
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1074

Abstract—Virtualization technologies are experiencing a renewed

interest as a way to improve system reliability, and availability, reduce
costs, and provide flexibility. This paper presents the development on
leverage existing cloud infrastructure and virtualization tools. We
adopted some virtualization technologies which improve portability,
manageability and compatibility of applications by encapsulating
them from the underlying operating system on which they are executed.
Given the development of application virtualization, it allows shifting
the user’s applications from the traditional PC environment to the
virtualized environment, which is stored on a remote virtual machine
rather than locally. This proposed effort has the potential to positively
provide an efficient, resilience and elastic environment for online
cloud service. Users no longer need to burden the platform
maintenances and drastically reduces the overall cost of hardware and
software licenses. Moreover, this flexible and web-based application
virtualization service represents the next significant step to the mobile
workplace, and it lets user executes their applications from virtually
anywhere.

Keywords—Cloud service, application virtualization, virtual
machine, elastic environment.

I. INTRODUCTION

IRTUALIZATION technology [1], [2] acts as a central
component that can achieve the purpose of cloud

platforms and services, and it is a promising approach to
consolidating multiple services onto a smaller number of
computing resources. A virtualized server environment allows
computing resources to be shared among multiple
performance-isolated platforms called virtual machines [3], [4].
A virtual machine is a software implementation of a machine
that executes related programs like a physical machine. Each
virtual machine includes its own system kernel, OS, supporting
libraries and applications. A hypervisor provides a uniform
abstraction of the underlying physical machine, and multiple
virtual machines can execute simultaneously on a single
hypervisor. Decoupling of virtual machine from the underlying
physical hardware is able to allow the same virtual machine to
be started and run on different physical environments. Thus
virtualization is seen as an enabler for cloud computing,
allowing the cloud service provider the necessary flexibility to
move and allocate the computing resources requested by the
user wherever the physical resources are available.

Virtualization also enables on-demand resource provisioning
model in which computing resources such as CPU, memory,
and disk space are made available to applications only as

S.T. Wang, Y.C. Lin and H.Y. Chang are with the National Center for

High-Performance Computing, Taiwan, R.O.C. (e-mail: stwang@nchc.org.tw,
1203043@nchc.org.tw, jerry@nchc.org.tw).

needed and not allocated statically. So by dynamically
provisioning virtual machines, consolidating the workload, and
turning computers on and off as needed, the administrators can
maintain the desired quality of service while achieving higher
computer utilization.

Considerations for an individual user's application,
application virtualization has received great interest in the
virtualization research community. References [5]-[7] have
realized the concept of application virtualization. Virtualized
applications eliminate nearly all of the complexities and
support issues associated with delivering and accessing
traditional applications for thin-client deployments. We
realized this impact and also tried many implementations
before integrating our virtual application service. Citrix
XenApp [8] is an end-to-end Windows application delivery
system that offers client side application virtualization. All
applications are managed in a centralized controller, but are
streamed to the user’s machine and run in an isolation
environment. Even the centralized administration can deploy
the applications to the end user transparently as a service and
their usage can be tracked and monitored. However, for
existing Citrix users, Citrix has a lower total cost of ownership
due to the overlap with the existing Citrix Access Infrastructure,
and applications which include the installation of a service
cannot be virtualized. Microsoft Application Virtualization [9]
is the application virtualization solution from Microsoft. It is
composed mainly of two components - System Guard and
SoftGrid Sequencer. System Guard tracks configuration
repositories and resources used by the application and
redirecting them to the virtualized instances of the resources.
SoftGrid sequencer is the server side component which
packages an application for virtualization and streaming. The
main advantage is sequencer uses special approach, which
ensures that only the application code needed is transferred. As
a result, applications will start up very quickly. But the
disadvantage is applications needing product activation that use
hardware characteristics cannot be virtualized. Moreover, when
the application is started on another machine, the hardware
characteristics will have been changed.

In this paper, we aim at the adoption of application
virtualization and cloud technologies. We integrated a virtual
application sharing system which is efficient, resilience and
independent of the operating system. This system provides the
application execution takes place on a remote operating system
which is delivered to the end user virtually by passing only
screen pixels, keystrokes and mouse actions between the client
and server over the network. The data and applications used
remain on the remote system. We also implemented a sketch of

Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

An Integrated Cloud Service of Application Delivery
in Virtualized Environments

V

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1075

unified web-based interface to make such a service is simple
and easy to use for both casual and expert users in any place and
any devices.

The rest of this paper is organized as follows. Section II lists
the background. Section III gives a description of software
architecture. Section IV gives some details of the
implementation. Section V discusses future work and
concludes.

Fig. 1 Virtualization architecture

II. BACKGROUND

A. Virtualization Architecture

Fig. 1 shows the principal architecture of virtualization.
Physical hardware resources were divided as virtual resources
of virtualization platforms by the monitors, and those virtual
resources were assigned to each virtual machine by different
application requirements. Furthermore, the monitor provides
each Guest OS a set of virtual platform interfaces that constitute
virtual machines, acting as a bridge to connect between
hardware and virtual devices. Instructions were delivered to
hardware layer from virtual platform, which receives results
from monitor of virtual machines. Each virtual platform will
run independently, although physical resources were shared.
The monitor module has two kinds of models: hypervisor and
virtual machine monitor (VMM) [10]. The main distinction
between Hypervisor and VMM is that the former monitor runs
above hardware layer directly with better performance than
VMM, such as Xen [11] and VMware’s ESX [12]. On the other
hand, Microsoft’s Virtual PC and VMware’s Workstation
adopt VMM as monitor of virtual platforms.

For Guest OS, it includes two main virtualization types [13]:
para-virtualization (PV) and full-virtualization (FV), which can
be both combined with hardware-assisted virtualization. The
Guest OS is simulated by modified kernel of Linux with PV,
but related devices are not emulated. Instead, all devices are
accessed through light-weight virtual drivers offering better
system performance and close to the physical machine. But the
drawback is that guest kernels must be upgraded to provide new
virtual system calls for the new services and all of guest OS
must be compatible with the host OS

B. Virtual Machine

Virtualization technology is able to apply not only to
subsystems but to a complete virtual system. To implement a
virtual machine, software developers design a software layer to
real machines to support the desired architecture. By providing
one or more efficient virtual platforms, virtual machines have
extended multi-processing systems of the past decade to
become multi-environment systems as well. There are many
kinds of virtual machine in the market, but not all virtual
machines can be built as a virtual platform, so we choose the
Kernel-based Virtual Machine [14] to achieve our purpose.
KVM is an open source software with GPL, developing by
Qumranet company. KVM provide FV solution for Linux on
x86 hardware containing virtualization extensions with
Intel-VT or AMD-V, and the kernel component of KVM is
encased in mainline Linux OS over version 2.6.20, hence the
user can set up the virtualization environment of KVM when
installing Linux OS conveniently.

Using KVM, we can run multiple virtual machines running
unmodified Linux or Windows images. Each virtual machine
has private virtualized hardware devices, such as network card,
disk, graphics adapter, etc.

III. ARCHITECTURE

Table I shows the specification information of our cloud
service platform named Formosa 3. Formosa 3 [15] is a 64bits
high-performance Beowulf cluster located within Southern
Business Unit of the National Center for High Performance
Computing (NCHC) [16]. It consists of 76 IBM X3550M3
servers as its compute nodes. This self-made cluster was
designed and constructed by the 'HPC Cluster Group' at NCHC
for cloud IaaS service and came online in 2012. Each node has
two Six-Core Intel Xeon x5660 2.8GHz processors and 48GB
of DDR3 registered ECC SDRAM. All nodes were connected
on the InfiniBand high speed network and a private subnet with
1000 Mbits/s Gigabit Ethernet. An additional 4 nodes are used
as front ends to interface with cluster, and 4 nodes as storage for
the user file systems by Parallel File System.

TABLE I
FORMOSA 3 CLOUD CLUSTER SPECIFICATION

CPU Intel Xeon x5660 six cores 2.8GHz

Hard Disk 80GB SSD

Memory 48GB DDR3 Registered ECC SDRAM

Network 4x QDR 40Gb Infiniband and Gigabit Ethernet

Operating System CentOS 6.3

Hypervisor Kernel-based Virtual Machine

Fig. 2 illustrates the system architecture of our cloud

platform. Our system is entirely web-based that way the end
user does not need to download and install a tool on his
computer. In particular, this enables accessing our interface
from a wide range of terminals, including mobile devices such
as Smartphone or Pad.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1076

Fig. 2 System architecture

The basic components are as follows:
1) Hardware Fabric: there are many physical facilities

including High Performance Cluster, Linux Virtual
Machines, etc.

2) Hypervisor: we adopt KVM to attain virtualization aim.
KVM consists of a loadable kernel module (kvm.ko) that
provides the core virtualization infrastructure and a
processor specific module, kvm-intel.ko or kvm-amd.ko.
KVM also requires a modified QEMU although work is
underway to get the required changes upstream. Using
KVM, we can run multiple virtual machines running
unmodified Linux or Windows images. Each virtual
machine has private virtualized hardware: a network card,
disk, graphics adapter, etc. The kernel component of KVM
is included in mainline Linux, as of 2.6.20.

3) Libvirt APIs: Libvirt [17] is an open source API, daemon
and management tool for managing platform virtualization.
It can work with a variety of hypervisors in the
development of a cloud based solution. Thus, we employ
these APIs to control and manage our KVM, and we can
switch the underlying hypervisor technology at a later
stage with minimal efforts.

4) MySQL: MySQL [18] is the world's most used open
source relational database management system (RDBMS)
that run as a server providing multi-user access to a number
of databases.

5) Resource Manager: for resource management of cloud
infrastructure, we developed a resource manager providing
control over virtualization requests from user to guarantee
the fairness of using the physical machines, priority
escalading, and resource partitioning. We also developed a
special module called Job Detection Module to detect the
actual virtualization job loading. This customized process
will calculate the how many physical processors that
requests need for finding the physical machine satisfying
the given constraints.

6) X Window: X Window is a windowing system for graphics

workstations developed at MIT. It is based on a
client/server model. A networked computer runs an X
server, and client programs running on connected
workstations request services from the server. The server
handles input and output devices and generates the
graphical displays used by the clients.

7) Google Web Toolkit [19]: GWT is a development toolkit
for building and optimizing complex browser-based
applications. The GWT SDK provides a set of core Java
APIs and Widgets. These allow us to write AJAX
applications in Java and then compile the source to highly
optimized JavaScript that runs across all browsers.

8) Web Interface: while our web based interface is built using
a Model-View-Controller (MVC) based PHP framework,
Python was adopted as the command line interface in this
platform. The choice of the Python as the secondary
language for the development is supported by the excellent
documentation by Libvirt APIs. On the other hand, we
employ phpMyAdmin for giving us the ability to interact
with our MySQL databases. So we can handy perform
maintenance operations on tables, backing up information,
and editing things directly.

IV. DEVELOPMENT

Virtualized application is a process which has the goal of
offering applications independent of location and device, so
users can work online and anywhere with any device and at any
time. When we were studying and determining which
application virtualization solution suits with our virtualized
environments. We realized that the performance of application
streaming is a key issue. Application virtualization is often
combined with application streaming, a technology that
streams portions of the virtualized application to users'
computers as needed. With application streaming, the
virtualized application image is stored on a server that client
software on users' machines connects to. Instead of the entire
file being transferred, the client requests portions of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1077

application only as needed, speeding up the time it takes to
launch the program.

Fig. 3 The application delivery system

Fig. 3 provides an overview of the application delivery
architecture for a standard, three tiers development. The
framework architecture is composed of three main parts: the
Client-Side, the Server-Side and Backend-Side. The internal
components of every architecture part and their provided
functionalities are discussed in the following:
1) Client: the Client is a web-based GUI allowing users to

operate remote application. Currently we adopt GWT to
allow the use of existing Java knowledge and tools to build
high performance, web applications. GWT abstracts away
many complexities of web application development by not
requiring us to learn Javascript and HTML. It rests on
today's web standards: AJAX, JSON and HTML5 [20] as
well.

2) Session Manager: this module is responsible for managing
user connection sessions and authenticating accounts
information. The user session begins when the user
accesses the virtual desktop or application and ends when
the user quits the virtual desktop or application from the
web browser. It also plays a role of bridge between
application servers and client devices. It applied the SSH
(Secure Shell) and HTTPs protocol to provide the single
entry website.

3) Application Virtualization Manager: this module provides
virtualization of applications and software resources. The
development of this module is based on the open virtual
application software, and designed according to the user
requirements. The Full application virtualization also
requires a virtualization layer with the operating system.
Application virtualization layers replace part of the
runtime environment normally provided by the operating
system. The layer intercepts all file and registry operations
of virtualized applications and transparently redirects them
to a virtualized location.

4) Data Synchronization Manager: this module is responsible
for managing the process of establishing consistency

among data from cluster servers to client devices and the
continuous harmonization of the data over time. Users and
project developers can collaborate or develop on a single
file without installing any relative application on their own
client device. It also backups and shares the user’s data to
make the system reliable and elastic.

5) FastX: FastX [21] is a simple and affordable X Windows
terminal emulator which displays both remote Linux/Unix
desktops and individual application. Now we use the trial
version of FastX to test and verify seamless access to X
Windows and X applications. We integrated FastX with
the managers to transparently provide secure encrypted
communications by using SSH connection protocols, and
let the X application can be launched from within a Web
browser, or simply by clicking on an icon on the user's
desktop in our platform.

To enable collaborations among multiple virtual machines,
the application sharing and migration mechanism will be
applied. Through presentation streaming redirection and virtual
machine cloning technology, an application can be easily
streamed or migrated. To speed up the performance of remote
application access in the cloud environment, WebSocket [22]
protocol is used to transfer the virtualized application of a
remote virtual machine. The WebSocket protocol works at the
buffer frame layer and supports the remote access to graphical
user interface, and the mouse or keyboard inputs can be
transferred to the remote application, thus achieving a
transparent access and real time communication in the browser.

While integrating these different modules for remote
virtualized application service, we came across several issues
that have previously not been addressed. For example: for
accessing the virtual machine, users can use Off-the-Shelf tools,
ex: VNC and Windows Remote Desktop, etc. Due to the virtual
machine may execute on different physical machines every
time. This can be troublesome if we provide a fixed public IP
address and port for connecting to the user’s console of virtual

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1078

machine. So, we use iptables and thus setup port forwarding
connections to the virtual machine that user launched. Our
interface will allocate a mapping port dynamically after user
creating virtual machine. After that users can connect to the
console with the dedicated IP address of the Server and the port
which will be forwarded to the appropriate physical machine
which is currently hosting the user's virtual machine. On the
other hand, our system also supports both multicast and unicast
transmissions. For unicast connections, either UDP or TCP can
be used. Since TCP provides reliable communication and flow

control, it is more suitable for unicast sessions. Multiple TCP
clients sharing a single application may have different
bandwidths, so an algorithm which sends the updates at the link
speed of each client will be developed. For UDP clients, the
system controls the transmission rate because UDP does not
provide flow and congestion control. Several simultaneous
multicast sessions with different transmission rates can be
created at the system. The system can share an application to
TCP clients, UDP clients, and several multicast addresses in the
same sharing session.

Fig. 4 The cloud platform web portal

Fig. 4 shows the web portal of our cloud platform, once user

has logged in he/she should be able to choose which widget
wants to use.

Fig. 5 illustrates the X-Window terminal widget, the main
task of this widget is to allow user to launch remote xterm
application and access to back-end servers through a web-based
interface. This feature also allows the other server which
installed different operating system to be accessed natively
from a mobile device such as a tablet.

Unlike terminal widget, Fig. 6 is web-based text editor
widget. It launches remote xedit application. Xedit is an
X-Window editor specifically designed for writing programs,
but it’s also useful for writing any kind of text. It works well in
web browser.

V. CONCLUSION

In this paper, we aim at the adoption of application
virtualization and cloud technologies. We integrated a virtual
application sharing system which is efficient, resilience and
independent of the operating system. This system provides the
application execution takes place on a remote operating system
which is delivered to the end user virtually by passing only
screen pixels, keystrokes and mouse actions between the client
and server over the network.

Currently, one of the most important things when this service
comes to using the virtualized applications is performance. It’s
about user-acceptance. So we will plan to add communication
method with data compression and encryption for mobile
computing environments in the near future. There is also a plan
to optimize the storage performance and adapt power
management strategies for physical machines to prevent energy
waste in cloud platform.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1079

Fig. 5 Web-based remote 'xterm' application

Fig. 6 Web-based remote 'xedit' application

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:6, 2016

1080

REFERENCES
[1] Nussbaum, Lucas, et al. "Linux-based virtualization for HPC clusters."

Montreal Linux Symposium. 2009.
[2] Goth, Greg. "Virtualization: Old technology offers huge new potential."

IEEE Distributed Systems Online 2 (2007): 3.
[3] Meyer, Richard A., and Love H. Seawright. "A virtual machine

time-sharing system." IBM Systems Journal 9.3 (1970): 199-218.
[4] Goldberg, Robert P. "Architecture of virtual machines." Proceedings of

the workshop on virtual computer systems. ACM, 1973.
[5] Yan, Li. "Development and application of desktop virtualization

technology." Communication Software and Networks (ICCSN), 2011
IEEE 3rd International Conference on. IEEE, 2011.

[6] Ganji, Rama Rao, et al. "HTML5 as an application virtualization tool."
Consumer Electronics (ISCE), 2012 IEEE 16th International Symposium
on. IEEE, 2012.

[7] Chiueh, Susanta Nanda Tzi-cker, and Stony Brook. "A survey on
virtualization technologies." RPE Report (2005): 1-42.

[8] Musumeci, Guillermo. Getting Started with Citrix XenApp 6. Packt
Publishing Ltd, 2011.

[9] Microsoft Application Virtualization, Available at:
https://technet.microsoft.com/en-us/windows/hh826068.aspx

[10] Popek, Gerald J., and Robert P. Goldberg. "Formal requirements for
virtualizable third generation architectures." Communications of the
ACM 17.7 (1974): 412-421.

[11] Xen hypervisor, Available at: http://www.xen.org/
[12] VMware virtualization, Available at: http://www.vmware.com/
[13] Chen, Wei, et al. "A novel hardware assisted full virtualization

technique." Young Computer Scientists, 2008. ICYCS 2008. The 9th
International Conference for. IEEE, 2008.

[14] Kivity, Avi, et al. "kvm: the Linux virtual machine monitor." Proceedings
of the Linux Symposium. Vol. 1. 2007.

[15] NCHC Formosa 3 Cloud Cluster, Available at:
http://formosa3.nchc.org.tw/

[16] NCHC, National Center for High-performance Computing, Available at:
http://www.nchc.org.tw

[17] Libvirt - The virtualization API, Available at: http://libvirt.org/
[18] DuBois, Paul. MySQL: the definitive guide to using, programming, and

administering MySQL 4. Sams, 2003.
[19] Johnson, Bruce, and Joel Webber. Google web toolkit. Addison-Wesley,

2007.
[20] Hickson, Ian, and David Hyatt. "Html5." W3C Working Draft

WD-html5-20110525, May (2011).
[21] FastX, Available at: https://www.starnet.com/fastx/
[22] Wang, Vanessa, Frank Salim, and Peter Moskovits. The definitive guide

to HTML5 WebSocket. Vol. 1. New York: Apress, 2013.

