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Abstract—Various cis-regulatory module (CRM) predictors have 

been proposed in the last decade. Several well-established CRM 

predictors adopted different categories of prediction strategies, 

including window clustering, probabilistic modeling and phylogenetic 

footprinting. Appropriate integration of them has a potential to achieve 

high quality CRM prediction. This study analyzed four existing CRM 

predictors (ClusterBuster, MSCAN, CisModule and MultiModule) to 

seek a predictor combination that delivers a higher accuracy than 

individual CRM predictors. 465 CRMs across 140 Drosophila 

melanogaster genes from the RED fly database were used to evaluate 

the integrated CRM predictor proposed in this study. The results show 

that four predictor combinations achieved superior performance than 

the best individual CRM predictor. 

 

Keywords—Cis-regulatory module, transcription factor binding 

site. 

I. INTRODUCTION 

cis-regulatory module (CRM) is a stretch of DNA 

sequence of 10 to 1000 base pairs (bp) that contains three 

to five transcription factor binding sites (TFBSs) [1]. It is 

critical to the transcription of its downstream genes. 

Understanding CRMs helps to know gene regulation and the 

related biological mechanisms [1]-[4]. 

Various CRM predictors have been proposed in the last 

decade. The prediction strategies of these CRM predictors can 

be roughly split into three categories (Table I). The first 

category is window clustering, which identifies DNA regions 

with significantly high densities of binding sites [5]. The 

second category is probabilistic modeling, which describes 

binding site clusters as statistical models and extracts those 

have higher scores than a background model [6]-[8]. Most 

predictors in this category adopted the hidden Markov model 

(HMM) [9]. The third category is phylogenetic footprinting, 

which searches for conserved regions that contain binding site 

clusters [8]. A disadvantage of the predictors in this category is 

that they require sequence data of closely related genomes to 

compute conservation. In addition to related genomes, some 

predictors ask users to input the motifs of TFBSs. On the other 

hand, predictors that have a built-in pattern mining algorithm 

can generate the motifs of TFBSs in the runtime without 

depending on the input. The required input data of the 

abovementioned CRM predictors are summarized in Table II. 
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TABLE I 

SEARCH STRATEGIES OF CRM PREDICTORS 

Predictor 
Window 

Clustering 
Probabilistic 

Modeling 
Phylogenetic 
Footprinting 

CisModule  ����  

ClusterBuster  ����  

MSCAN ����   

MultiModule  ���� ���� 

 

TABLE II 
INPUT DATA OF CRM PREDICTORS 

Method 
Genome 

Sequence 

Sequences of Related 

Genome 

Motifs of 

TFBSs 

CisModule ����   

ClusterBuster ����  ���� 

MSCAN ����  ���� 

MultiModule ���� ����  

 

The above mentioned CRM predictors have different 

advantages. However, there is no study that integrates multiple 

predictors to improve CRM prediction. This study analyzed 

four existing CRM predictors (ClusterBuster, MSCAN, 

CisModule and MultiModule) to seek a predictor combination 

that delivers a higher accuracy than individual CRM predictors. 

II. METHOD 

A. Data Collection 

This study collected CRMs from the Regulatory Element 

Database for Drosophila (REDfly) database, which is the most 

comprehensive database of Drosophila melanogaster CRMs 

[10], [11]. The REDfly version 3.0 contained 1,365 D. 

melanogaster CRMs and 3,446 TFBSs that collected from 

more than 200 articles. 

Among the 1,365 CRMs, three redundant records and seven 

records that lacked the downstream genes were first removed. 

This study focused on promoter regions that (a) locate upstream 

a gene’s start codon and (b) cover at least a CRM. 140 promoter 

regions of 2,000 bp were used as the positive set in this study. 

For the negative set, the 129 regions that (a) locate at 1 to 2,000 

bp downstream the corresponding genes of the positive set and 

(b) cover no CRMs were used. As a result, the positive and 

negative sets were 140 and 129 DNA regions of 2,000 bp, 

respectively. The sequences in the corresponding regions were 

extracted from the FlyBase database [12], [13]. The FlyBase 

database integrates various genomic data, such as sequences, 

expressions and annotations, of D. melanogaster. The 

sequences of other Drosophila species were downloaded from 

the UCSC database [14], [15] as the closely related genomes for 

conservation computation. 

The motifs of TFBSs in this study were obtained from the 

improved Drosophila melanogaster Major Position Matrix 

Motifs (iDMMPMM) [16] and JASPAR databases [17]. The 
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iDMMPMM database version 2012, which is dedicated for D. 

melanogaster, contained37 TFBSs collected from DNase I 

footprinting, SELEX and/or ChIP-chip experiments. The 

JASPAR database is a comprehensive library that contains 

1,316 TFBSs of 19 species with literature support. The 

JASPAR database version 4.0_ALPHA contained 108 D. 

melanogaster TFBSs. The union of the iDMMPMM and 

JASPAR included 122 TFBSs, which formed the TFBS 

collection in this study. 

B. Predictor Integration 

To combine multiple predictors for an integrated score, the 

first step is to recover the raw score of individual predictors. 

We traced the source code and inserted appropriate code to 

output raw scores. The resultant raw scores were not 

documented in the original papers of the adopted CRM 

predictors. The next step is to weight different raw scores. This 

study adopted the following two equations: 

 

 ����, ��� � 	 · �� � �1 
 	� · �� and (1) 

 

 �����, ��� � 	� · �����
��  � �1 
 	�� · �����

�� , (2) 

 

where s1 and s2 are respectively the raw scores of two CRM 

predictors, µ1 and µ2 are respectively the means of the raw 

scores of the two CRM predictors, while σ1 and σ2 are 

respectively the standard deviations of the raw scores of the two 

CRM predictors. The two equations support only binary 

combinations. Tertiary combinations are more complex but did 

not help the prediction performance (data not shown). S(•) in (1) 

is simply a weighted sum of two raw scores. α is a weighting 

parameter, which was introduced to alleviate the scale 

difference between raw scores from different CRM predictors. 

Sz(•) in (2) is a weighted sum of Fisher’s z-transformed scores 

(widely called z-scores), where αz is a weighting parameter. 

Z-scores were introduced to standardize/normalize the raw 

score distribution, i.e.to make the distribution zero mean and 

unity standard deviation. In this study, the mean and standard 

deviation of a CRM predictor were the mean and standard 

deviation of the raw scores of the CRM predictor on the 269 

sequences in the positive and negative sets. 

II. RESULT 

A. Evaluation Setting 

In a conventional evaluation setting, every sample falls into 

one and only one of the following four outcomes: true positive 

(TP, positive sample correctly predicted as positive), false 

negative (FN, positive sample incorrectly predicted as 

negative), true negative (TN, negative sample correctly 

predicted as negative) and false positive (FP, negative sample 

incorrectly predicted as positive). This study contains 269 

samples thus 269 predictions are expected. A sequence with no 

CRMs reported is considered as a negative prediction. However, 

in practice, CRM predictors might predict multiple regions in a 

sequence. Predicted CRMs in positive samples that do not 

overlap with any actual CRMs in REDfly made evaluation 

complex. They were incorrect positive predictions but they 

were in the positive samples. In this study, a fifth category, 

FPpos, was introduced to represents such false positives in the 

positive samples. If a positive sample has n predicted CRMs, 

each predicted CRM contributes 1/n to TP or FPpos, depending 

on whether the predicted CRM overlaps with any actual CRMs 

in REDfly. The remaining three outcomes (FN, TN and FP) are 

the same as their conventional definitions. This evaluation 

setting ensures equal contribution of every sample. Finally, in 

this study a predicted CRM is defined as overlapping with an 

actual CRM as follows: 

 

 overlap��, �, �� �  !"#$ if � ' min *+
� , ,

� , 200/
0�1�$ otherwise,                     6 (3) 

 

where p, a and o are the lengths of the predicted CRM, the 

actual CRM and their overlap. Equation (3) ensures that the 

length of a valid overlap of two CRMs in this study exceeds 

half of the smaller one or 200 bp. 

B. Evaluation Index 

After defining TP, FPpos, FN, TN and FP, various indices 

such as true positive rate (TPR) and false positive rate (FPR) 

can be used to evaluate the CRM predictors. This study adopted 

area under curve (AUC) as the evaluation index because AUC 

reveals an overall performance so that the trade-off between 

TPR and FPR can be neglected [18]. However, we observed a 

problem when applying conventional AUC directly in 

evaluating CRM predictors (Fig. 1). In Fig. 1, the solid and 

dotted lines represent two predictors. The AUC of the solid line 

(area of II+III) is smaller than that of the dotted line (III+V). 

However, the solid line is obvious better than the dotted one in 

the range that the solid line makes predictions (i.e. the range of 

FPR ≤ 0.3). The large AUC of the dotted line only comes from 

that the predictor of the dotted line prefers to report more 

predictions. 

 

 

Fig. 1 Illustration of the proposed AUC%. The solid and dotted lines 

represent two predictors. The AUC of the solid and dotted lines are the 

area of II+III and III+V, respectively. The proposed AUC% is the 

AUC normalized by the theoretic maximum at the range that the 

predictor made predictions. The AUC% of the solid and dotted lines 

are (II+III)/(I+II+III) and (III+V)/(I+II+III+IV+V), respectively 

 

In this study an AUC% was proposed to solve this problem. 

The AUC% of a predictor was the original AUC normalized by 
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the theoretic maximum at the range that the predictor made 

predictions. Namely, the AUC% is the ratio of the predictor’s 

AUC to a perfect predictor. In Fig. 1, the AUC% of the solid 

and dotted predictors are (II+III)/(I+II+III) and 

(III+V)/(I+II+III+IV+V), respectively. The AUC% also equals 

to the original AUC divided by the maximum FPR. With this 

adjustment, the solid line in Fig. 1 is superior to the dotted one, 

which is consistent with intuition. 

C. Comparison with Existing Predictors 

The performances of the four individual CRM predictors and 

their integrations are shown in Table III. To prevent overfitting 

due to parameter tuning, the results in Table III was based on (1) 

with α = 0.5 (i.e., the most trivial integration). The effects of 

weights and z-scores are discussed in the next subsection. 

In Table III, the first four rows are individual CRM 

predictors. The best individual predictor was MSCAN, which 

achieved an AUC% of 16.02. The remaining six rows are 

integrated CRM predictors. Four integrated predictors 

delivered superior AUC% than MSCAN. The best integrated 

predictors was the integration of ClusterBuster and 

MultiModule, which achieved an AUC% of 17.31 (1.29 higher 

than MSCAN).In the four integrated predictors with better 

AUC% than MSCAN, three of them included MSCAN. This is 

reasonable because including a good predictor provides a good 

start point to improve. On the other hand, combining any of the 

three predictors with MSCAN improved MSCAN. This suggest 

that the strategy of integrating multiple CRM predictors is a 

promising direction and worthy of more efforts in future CRM 

studies. 

An interesting observation is that the best integrated 

predictor did not include MSCAN. Actually, it was the 

integration of the worst two individual predictors. This is 

because that the two predictors captured distinct CRMs with 

different characteristics. Combining them largely increased the 

TPR with only a slightly FPR sacrifice. This complementarity 

is hard to predict. For example, replacing MultiModule with 

CisModule (they had comparable individual performances) in 

the best integration yielded a bad AUC% of 14.61. A further 

study to analyze the predictor complementarity is important so 

that effective integrations can be detected without exhausting 

evaluations. 
 

TABLE III 
COMPARISON WITH EXISTING CRM PREDICTORS 

Predictor AUC AUC% 

MSCAN 0.117 16.02 

CisModule 0.140 13.97 

MultiModule 0.134 13.52 

ClusterBuster 0.061 8.80 

MultiModule-ClusterBuster 0.171 17.31 

MSCAN-CisModule 0.172 17.22 

MSCAN-MultiModule 0.166 16.60 

MSCAN-ClusterBuster 0.143 16.47 

CisModule-ClusterBuster 0.146 14.61 

CisModule-MultiModule 0.132 13.18 

D. Effect of Different Integration Equations 

This subsection focuses on the effects of using (1) and (2) 

and changing the weights in the equations. Fig. 2 shows the 

results, where only the four integrated predictors better than 

MSCAN were considered. In Fig. 2, S(•) (weighted raw scores, 

the solid lines) was superior to Sz(•) (weighted z-scores, the 

dotted lines)in three of the four integrations. In the integration 

of MultiModule-ClusterBuster (Fig. 2 (a)), Sz(•) was better 

than S(•) in some weights, but Sz(•) with the best αz was still 

worse than S(•) with the best α. This shows that the weighted 

sum of raw scores performed better than that of z-scores. 

Because the effect of Fisher’s z-transformation is to alleviate 

the different means and standard deviations among predictors, 

this suggests that differences of means and standard deviations 

are useful information when integrating CRM predictors and 

should not be alleviated. 

On the other hand, a linear weighting is required because the 

best weight was not close to 0.5 in most lines, solid or dotted. 

The exact weights are shown in Table IV. The extreme weights 

in MSCAN-CisModule and MSCAN-MultiModule show that 

the raw score of MSCAN dominated the two integrated 

predictors. But the improvement of 1.16 AUC% shown in 

Table IV and the rugged lines in Fig. 2 (c) indicate that 

MultiModule in the integration had a large effect, even with its 

small weight. Furthermore, the improvements of 

MultiModule-ClusterBuster and MSCAN-MultiModule (1.53 

and 1.16 AUC%, respectively) in comparison with the 

improvements of integration shown in the previous subsection 

demonstrate the power of weighting. As a result, in integrating 

CRM predictors, the distributions of their raw scores should be 

preserved and the scale differences among them should be 

balanced with linear weighting. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 2 Effect of different integration equations. Solid and dotted lines 

indicate S(•) in (1) and Sz(•) in (2), respectively. The y-axis is the 

AUC% while the x-axis is the weight (α for solid lines and αz for 

dotted lines).This figure includes four integrations: (a) 

MultiModule-ClusterBuster, (b) MSCAN-CisModule, (c) 

MSCAN-MultiModule and (d) MSCAN-ClusterBuster. The x-axis is 

the weight of the former predictor of an integration while the weight of 

the later predictor is 1 - x 
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TABLE IV 

IMPROVEMENTS OF WEIGHTING 

  Best Weighting 

Predictor α= 0.5 α/αz AUC% Improvement 

MultiModule-ClusterBuster 17.31 0.73 18.84 1.53 

MSCAN-CisModule 17.22 0.99 17.37 0.15 

MSCAN-MultiModule 16.60 0.99 17.76 1.16 

MSCAN-ClusterBuster 16.47 0.62 16.55 0.08 

III. CONCLUSION 

CRM plays a critical role in transcriptional regulation. It is 

important to predicting CRMs via computational methods to 

save time and cost of biological experiments. This study 

proposed an integrated predictor to improve CRM prediction 

and an evaluation setting to deal with the characteristics of 

CRM prediction. The experimental results show that the 

proposed predictor achieved superior performance to individual 

predictors.  
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