

typically several vibration signals being analyzed in addition 

to some static parameters like load. The examination of data 

can be tedious and sensitive to errors. Also, fault related 

machine vibration is usually corrupted with structural machine 

vibration and noise from interfering machinery. Further, 

depending on the sensor position, large deviations on noise 

may occur in measurements. Stronger noise than the actual 

failure signal may lead to misrecognition of the useful 

information for diagnosis. Therefore, it is important that the 

noise be canceled from the measured signal as far as possible 

for sensitively identifying the failure type [6]-[8]. 

Furthermore, in the case of condition diagnosis of pump 

machinery, the knowledge for distinguishing failures is 

ambiguous because definite relationships between symptoms 

and fault types can not be easily identified. The main reasons 

An Intelligent Combined Method Based on 

Power Spectral Density, Decision Trees and 

Fuzzy Logic for Hydraulic Pumps Fault 

Diagnosis

Kaveh Mollazade, Hojat Ahmadi, Mahmoud Omid, Reza Alimardani 

T



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:8, 2008

970

can be explained as follows; (1) It is difficult to identify the 

symptom parameters for diagnosis by which all fault types can 

be distinguished perfectly. (2) In the early stages of a fault, 

effects of noise are so strong that the symptoms of a fault are 

not evident [9]. (3) The pumps dynamic responses, generated 

by a wide range of possible impulsive sources, are very 

complex [10]. 

The main advances in vibration analysis in recent years are 

the development in signal processing techniques, for vibration 

diagnostics of gearing systems [11]–[15] and bearing faults 

[16]–[18]. The analysis of vibration signals was often based 

on the Fast Fourier Transform (FFT) [19]-[21]. This approach 

suffers from some limitations. Among these limitations, the 

FFT is not efficient to describe the non-stationarities 

introduced by faults in the vibration signal. The second 

limitation and the most important one is the frequency 

resolution, which is the ability to distinguish the spectral 

responses to two or many harmonics. Another limitation is 

due to the windowing of data which appears during the FFT 

processing. In order to overcome these performance 

limitations inherent to the FFT approach, many modern 

spectral estimation techniques have been proposed during the 

last two decades [22]-[28]. Power spectral density (PSD) is 

one of those methods that is reported by several research 

works [29]-[31]. 

Knowledge-based techniques [32]-[33] become a suitable 

strategy towards automatic fault detection (AFD). Fuzzy logic 

is among the knowledge-based techniques to address the fault 

detection problem. Several researchers [34]-[37] have 

proposed fault detection and diagnosis approaches based on 

fuzzy system. Fuzzy system is a rule-based approach where 

the rule set is usually learned from an expert’s experience or 

prior knowledge of the system. The process of fault detection 

can be seen as a classification problem and hence fuzzy 

system acts as a classifier to distinguish different faults 

according to its rules. The success of the fault detection 

process hence depends on the accuracy of the fuzzy rules. 

Typically, fuzzy rules are generated by intuition and expert’s 

knowledge. However, for complex systems with large amount 

of redundant features, the derivation of fuzzy rules is tedious 

and inaccurate. Researchers have continuously tried to find 

efficient and effective methods to generate these fuzzy rules. 

Decision Trees have been proposed to solve the problem [38]. 

The subject of this research is to propose the new intelligent 

system for fault diagnosis in hydraulic pumps. The proposed 

approach consists of three stages. First, PSD of vibration 

signals is calculated because of its better performance in fault 

illustration rather than FFT method. Second the decision tree 

is performed as a feature selection tool to obtain the valuable 

features and to identify the structure of classifier in the next 

iterative step. Third, the Fuzzy logic classifier is used to 

diagnose the faults of hydraulic pump.  

II.MATERIAL AND METHODS

A. Procedure for Development

In this research, the procedure consists of five stages as 

shown in Fig. 1: data acquisition, PSD creation, feature 

extraction, feature selection and classification model 

extraction, and fault diagnosis, which are specifically 

explained in the next sections. The summary role of each 

procedure is described as follows: 

Data acquisition: this procedure is used to obtain the 

vibration signals. Furthermore, data processing is also carried 

out. 

PSD creation: the power spectral density (PSD) of 

vibration signals are calculated by using specific formula. 

Feature extraction: the most significant features are 

calculated by using statistical feature parameters from PSD 

values. 

Feature selection and classification model extraction:

the J48 algorithm is used as a decision tree to select the salient 

features from the whole feature set. In this section the data 

obtained from feature extraction procedure is split into two 

data sets: training data and testing data. Training data is 

employed to build the model whilst testing data is for 

validating the model.  

Fault Diagnosis: Fuzzy logic inference system is used to 

diagnose the faults. 

Fig. 1 Proposed system  

B. Experimental Works and Data Acquisition 

An external gear hydraulic pump that was mounted on an 

agricultural tractor as a main part of its steering hydraulic 

system was used to perform the experiments. This pump uses 

two rotating gears which un-mesh at the suction side of the 

pump to create voids which allow atmospheric pressure to 

force fluid into the pump. The spaces between the gear teeth 

transport the fluid along the outer perimeter of the housing to 
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the discharge side, and then the gears re-mesh at the center to 

discharge the fluid. The gears are supported by Journal-

bearings on both sides, which allow high discharge pressure 

capabilities. The motion of the motive gear is directly 

produced by tractor engine. SAE 15w40 oil was used as a 

hydraulic liquid. With the sensor mounted on body of gear 

housing of the pump, vibration signals were obtained for 

various fault conditions. The sensor used is a piezoelectric 

accelerometer (VMI-102 model) which was mounted on the 

flat surface using hand mounting technique because of 

aluminized substance of the gear housing of the pump (Fig. 2). 

Fig. 2 Location of sensor on the body of pump 

The accelerometer is connected to the signal-conditioning 

unit (X-Viber FFT analyzer), where the signal goes through 

the charge amplifier and an analogue-to-digital converter 

(ADC). The vibration signal in digital form is fed to the 

computer through a USB port. The software SpectraPro-4 that 

accompanies the signal-conditioning unit is used for recording 

the signals directly in the computer’s secondary memory. The 

signal is then read from the memory and processed to extract 

the FFT [39] of vibration spectrum. The maximum frequency 

of the signal was 1 kHz, with 4010 sampled data and giving a 

measured time of 2.1 second. 

Initially, the data were acquired from a healthy running 

pump. Then, data were measured from pump with faulty 

components that are described in Table I. Three working 

levels of pump speed (1000, 1500, and 2000 rpm) were 

considered as test conditions. Fig. 3 shows the used 

components and their cases. 

TABLE I

PUMP FAULTS TAKEN INTO CONSIDERATION

Number Fault type Label of classification 

1 Normal pump GOOD 

2 Journal-bearing with inner face 

wear

BIFW 

3 Gear with tooth face wear GTFW 

4 Mixture of faults number 2 & 3 G&BW 

C.PSD Creation

Power spectral density (PSD) function shows the strength 

of the variations (energy) as a function of frequency. In other 

words, it shows at which frequencies variations are strong and 

at which frequencies variations are weak [40].

Fig. 3  a. View of good gear, b. View of gear with tooth face wear 

(GTFW), c. View of good journal-bearing, d. View of journal-

bearing with inner face wear (BIFW) 

The complex spectrum of a vibration x(t) in the time range (t1,

t2) for any frequency f in the two-sided frequency domain (-F, 

+F) can be stated as (1) [41]. 
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If x(t) is expressed in units of (m/s2), X(f) is expressed in 

units of (m/s2)/Hz. From the complex spectrum, the one-sided 

power spectral density can be computed in (m/s2)2/Hz as (2). 
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Where the factor 2 is due to adding the contributions from 

positive and negative frequencies. 

  The PSD divides up the total power of the vibration. To see 

this, we integrate it over its entire one-sided frequency domain 

(0, F): 
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The result is precisely the average power of the vibration in 

the time range (t1, t2).

If FFT of vibration signal be used, PSD can be calculated 

directly in the frequency domain by following formula [41]-

[42]: 

f

G
PSD
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2

                                                          (4) 

Where Grms is the root-mean-square of acceleration in a 

certain frequency f. 
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D.Feature Extraction 

The measured PSD values of signal were calculated to 

obtain the most significant features by feature extraction. The 

accuracy of feature extraction is of great importance since it 

directly affects the final diagnosis results. In this paper, the 

feature extraction using descriptive statistics from PSD values 

of vibration signals were used. Research works reported use 

of this method [43]-[46]. The parameters were Average, 

Standard deviation, Median, Sample variance, Kurtosis, 

Skewness, Minimum, Maximum, and Sum. These statistical 

features are explained below. 

Average: It is the average of all signal point values in a 

given signal. 

Standard deviation: This is a measure of the effective 

energy or power content of the vibration signal. The following 

formula was used for computation of standard deviation. 

)1(

)( 22

nn

xxn
Stdv                                  (5)

Where n is the sample size. 

Median: It is the number separating the higher half of 

signal point values from the lower half.

Skewness: Skewness characterizes the degree of 

asymmetry of a distribution around its mean. The below 

shown expression was used to calculate the skewness:  

3)(
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Where s is the sample standard deviation. 

Kurtosis: Kurtosis indicates the flatness or the spikiness of 

the signal. The following formula was used for computation of 

Kurtosis: 
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Sample variance: It is variance of the signal points and the 

following formula was used for computation of sample 

variance:

)1(
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nn

xxn
Variance                              (8) 

Minimum value: It refers to the minimum signal point 

value in a given signal. 

Maximum value: It refers to the maximum signal point 

value in a given signal. 

Sum: It is the sum of the all signal point values in a given 

signal. 

E. Feature Selection and Classification Model Extraction

A “divide-and-conquer” approach to the problem of 

learning from a set of independent instances leads naturally to 

a style of representation called a decision tree. A decision tree 

is a tree based knowledge representation methodology used to 

represent classification rules. A standard tree induced with 

c5.0 (or possibly ID3 or c4.5) consists of a number of 

branches, one root, a number of nodes and a number of leaves. 

One branch is a chain of nodes from root to a leaf, and each 

node involves one attribute. The occurrence of an attribute in 

a tree provides the information about the importance of the 

associated attribute. In a decision tree the top node is the best 

node for classification. The other features in the nodes of 

decision tree appear in descending order of importance. It is to 

be stressed here that only features that contribute to the 

classification appear in the decision tree and others do not. 

Features, which have less discriminating capability, can be 

consciously discarded by deciding on the threshold. This 

concept is made use for selecting good features.  

In this research J48 algorithm (A WEKA implementation of 

c4.5 Algorithm) was used to construct decision trees [47]. 

Input to the algorithm was the set of statistical features 

extracted from PSD values of vibration signatures. The data 

sets of the features for each condition have 80 samples. In 

each operating condition, two-thirds of samples are employed 

for training process and the remaining samples for testing

purposes. The detailed descriptions of those data sets are 

given in Table II. Based on the output of J48 algorithm, 

various statistical parameters are selected for the various 

conditions of the pump. Selected statistical features are used 

as membership functions and the values appearing between 

various nodes in the decision tree are used for generating the 

fuzzy rules to classify the various conditions of the pump 

under study. 

TABLE II

DESCRIPTIONS OF DATA SETS IN EACH CONDITION

Label of 

classification 

Number of 

training samples 

Number of 

testing samples 

GOOD 13 7 

BIFW 13 7 

GTFW 13 7 

G&BW 13 7 

Total Samples 52 28 

F. Fault Diagnosis using Fuzzy Inference System 

   Fuzzy logic makes use of the knowledge of experts which 

is possible through its transformation into linguistic terms. 

Fuzzy logic is a rule-based system that successfully combines 

fuzzy set theory with the inference capability of human 

beings. As rules, linguistic terms are used and are modeled 

through membership functions that represent simulation of the 

comprehension of an expert. Membership functions give the 

scaled value of definite number values that are defined by 

linguistic labels. Rules are defined such as IF (condition) 

THEN (result). The conditions and results are linguistic terms 

that represent the input and output variables respectively. The 

rule base of the fuzzy logic classifier consists of many rules. A 

rule base is used to obtain a definite output value according to 

the input value.  

The general fuzzy logic inference engine is given in Fig. 4.

In the fuzzy logic inference engine, "x" is the input value, µ(x) 

is the fuzzified value, µ(u) is the result of the inference 
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operation, and "u" is the output value. The fuzzifier unit 

converts crisp data in the input of the inference engine to the 

format of linguistic variables. The knowledge base represents 

two basic data: the database and the rule base. While the 

database includes definition of each system variable using the 

fuzzy set, the rule base covers inspection rules that are 

necessary to obtain a real output. The inference unit is a unit 

that performs fuzzy inference on fuzzy rules. This unit 

performs the operation resembling the way that people think. 

Finally, the defuzzification unit converts the fuzzy values 

obtained from the output of the inference unit to numerical 

values. This operation is called defuzzification [48].

Fig. 4 Fuzzy inference engine 

After defining membership functions and generating the "if-

then" rules by J48 algorithm, the next step is to build the fuzzy 

inference engine. The fuzzy toolbox available in MATLAB 

7.2 [49] was used for building fuzzy inference engine. Each 

rule was taken at a time and using membership functions and 

fuzzy operators the rules were entered. 

III. RESULTS AND DISCUSSIONS

A. PSD-Frequency Diagrams

Fig. 5 shows the samples of PSD-Frequency diagram of 

vibration signals acquired for various experimental conditions 

of the pump. According to this Fig., it is obvious that in each 

working speed of pump, the maximum value of PSD is 

increased by increasing the severity of pump faults.  

B. Decision Trees

The outcomes of J48 algorithm are shown in Figs. 6 to 8.  

Decision trees show the relation between features and the 

condition of the pump. Tracing a branch from the root node 

leads to a condition of the pump and decoding the information 

available in a branch in the form of "if-then" statement gives 

the rules for classification using fuzzy for various conditions 

of pump. Hence the usefulness of the decision tree in forming 

the rules for fuzzy classification is established. The top node 

of decision tree is the best node for classification [45]. The 

other features appear in the nodes of decision tree in 

descending order of importance. It is to be stressed here that 

only features that contribute to the classification appear in the 

decision tree and others do not. The level of contribution is 

not the same and all statistical features are not equally 

important.  

Fig. 5 PSD- Frequency diagrams of pump in a. 1000 rpm, b. 1500 

rpm, and c. 2000 rpm 

The level of contribution by individual feature is given by a 

statistical measure within the parenthesis in the decision tree. 

The first number in the parenthesis indicates the number of 

data points that can be classified using that feature set. The 

second number indicates the number of samples against this 

action. If the first number is very small compared to the total 

number of samples, then the corresponding features can be 

considered as outliers and hence ignored. Features that have 

less discriminating capability can be consciously discarded by 

deciding on the threshold. This concept is used in selecting 

good features. The algorithm identifies the good features for 

the purpose of classification from the given training data set 

and thus reduces the domain knowledge required to select 

good features for pattern classification problem.  
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Fig. 6 Decision tree from J48 algorithm for 1000 rpm condition 

Fig. 7 Decision tree from J48 algorithm for 1500 rpm condition 
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Fig. 8 Decision tree from J48 algorithm for 2000 rpm condition 

C.Membership Functions  

A membership function (MF) is a curve that defines how 

each point in the input space is mapped to a membership value 

(or degree of membership) between 0 and 1. Observing the 

values of the feature, based on which the branches of the 

decision tree are created for different conditions of the pump, 

MFs for the corresponding features are defined.  

1)1000 RPM Condition

From Fig. 6 we can see that average, kurtosis, variance, 

standard deviation, and sum play a decisive role in classifying 

the various pump faults for this condition. This output of the 

decision tree is used to design the MFs for fuzzy classifier as 

shown in Fig. 9. In the present study, trapezoidal MF is used. 

The selection of this MF is to some extent arbitrary. However, 

the following points were considered while selecting MF. 

Observing the values of the feature, based on which the 

branches of the decision tree is created, the MFs for all five 

features are defined for average, kurtosis, sum, variance, and 

standard deviation respectively.  

From Fig. 6 it is obvious that 0.000231 is a threshold for 

membership value of average. Up to this threshold value the 

MF generates the value "0" and afterwards it increases linearly 

(assumption). The trapezoidal MF suits this phenomenon and 

hence it was selected to map each point in the input space to a 

membership value (Fig. 9_a). To review, the threshold values 

are given by decision tree and the slope is defined by the user 

through heuristics. The threshold value (0.000231) is defined 

based on the representative training dataset. If average value is 

less than or equal to 0.000231, a MF which is defined on a 0–

1 scale gives a value of 0 which means that it is not an 

average. If threshold value is greater than 0.000231, the MF 

generates a value of 1. Similarly MFs for other features are 

designed accordingly and shown in Fig. 9_b-e. There are four 

possible outcomes from a fuzzy classifier namely: Good, 

BIFW, GTFW and B&GW. Hence, four MFs are defined with 

equal range and shown in Fig. 10. 

2)1500 RPM Condition 

See Fig. 11. 

3)2000 RPM Condition 

See Fig. 12. 
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Fig. 9 MF for  a. "Average", b. "Kurtosis", c. "Sum", d. "Variance", 

and e. " Standard Deviation" 

Fig. 10 MF for output ("Output1") 

Fig. 11 MF for a. "Standard Deviation ", b. "Skewness ", and c. 

"Maximum"
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Fig. 12 MF for  a. "Standard Deviation", b. "Maximum", c. "Sum", 

and d. "Kurtosis" 

D.Fuzzy Rules 

Using Figs. 6-8, fuzzy rules were designed with "If-Then" 

statements. All rules are evaluated in parallel, and the order of 

the rules is unimportant.

1) Rules Designed for 1000 RPM Condition 

1. If (Kurtosis is Kurt2) and (Average is Aver) then 

(Output1 is B&GW) 

2. If (Kurtosis is Kurt2) and (Average is not Aver) then 

(Output1 is GTFW) 

3. If (Kurtosis is not Kurt2) and (Variance is Var) and 

(Standard Deviation is Stdev2) then (Output1 is B&GW) 

4. If (Kurtosis is not Kurt2) and (Variance is Var) and 

(Standard Deviation is not Stdev2) then (Output1 is BIFW) 

5. If (Variance is not Var) and (Kurtosis is Kurt1) then 

(Output1 is B&GW) 

6. If (Variance is not Var) and (Kurtosis is not Kurt1) and 

(Sum is Sum) and (Standard Deviation is Stdev1) then 

(Output1 is B&GW) 

7. If (Variance is not Var) and (Kurtosis is not Kurt1) and 

(Sum is Sum) and (Standard Deviation is not Stdev1) then 

(Output1 is GOOD) 

8. If (Variance is not Var) and (Kurtosis is not Kurt1) and 

(Sum is not Sum) then (Output1 is GOOD) 

Fig. 13 illustrates the application of the rules designed. 

Here each row corresponds to each rule as discussed in this 

section. The first five blocks in rows represents the MF of 

kurtosis, average, variance, standard deviation, and sum, 

respectively. The sixth block corresponds to the MFs for 

output as shown in Fig. 10. With the help of sample inputs for 

kurtosis, average, variance, standard deviation, and sum the 

rules are tested as follows, for a sample input of kurtosis as 

3000, average as 0.001, variance as 0.0001, standard deviation 

as 0.05, and sum as 0.5 which satisfies the third rule 

completely and the corresponding output condition is B&GW, 

which is shown in the output block of the third row in the rule 

viewer shown in Fig. 13. 

2)Rules Designed for 1500 RPM Condition 

1. If (Standard Deviation is Stdev) then (Output1 is GOOD) 

2. If (Standard Deviation is not Stdev) and (Skewness is 

Skew) then (Output1 is BIFW) 

3. If (Standard Deviation is not Stdev) and (Skewness is not 

Skew) and (Maximum is Max) then (Output1 is B&GW) 

4. If (Standard Deviation is not Stdev) and (Skewness is not 

Skew) and (Maximum is not Max) then (Output1 is GTFW) 

Fig. 14 is the rule viewer for the following test data. If 

standard deviation = 0.005, skewness = 50, and maximum = 

0.5 then the output is 3.75, i.e., the condition is BIFW.  

3)Rules Designed for 2000 RPM Condition 

1. If (Standard Deviation is Stdev2) then (Output1 is 

B&GW) 

2. If (Standard Deviation is not Stdev2) and (Maximum is 

Max) then (Output1 is GTFW) 

3. If (Standard Deviation is not Stdev2) and (Maximum is 

not Max) and (Sum is Sum) and (Kurtosis is Kurt) then 

(Output1 is GOOD) 

4. If (Standard Deviation is not Stdev2) and (Maximum is 

not Max) and (Sum is Sum) and (Kurtosis is not Kurt) then 

(Output1 is BIFW) 

5. If (Maximum is not Max) and (Sum is not Sum) and 

(Standard Deviation is Stdev1) then (Output1 is BIFW) 

6. If (Maximum is not Max) and (Sum is not Sum) and 

(Standard Deviation is not Stdev1) then (Output1 is GTFW) 

Fig. 15 shows the rule viewer for the following test data. If 

standard deviation = 0.005, maximum = 0.5, sum = 0.5, and 

kurtosis = 2000 then the output is 8.8, i.e., the condition is 

B&GW. This satisfies the first rule completely. 
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Fig. 13 Rule viewer for one of the test data of 1000 rpm condition 

Fig. 14 Rule viewer for one of the test data of 1500 rpm condition 
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Fig. 15 Rule viewer for one of the test data of 2000 rpm condition 

C. System Accuracy 

The classification results are calculated using a 10-fold 

cross-validation evaluation where the data set to be 

evaluated is randomly partitioned so that in each condition 

52 samples are used for training and 28 samples are used 

for testing. The process is iterated with different random 

partitions and the results are averaged. The confusion 

matrix for each condition is given in table III to V. In 

confusion matrix, each cell contains the number of samples 

that was classified corresponding to actual algorithm 

outputs. The diagonal elements in the confusion matrix 

show the number of correctly classified instances. 

TABLE III

CONFUSION MATRIX FOR 1000 RPM CONDITION

Condition Good BIFW GTFW B&GW 

Good 7 0 0 0 

BIFW 0 6 0 1 

GTFW 0 0 7 0 

B&GW 0 0 0 7 

TABLE IV

CONFUSION MATRIX FOR 1500 RPM CONDITION

Condition Good BIFW GTFW B&GW 

Good 7 0 0 0 

BIFW 0 7 0 0 

GTFW 0 0 7 0 

B& GW 0 0 0 7 

TABLE V

CONFUSION MATRIX FOR 2000 RPM CONDITION

Condition Good BIFW GTFW B&GW 

Good 7 0 0 0 

BIFW 0 7 0 0 

GTFW 0 1 6 0 

B& GW 0 0 0 7 

The performance of the classifier can be checked by 

computing the statistical parameters such as sensitivity, 

specificity and total classification accuracy defined by 

Sensitivity: number of true positive 

decisions/number of actually positive cases. 

Specificity: number of true negative 

decisions/number of actually negative cases. 

Total classification accuracy: number of correct 

decisions/total number of cases. 

The values of statistical parameters are given in Table VI 

to VII. Results show that the total classification accuracy 

for 1000, 1500, and 2000 rpm conditions are 96.42%, 

100%, and 96.42% respectively. It is to be stressed here 

that because rules and MFs for fuzzy logic inference system 

were extracted from J48 algorithm directly, accuracy of 

fuzzy system is closely equal with that of decision tree built 

by J48 algorithm. Therefore, it is true that to say these 

amounts show the accuracy of fuzzy inference system and 

PSD-J48-FIS model too.  

TABLE VI

THE VALUE OF STATISTICAL PARAMETERS FOR 1000 RPM CONDITION

Data

Sets

Label 

Sensitivity

(%)
Specificity (%) 

Total

classification 

accuracy (%) 

GOOD 100 100 

BIFW 85.71 95.23 

GTFW 100 100 

B&GW 100 100 

96.42 
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TABLE VII

THE VALUE OF STATISTICAL PARAMETERS FOR 1500 RPM CONDITION

Data

Sets

Label 

Sensitivity

(%)
Specificity (%) 

Total

classification 

accuracy (%) 

GOOD 100 100 

BIFW 100 100 

GTFW 100 100 

B&GW 100 100 

100

TABLE VIII

THE VALUE OF STATISTICAL PARAMETERS FOR 2000 RPM CONDITION

Data

Sets

Label 

Sensitivity

(%)
Specificity (%) 

Total

classification 

accuracy (%) 

GOOD 100 100 

BIFW 85.71 95.23 

GTFW 100 100 

B&GW 100 100 

96.42 

IV. CONCLUSION

A combined power spectral density (PSD), classification 

tree (J48 algorithm) and fuzzy inference system (FIS) have 

been presented to perform fault diagnosis of an external 

gear hydraulic pump. The implementation of PSD-J48-FIS 

based classifier requires three consecutive steps. Firstly, 

PSD values of vibration signal of pump were calculated 

from obtained spectrums. Secondly J48 algorithm is 

utilized to select the relevant features in data set obtained 

from feature extraction part. The output of J48 algorithm is 

decision tree that is employed to produce the crisp if-then 

rule and MF sets. Thirdly, the structure of FIS classifier is 

defined based on the obtained rules, which were fuzzified 

in order to avoid classification surface discontinuity. The 

classification results and statistical measures are then used 

for evaluating the PSD-J48-FIS model. The total 

classification accuracy for 1000, 1500, and 2000 rpm 

conditions were 96.42%, 100%, and 96.42% respectively. 

The results indicate that the proposed PSD-J48-FIS model 

can be used in diagnosing external gear hydraulic pump 

faults and developing an online condition monitoring tests. 

Works in this direction is in progress. 
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