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 
Abstract—In rough set models, tolerance relation, similarity 

relation and limited tolerance relation solve different situation 
problems for incomplete information systems in which there exists a 
phenomenon of missing value. If two objects have the same few 
known attributes and more unknown attributes, they cannot 
distinguish them well. In order to solve this problem, we presented two 
improved limited and variable precision rough set models. One is 
symmetric, the other one is non-symmetric. They all use more 
stringent condition to separate two small probability equivalent objects 
into different classes. The two models are needed to engage further 
study in detail. In the present paper, we newly form object classes with 
a different respect comparing to the first suggested model. We 
overcome disadvantages of non-symmetry regarding to the second 
suggested model. We discuss relationships between or among several 
models and also make rule generation. The obtained results by 
applying the second model are more accurate and reasonable. 
 

Keywords—Incomplete information system, rough set, symmetry, 
variable precision.  

I. INTRODUCTION 

OUGH set theory, proposed by Z. Pawlak in 1980s [1], [2], 
has been found to be a very useful mathematics tool for 

studying inexact, uncertain or vague information systems. 
Indiscernibility relation (reflexive, symmetric and transitive) is 
the basis of Z. Pawlak’s rough set theory which is primarily 
applied to complete information system. In real world, due to 
the data measuring error or the limited ability in 
comprehending or acquiring data, we have to confront 
incomplete information systems (IIS) in knowledge discovery. 
Because of existing null values in incomplete information 
systems, such an indiscernibility relation as a kind of 
equivalence relation in Z. Pawlak’s rough set theory, it is hard 
to construct due to the comparison between  null value and real 
value is impossible. So, it is impossible for us to immediately 
cope with incomplete information with such kinds of 
indiscernibility relations. 

Two approaches have been employed in rough set theory to 
deal with incomplete information systems. One is to transfer 
incomplete information table into complete information table 
by substituting null values with frequent attribute values, called 
indirect way. Another is to extend Z. Pawlak’s rough set theory 
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to incomplete information table, called direct way. 
The direct approach attracts much more attention from 

scientists. For example, Kryszkiewicz, Stefanowski, Guoyin 
Wang respectively suggested tolerance relation [3], similarity 
relation [4], and limited tolerance relation [5], which are three 
popular models. Discernability of tolerance relation is very 
limited, since the equivalent probability of two objects with 
only few equal known attributes and much more unknown 
attributes is very small. Discernability of similarity relation is a 
little bit strong for it restricts that the second object’s non-null 
value attribute number cannot be greater than the first one. 
Discernable ability of limited tolerance relation is also finite 
since its loose requirement of common non-null value attribute 
number. Based on the above discussion, we presented a 
variable precision rough set model [6], [7] by setting a 
proportion threshold for two objects in common non-null value 
attribute number to determine whether they belong to the same 
class or not. This variable precision classification relation is of 
only reflexivity, representing a generalized form of tolerance 
relation and similarity relations. Probabilistic rough set 
approximations are discussed in [8]. Other study ways are also 
can be seen in some other materials, reflecting that the research 
about rough set is energetic. For instance, on inconsistent 
incomplete decision tables approximation reduction method is 
explored in [9]. Variable precision rough set based decision tree 
classifier is researched in [10]. We also suggested another 
variable precision relation for rough set model [11], which 
remains symmetric, keeps advantages and overcomes some 
shortcomings of limited tolerance relation. It can be used to 
dispose incomplete information system to get satisfied result 
according to the requirements of specific data by setting 
appropriate precision value. On two universes and rough 
entropy, probabilistic rough set is researched in [12]. 

In the present paper, our suggested two improved limited and 
variable precision rough set models [6], [7], [11] are further 
studied. Our first suggested model builds its classes of a given 
object in a different way from the before. Our second suggested 
model completes the definition of our limited variable precision 
relation. It discusses relationships between or among classes, 
upper and lower approximations by tolerance relation, 
similarity relation and limited tolerance relation and our 
suggested two relations. Through generating determine and 
possible rule by applying our second suggested model on an 
example. It shows that the number of obtained rules is more and 
the accuracy is high.  

II. BASIC CONCEPTS 

An Incomplete Information System (IIS) can be denoted as 

Chen Wu, Youquan Xu, Dandan Li, Ronghua Yang, Lijuan Wang 

An Improved Variable Tolerance RSM with a 
Proportion Threshold 

R 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2066

 

 

( , , , )S U AT V f . Here, U , a non-empty set of finite objects, 

is called the universe of discourse. AT  is a nonempty set of 
finite attributes. 

aV is the domain of attribute a . Set 

a AT aV V  . 
af  is information function, for a AT  , 

x U  , ( ) ( , )a af x f x a V  . If it contains at least one 

attribute, say a , its domain is 
aV , the value of an object at 

attribute a  is * (usually “*” is used to represent unknown 

attribute), then we say the information system S  is 
incomplete, otherwise complete. 
Definition 1. Let ( , , , )S U AT V f  be an incomplete 

information system [1]. A AT  is any attribute subset. The 

tolerance relation referring to A  is defined as 
 

2{( ,  ) : ,  ( ) ( ) ( ) * ( ) *}A a a a aT x y U a A f x f y f x f y        
    (1) 

 
where ( )af x represents the value of object x  at attribute a . 

For x U  , the tolerance class of x  is denoted by 
 

( ) ={ : ( ,  ) }A AT x y U x y T        (2) 

 

Definition 2. Let S be an incomplete information 
system. A AT . Then, for X U  , the upper 

approximation and lower approximation of X in terms of AT  

are expressed by ( )AT X  and ( )AT X , respectively, where, 

 

( ) { :  ( ) }A AT X x U T x X          (3) 

 

( ) { :  ( ) }A AT X x U T x X          (4) 

 

Definition 3. Let S be an incomplete information system. 

A AT . The similarity relation [2] referring to A  is denoted 
as  

 
2{( ,  ) :  ,  ( ) ( ) ( ) *}A a a aS x y U a A f x f y f x        

(5) 
 

We can clearly see that AS  is reflexive and transitive, but 

not necessarily symmetric. According to the definition of 
similarity relation, we can then define two sets for any object 
x : The set of objects similar to x , denoted by ( )AS x , the set of 

objects to which x  is similar, denoted by -1 ( )AS x  

respectively, where 
 

( ) { : ( , ) }A AS x y U y x S        (6) 

 
-1  ( ) { :  ( ,  ) }A AS x y U x y S         (7) 

 

Definition 4. Let S  be an incomplete information system. 

A AT . Then, for X U  , the upper approximation and 

lower approximation of X  in terms of the similarity relation 

AS  are denoted by ( )AS X  and ( )AS X  respectively, where, 

 

( ) ( )A x X AS X S x          (8) 

 
-1( )  { :  ( )  }A AS X x U S x X          (9) 

 
Through further study on relationships between tolerance 

and similarity relation, Guoyin Wang recognized of that the 
needing conditions of tolerance relation are too loose, and it is 
subject to grouping two objects, which do not have any same 
attribute value, into an indistinguishable block. On the contrary, 
the needing conditions of similarity relation are too strict, and 
this is subject to dividing two objects which are very similar but 
with only a slight bit of incomplete information into different 
blocks. This results in two extreme conclusions. Regarding the 
above two facts, he proposed limited tolerance relation [5]. 

Definition 5. Let S  be an incomplete information system. 

A AT . The limited tolerance relation [5] in terms of A , 

denoted by 
AL , is defined by 

 
2{(x, y) : ( ( ) ( )A a aL U a A f x f y    

*) (( ( ) ( ) ) A AP x P y      

( ( ) *) ( ( ) *)a aa A f x f y     ( ) ( ))) }a af x f y   (10) 

 
where 

( ) { :  ( ) }A aP x a A f x    . 

 
The block grouped by limited tolerance relations is between 

that by tolerance relation and that by similarity relation. It 
excludes the weakness of loose requirement in tolerance 
relation by the needing of that they should have the same value 
when two objects are all not empty at an attribute. At the same 
time, it deletes the requirement in similarity relation that 
y could not be more incomplete than x . That is to say, it 

relaxes the needing conditions of similarity relation, and 
enhanced the needing conditions on tolerance relation. 

III. TWO KINDS OF VPRST MODELS 

In the limited tolerance relation, when the values of two 
different objects on all attributes are empty, this only illustrates 
they have indiscernible possibility, but this possibility is often 
relatively small. Another situation is that the values of two 
objects are only the same on one attribute, and the remaining 
values are not comparable and they are still regarded as in a 
class or block. When the attribute is large, this condition is 
obviously still too loose. 

A. An Improved Limited and VPRS Model 

Realizing that the needing condition of limited tolerance 
relation is still not restrictive, we suggested a limited and 
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variable precision classification model [6] as: 

Definition 6. Let S  be an incomplete information system. 
A AT . The variable precision classification relation [6] in 

terms of A  is denoted by AV   where, 

 
2{( , ) :  ( ) ( )A A AV x y U a P x P y       

( ( ) ( )) | ( )  ( ) | / | ( ) | }  a a A A A Uf x f y P x P y P x I       (11) 

 
where [0,1],| |   represents the cardinality of the set, and 

{( , ) : }UI x x x U  . 

It is easy to see that 
AV   is of only reflexivity, but not 

necessarily of symmetry and transitivity. In the limited 
tolerance relation, x ={*,1,*, 2,3,*,1,*} and y ={1,*,0,*, *,*, 

1,*} are recognized to be belonging to the same class. However, 
x and y have the same value at only one attribute of the eight 

ones. Therefore, we have the reason of believing that their 
belonging to the same class is not possible and putting them 
into a class becomes very farfetched. If we set 0.1  , then 

( , ) Ax y V   and ( , ) Ay x V  . That is, we can separate them 

into two categories by using variable precision relation. By this, 
we can see that variable precision limited tolerance relation is 
actually a modified form and is more realistic. 

Because AV   is not always symmetric, { :( , ) }Ay U y x V   

may be not the same as { : ( ,  ) }Ay U x y V   . Like Definition 

3 and 4 to similar relation and dislike the related definition in 
[6], the following two definitions are given. 

Definition 7. Let S  be an incomplete information system. 
A AT . Then, for x U  , the set of objects limitedly 

tolerant to x  with variable precision  , denoted by ( )AV x , 

and the set of objects to which x  is limitedly tolerant with 
variable precision  , denoted by 1, ( )AV x , are respectively 

defined by: 
 

( ) { : ( ,  ) }A AV x y U y x V         (12) 

 
1,( ) { : ( ) }A AV X x U V x X         (13) 

 

Definition 8. Let S  be an incomplete information system. 

A AT . Then, for X U  , the upper approximation and 

lower approximation of X  in terms of AV   are denoted by 

( )AV X  and ( )AV X  respectively, where 

 

( ) ( )A x X AV X V x 
          (14) 

 
1,( ) { : ( ) }A AV X x U V x X          (15) 

 

Theorem 1. Let S  be an incomplete information system. For 
A AT  , ,x U   ,X U   we have  

i. 1 1,( ) ( ) ( ), ( ) ( ) ( )A A A A A AS x V x T x S x V x T x        

 (16) 
ii. ( ) ( ) ( )A A AT X V X S X    

(17) 

iii. ( ) ( ) ( )A A AS X V X T X    

 (18) 
Proof.  
i. For any 1( ),Ay S x  we have ( , ) Ax y S  

 

( ( ) ( ) ( ) *)a a aa A f x f y f x    
( ( ) ( ))( ( ) ( )) ( ( ) ( ))A A a a A Aa P x P y f x f y P x P y     

( ( ) ( ))( ( ) ( ))A A a aa P x P y f x f y   
(| ( ) ( ) | / | ( ) | 1 )A A AP x P y P x     ( , ) Ax y V  

1, ( )Ay V x   
 
So 

1 1,( ) ( )A AS x V x  . 

 

For any 1, ( ),Ay V x  we have 

  
( , ) Ax y V ( ( ) ( ))( ( ) ( ))A A a aa P x P y f x f y   

(| ( ) ( ) | / | ( ) | )A A AP x P y P x   
( ( ) ( ))( ( ) ( ))A A a aa P x P y f x f y    ( , ) Ax y T   

 

Thus, ( ).Ay T x  So 1, ( ) ( )A AV x T x  . 

For any ( ),Ay S x  we have  

 

( , ) Ay x S ( ( , ) ( ) ( ) *)a aa A f y a f x f y    
( ( ) ( ))( ( ) ( )) ( ( ) ( ))A A a a A Aa P y P x f y f x P y P x     

( ( ) ( ))( ( ) ( ))A A a aa P y P x f y f x   
(| ( ) ( ) | / | ( ) | 1 )A A AP x P y P y     ( , ) Ay x V  

( )Ay V x   
 
So  

( ) ( ).A AS x V x  

 
For any ( ),Ay V x  we have  

 

( , ) Ay x V  ( ( ) ( ))( ( ) ( ))A A a aa P y P x f y f x   

(| ( ) ( ) | / | ( ) | )A A AP y P x P y   
( ( ) ( ))( ( ) ( ))A A a aa P y P x f y f x    ( , ) .Ay x T   

 

Thus, ( ).Ay T x  So ( ) ( )A AV x T x  . 

From 1, ( ) ( ), ( ) ( )A A A AV x T x V x T x     in the above, we can 

infer that 
 

1, ( ) ( ) ( ).A A AV x V x T x     
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ii. By 1 1,( ) ( ) ( )A A AS x V x T x   , for any ( ),Ay T X  we 

have ( )AT y X . For 1, ( ) ( )A AV y T y   thus we have 
1, ( )AV y X  . Therefore, ( ),Ay V X  and then 

( ) ( )A AT X V X . From 1 1,( ) ( )A AS y V y  , we also can get 

1, ( )AV y X  , 1( )AS y X   and then ( )Ay S X  from 

( ).Ay V X  So ( ) ( )A AV X S X  . 

iii. By definitions, ( ) ( ),A x X AS X S x  ( )AV X  ( )x X AV x
  , 

( )AT X   { :y U  ( )AT x X  }  . For any ( ),Ay S X  

we have that for some ,x X ( )Ay S x  and then 

( , ) Ay x S  . That is,  

 

( ( ) ( ) ( ) *)a a aa A f y f x f y    
( ( ) ( ))( ( ) ( )) ( ( ) ( ))A A a a A Aa P y P x f y f x P y P x     

( ( ) ( ))( ( ) ( ))A A a aa P y P x f y f x   
(| ( ) ( ) | / | ( ) | 1 ).A A AP y P x P y     ( , ) Ay x V  

( )Ay V x  ( ) ( )x X A AV x V X 
    

 

So ( ) ( )A AS X V X . For any ( )Ay V X  ( )x X AV x
  , we 

have that for some x X , ( , ) Ay x V  . 

 

( ( ) ( ))( ( ) ( ))A A a aa P y P x f y f x     
(| ( ) ( ) | / | ( ) | )A A AP y P x P y     

( ( ) ( ))( ( ) ( ))A A a aa P y P x f y f x     
( , ) ( ), ( )A A Ay x T y T x x T y      

( ) { }AT y X x   . i.e. ( )AT y X  , and then ( )Ay T X . 

So ( ) ( )A AV X T X  . 

 

Lemma 1. Let S  be an incomplete information system. For 

A AT  , we have 

i. 
2{( , ) : ( ) ( )A A AT x y U a P x P y      

( ( ) ( ))}a af x f y          (19) 

ii. 2{( , ) : ( ) ( )A A AS x y U a P x P y      

( ( ) ( )) ( ( ) ( ))}a a A Af x f y P x P y       (20) 

Proof. 
i. Because ( ) ( )A Aa P x P y   ( ( )af x ( ))af y  is 

logically equivalent to ( ( )aa A f x   

( ) ( ) * ( ) *),a a af y f x f y      it is hold. 

ii. ( ) ( )( ( ) ( ))A A a aa P x P y f x f y     

( ( ) ( ))A AP x P y   is also an equivalent expression of 

( ( ) ( )a aa A f x f y   ( ) *)af x  , which excludes the 

cases of ( ) * ( ) *a af x f y    and * ( )af x , so it also 

holds.  

B. An Improved Symmetric Limited and VPRS Model 

For objects x = {1, *, *, *, *, *, *, *, *, *} and y = {1, *, *, *, 

*, *, *, *, *, *}, they cannot be discriminated by tolerance, 
similarity and limited tolerance relation. By Definition 6 and 
Definition 7, no matter which value   takes, as long as we 
take the attribute subset A containing the first attribute, they are 
still regarded as the same class. But the fact that these two 
objects belong to the same class is hardly possible since they 
have only one attribute value identical and have many null 
values. In order to solve this problem, an improved limited and 
variable precision rough set model with symmetry is proposed 
[7], in which, object relation is of symmetry. It extends the 
tolerance rough set model. 
Definition 9. Let ( , , , )S U AT V f  be an incomplete 

information system. ,   , ,   x y U A AT    we define 

 
|  ( ) ( ) |

,
min{|  ( ) |,| ( ) |}

( ,  )  
      min{|  ( ) |,| ( ) |} 0,

0 , min{|  ( ) |,| ( ) |} 0.

A A

A A

A A

A A

P x P y

P x P y
x y

if P x P y

if P x P y





  
 

     (21) 

 
Definition 10. Let ( , , , )S U AT V f  be an incomplete 

information system. For ,  ,x y U  ,  0 1,A AT      a 

binary relation is called an improved symmetric limited and 
variable precision tolerance relation, where 

 
2{( ,  ) : ( ) ( )A A ANL x y U a P x P y       

( ( ) ( )) ( ,  ) }a a Uf x f y x y I         (22) 

 
From this definition, it is clear that the proportion of the 

number of non null common attributes to the total non null 
attributes of objects ,  x y  should greater or equal to  , 

reaching at above some threshold. Definition 10 is different 
with Definition 1 in [9] for that here it is ensured to be reflexive 

by union with UI . It is also different with Definition 6; 

symmetry is satisfied here but not there. We can see that this 
symmetric limited and variable precision tolerance relation is 

reflexive and symmetric but maybe not transitive. So ANL  is a 

tolerance relation consistent or a compatible relation in discrete 
mathematics with any value   in [0, 1].  maybe is set to the 
filling factor of the system. 

Theorem 3. Let S  be an incomplete information system. 

A AT  . Then, we can get ANL and 0
A ANL T , and 

1
A ANL R , where 

i. 2{( , ) : ( ) ( )( ( ) ( ))}A A A a aT x y U a P x P y f x f y        

(23) 

ii. 
2{( ,  ) : ( ) ( )A A AR x y U a P x P y       



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2069

 

 

( ( ) ( )) (( ( ) ( ) ( )a a A A Af x f y P x P y P y   
 

( )) ( ) ( ) }A A A UP x P x P y I      

(24) 
Proof. 

i. Because 0 2{( ,  ) :ANL x y U   
 

( ) ( )( ( ) ( )) ( ,  ) 0}A A a a Ua P x P y f x f y x y I        
2{( ,  ) : ( ) ( )( ( ) ( ))}A A a ax y U a P x P y f x f y      AT  

  
So it is right. 

ii. Because ( ,  ) 1x y   if and only if 

min{|  ( ) |,| ( ) |} 0A AP x P y  and |  ( ) ( ) |
1

min{|  ( ) |,| ( ) |}
A A

A A

P x P y

P x P y


 . Thus, 

|  ( ) ( )| min{|  ( )|,| ( )|}A A A AP x P y P x P y  . 

 

 ( ) ( )A AP x P y or  ( ) ( ),A AP y P x  ( ) ( ) .A AP x P y   

So 1 2{( ,  ) : ( )  ( )A A ANL x y U a P x P y      

( ( ) ( )) ( ,  ) 1}a a Uf x f y x y I   
2{( ,  ) : ( )  ( )( ( ) ( ))A A a ax y U a P x P y f x f y     

(( ( ) ( ) ( ) ( ))A A A AP x P y P y P x   

( ) ( ) }A A UP x P y I     
 

i.e. 1
A ANL R . AR is really a relation with reflexivity, 

symmetry.  
Compared with Definition 6 and Definition 7, the improved 

limited and variable precision relation is a tolerance relation. 

Definition 11. Let S  be an incomplete information system. 
A AT  . Then, for x U  , the tolerance class of x , 

denoted by ( )AL x , is defined by 

 

( ) { : ( ,  ) }A ANL x y U x y NL          (25) 

 

Definition 12. Let S  be an incomplete information system. For 
A AT   and X U  , the upper approximation and lower 

approximation of X , denoted by ( )ANL X  and ( )ANL X  

respectively, are defined by 
 

( ) { :  ( ) }A ANL X x U NL x X          (26) 

 

( ) { :  ( ) } A ANL X x U NL x X          (27) 

 

Theorem 4. Let S  be an incomplete information 

system. A AT  . If 
1 20 1    , then for ,x U   

X U  , we have 

i. 2 1( ) ( )A ANL x NL x    

 (28) 

ii. 2 1( ) ( )A ANL X NL X    

 (29) 
iii. 1 2( ) ( )A ANL X NL X    

 (30) 
Proof. 

i. For 2 ( )Ay NL x  , we have 2( ,  )x y  . Because 

1 2  , 1( ,  )x y  . That is 
1 ( )Ay NL x . So 

2 1( ) ( )A ANL x NL x  . 

For 2 ( )Ay NL X  , according to the Definition 12, we have 

2 ( )ANL y X    . Because from i we have 

2 1( ) ( )A ANL y NL y  ; therefore, 1 ( )ANL y X    . It follows 

that 1 ( )Ay NL X . Thus, 2 1( ) ( )A ANL X NL X   for 

2 ( )Ay NL X  is arbitrarily chosen. 

For 1 ( )Ay NL X  , according to the Definition 12, we have 

1 ( ) .ANL y X   Because from i we have 2 ( )ANL y 1 ( )ANL y ; 

therefore, 2 ( ) .ANL y X   It follows that 2 ( )Ay NL X  . Thus, 

1 2( ) ( )A ANL X NL X   for 1 ( )Ay NL X   is arbitrarily chosen. 

Theorem 5. Let S  be an incomplete information system. 

A AT  . For x U  , X U  , then 

i. ( ) ( )A ANL X X NL X     

 (31) 
ii. 1, ( ) ( ) ( )A A AV x NL x T x      

 (32) 

iii. ( ) ( ) ( )A A AV X NL X T X     

 (33) 

iv. ( ) ( ) ( )A A AT X NL X V X     

 (34) 
Proof.  
i. It can be proved to be true by the definition. 

ii. For any 1, ( )Ay V x , by Definition 11 and 12, we have 
1,( , ) Ax y V  , that is, we have: 

① ( ) ( )( ( ) ( ))A A a aa P x P y f x f y    . 

② | ( )  ( ) | / |  ( ) | .A A AP x P y P x    

Notice that ②   can be transformed to 
| ( )  ( ) | min{|  ( ) |,| ( ) |}

min{|  ( ) |,| ( ) |} | ( ) |
A A A A

A A A

P x P y P x P y

P x P y P x


  . 

 
That is  
 

| ( )  ( ) | | ( ) |
.

min{|  ( ) |,| ( ) |} min{|  ( ) |,| ( ) |}
A A A

A A A A

P x P y P x

P x P y P x P y


   

 

Due to A  is a subset of attributes, we have 
| ( ) |

1
min{|  ( ) |,| ( ) |}

A

A A

P x

P x P y
 . That is | ( ) ( ) |

min{|  ( ) |,| ( ) |}
A A

A A

P x P y

P x P y


 . 
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In summary, we can get ( , ) Ax y NL , so we have 

( )Ay NL x . Thus 1, ( ) ( )A AV x NL x    . 

For any ( )Ay NL x , by Definition 11 and 12, we have 

( , ) Ax y NV  , that is, we have:  

 
|  ( ) ( ) |

( ) ( )( ( ) ( ))
min{|  ( ) |,| ( ) |}

A A
A A a a

A A

P x P y
a P x P y f x f y

P x P y



     

 
 Therefore, we have 
 

( ) ( )( ( ) ( ))A A a aa P x P y f x f y    , i.e. ( , ) .Ax y T  

 

So ( ) ( )A ANL x T x   for ( )Ay NL x  is arbitrarily selected 

from ( )ANL x . 

 

iii. For ( ) ( ),A x X Ay V X V x 
    by Definition 6,7, we 

have ( ( ))Ax X y V x   . i.e. ( , ) Ay x V  , so 
 

( ) ( )( ( ) ( )) | ( ) ( ) | / | ( ) | .A A a a A A Ay x a P y P x f y f x P y P x P y        
 

In the same proof of (1) ②, we have 

( ),Ay NL x ( )Ax NL y . Thus ( ) { }ANL y X x      . 

So ( )Ay NL X . Therefore, ( ) ( )A AV X NL X   is right. 

For ( )Ay NL X  , by Definition 8, we have ( )ANL y  

X   . By (ii), we have ( ) ( )A ANL y T y  . So ( )AT y  

X  . By Definition 6, we have ( )Ay T X . So ( )ANL X  

( )AT X  is right since y is arbitrarily selected from ( )ANL X .  

iv. For ( )Ay T X  , by Definition 8, we have ( )AT y X . By 

ii, we have ( ) ( )A ANL y T y  , so ( )ANL y X  . By 

Definition 6, we have ( )Ay NL X . So 

( ) ( )A AT X NL X  is right for y  is arbitrarily selected 

from ( )AT X . For ( )Ay NL X  , by Definition 8, we 

have ( )ANL y X  . By ii, we have 1, ( ) ( )A AV y NL y   , 

so 1, ( )AV y X  . By Definition 6, we have ( )Ay V X . So 

( ) ( )A ANL X V X   is right for y  is arbitrarily selected 

from ( )ANL X .  

Theorem 6. Let S  be an incomplete information system. For 

A AT  . ,X Y U  , then 

i. ( ) ( ) ( )A A ANL X NL Y NL X Y       

 (35) 

ii. ( ) ( ) ( )A A ANL X NL Y NL X Y       

 (36) 
Proof.  

i. ( ) ( )A Ay NL X NL Y    

 ( ) ( )A Ay NL X y NL Y    ( ) ( )A ANL y X NL y Y      

( )ANL y X Y    
( )Ay NL X Y  

 
ii. ( ) ( ) ( ) ( )A A A Ay NL X NL Y y NL X y NL Y          

( ) ( )A ANL y X NL y Y     ( )ANL y X Y  

( )Ay NL X Y    

Theorem 7. Let S  be an incomplete information system. For 

A AT  . For ,X Y U  , then 

i. ( ) ( ) ( )A A ANL X Y NL X NL Y       

 (37) 

ii. ( ) ( ) ( )A A ANL X Y NL X NL Y       

 (38) 
Proof. 

i. ( )Ay NL X Y   

( ) ( )ANL y X Y    

( ) ( )A ANL y X NL y Y     

( ) ( )A Ay NL X y NL Y      

( ) ( )A Ay NL X NL Y     

ii. ( ) ( ) ( )A Ay NL X Y NL y X Y         

( ) ( )A ANL y X NL y Y       

( ) ( )A Ay NL X y NL Y     ( ) ( )A Ay NL X NL Y     

IV. RULE GENERALIZATION AND CASE STUDY 

The key problem in rough set is knowledge reduction and 
rule generalization. Through simplified information system, we 
can obtain intuitive decision algorithm and make decision or 
classification. Under the leading guidance of variable precision 
rough set, we can often design some heuristic reduction 
algorithms to get reducts and then to generate rules from them. 
However, the reducts are ordinarily non-exact and the number 
of reducts is many, so rules may also diverse. In order to deduce 
the whole determinative and probable rules, an effective 
approach is to use discriminatory matrices on the given 
information system by applying upper and lower 
approximations of decision class. 
Definition 13. An incomplete decision system 

( , , , )S U AT C D V f    is given, where C  is the 

conditional attribute set, D  is the decision attribute set, 

AT C D   is the whole set of attributes. C D  , 

a AT aV V   is the value set and aV  is the subset of values at 

attribute a . * ( )dV d D  . Suppose A C , 

1 2/ ( ) { , ,..., }mU IND D D D D  is a partition on U . Referring 

to [13], [14], a matrix with respect to the decision class 

( 1, 2,..., )kD k m  with | ( ) |A kL D rows and | |kU D  columns 
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is formed by defining its element ,x y

kM as: 

 

,

{( , ( )) : ( ) * ( ) *

                         ( ) ( )}

,                                 

x y

a a a

k
a a

a f x f x f y

M f x f y

otherwise

  
  


   (39) 

 

where ( ), ( 1, 2, ..., ),A k kx L D y U D k m     

( ) ( ).A Aa P x P y   Let 
, ,( )x y x y

k k
k y

B M M   . kB  is 

called a decision function referring to kD . kB is simplified to a 

disjunction normal formula using absorbing law in logic. Each 
conjunctive factor makes a rule which is determine, but may not 
absolutely determine, due to the model is variable precision 
with  .  

In a very similar way, if we alternatively use 

( ),A kx L D ( )( 1, 2,..., ),A ky U L D k m   ( ) ( )A Aa P x P y   

and ( ) ( )k kD x D y , as the condition to construct elements 

referring to kD and then form another similar discernibility 

matrix, we can generate probable rules. 
In order to comparatively analyze, we adopt a real 

incomplete information system in [4] shown in Table I to 
perform some computations, where ,AT C D   

{ , , , },C a b c d  { }D e  . At first we have 
 

1 2 4 7 10 12{ , , , , , }D O O O O O O  , 3 5 6 8 9 11{ , , , , , }D O O O O O O  . 
 

TABLE I 
AN IIS 

U a b d e 

O1 3 2 0  
O2 2 3 0  
O3 2 3 0  
O4 * 2 1  
O5 * 2 1  
O6 2 3 1  
O7 3 * 3  
O8 * 0 *  
O9 3 2 3  
O10 1 * *  
O11 * 2 *  
O12 3 2 *  

 

Let , 0.A C   According to Definition 11, we obtain: 
 

0
1 1 11 12( ) { , , }ANL O O O O , 0

2 2 3( ) { , }ANL O O O , 0
3( )ANL O  2 3{ , }O O , 

0
4( )ANL O  4 5 10{ , , ,O O O 11 12, }O O , 0

5( )ANL O  0
4( )ANL O , 

0
6 6( ) { }ANL O O , 0

7 7 8 9( ) { , , ,ANL O O O O
11 12, }O O , 

0
8( )ANL O  7 8 10{ , , }O O O , 0

9 7( ) { ,ANL O O 9 11 12, , }O O O , 
0

10( )ANL O  4 5 8 10 11{ , , , , }O O O O O , 0
11( )ANL O  

1 4 5 7 9 10 11 12{ , , , , , , , }O O O O O O O O ,  
0

12 1 4( ) { , ,ANL O O O  5 7 9 11 12, , , , }O O O O O . 

 
This result is the same as ( ) AT x 1 2 12( , ,..., )x O O O  defined by 

the tolerance relation in Definition 1 and 1,0 ( ) AV x  

1 2 12( , ,..., )x O O O  defined in Definition 7 at 0  . 

According to Definition 11, we obtain:  
 

1
1( )ANL O  1 11 12{ , , }O O O , 1

2 2 3( ) { , }ANL O O O , 

1
3( )AN L O  2 3{ , }O O , 1

4( )ANL O  4 5 11 12{ , , , }O O O O , 

1
5( )ANL O  1

4( )ANL O , 1
6( )ANL O 6{ }O , 1

7( )ANL O  

7 9 12{ , , }O O O , 1
8 8( ) { }ANL O O  , 1

9( )ANL O  

7 9 11 12{ , , , }O O O O , 1
10 10( ) { }ANL O O , 1

11( )ANL O  

4 5 9 11 12{ , , , , }O O O O O , 1
12( )ANL O   1 4 5 7{ , , , ,O O O O 9 ,O  11 12, }O O . 

 
According to Definition 11, we obtain: 
 

0.5
1 1 11 12( ) { , , }ANL O O O O , 0.5

2 2 3( ) { , }ANL O O O , 

0.5
3 2 3( ) { , }ANL O O O , 0.5

4 4 5 11 12( ) { , , , }ANL O O O O O , 
0 .5 0 .5

5 4( ) ( )A AN L O N L O , 0 .5
6 6( ) { }AN L O O , 

0.5
7 7 9 12( ) { , , }ANL O O O O , 0.5

8 8( ) { }ANL O O , 

0.5
9 7 9 11 12( ) { , , , }ANL O O O O O , 0.5

10 10( ) { }ANL O O , 
0.5

11 1 4 5 9 11 12( ) { , , , , , }ANL O O O O O O O , 0.5
12( )ANL O  1 4{ , ,O O  

5 9 11 12, , , }O O O O . 0.5
10( ) { }ANL D O  , 0.5 ( )ANL D  

1 2 3 4 5 7 9 10 11 12{ , , , , , , , , , },O O O O O O O O O O 0.5( )ANL D  

6 8{ , }O O , 0.5( )ANL D   1 2 3 4 5 6 7{ , , , , , ,O O O O O O O,  

8 9 11 12, , , }O O O O . 

 

So, ’s discernibility matrix for relatively determine rule 

generation by using 0.5 ( ),Ax NL D y U D    is as in Table 

II. Thus, relatively determine rules generated from Table II. 
are: ( ,1) ( , )a e  . In the same way, we can also construct 

’s discernibility matrix for relatively determine rule 
generation by using 0.5( ),Ax NL D y U D   in Table III. 

 
TABLE II 

DISCERNIBILITY MATRIX FOR RELATIVELY DETERMINE RULE GENERATION TO 

 

 O3 O5 O6 O8 O9 O11 

O10 (a,1)  (a,1)  (a,1) O10 

Blank means null (the same in other tables). 

 
Relatively determine rules for decision class  gotten from 

Table III for decision class  are: 
( ,2) ( ,3) ( ,1) ( , );a b d e     ( ,0) ( , )b e  . 

 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2072

 

 

TABLE III 
DISCERNIBILITY MATRIX FOR RELATIVELY DETERMINE RULE GENERATION TO 

DECISION CLASS  

 O1 O2 O4 O7 O10 O12 

O6 

(a,2) 
(b,3) 
(c,2) 
(d,1) 

(d,1) (b,3) 
(a,2) 
(d,1) 

(a,2) 
(a,2) 
(b,3) 
(c,2) 

O8 
(b,0) 
(c,0) 

(b,0) 
(c,0) 

(b,0)   
(b,0) 
(c,0) 

 
TABLE IV 

DISCERNIBILITY MATRIX FOR RELATIVELY PROBABLE RULE GENERATION TO 

 

 O6 O8 

O1 (a,3)(b,2)(c,1)(d,0) (b,2)(c,1) 

O2 (d,0) (b,3)(c,2) 

O4 (b,2) (b,2) 

O7 (a,3) (d,3)  

O10 (a,1)  

O12 (a,3)(b,2)(c,1) (b,2) (c,1) 

 
’s discernibility matrix for relatively probable rule 

generation by using 0.5 0.5( ), ( )A Ax NL D y U NL D     and 

( ) ( )e ef x f y  is as in Table IV. Thus, relatively probable rules 

generated from Table IV are: 
 ( ,2) ( ,1) ( , ) ;b c e   ( ,3) ( ,0) ( , )b d e   ; ( ,2) ( ,0) ( , )c d e   ; 

( ,2) ( , )b e  ;  ( ,3) ( ,3) ( , )a d e   ;  ( ,1) ( , )a e  . In the 

same way, we can also construct ’s discernibility matrix for 

relatively probable rule generation by using 0.5 ( ),Ax NL D  

0.5( )Ay U NL D   and ( ) ( )e ef x f y  in Table V.  
 

TABLE V 
DISCERNIBILITY MATRIX FOR RELATIVELY PROBABLE RULE GENERATION TO 

 

 O10 

O3 (a,2) 

O5  

O6 (a,2) 

O8  

O9 (a,3) 

O11  

 
Relatively probable rules for decision class  gotten from 

Table V for decision class  are: ( ,2) ( , );a e   ( ,3) ( , )a e  . 

V. CONCLUSION 

Due to the incompleteness of data in the real world, different 
extended rough set models are proposed. The tolerance relation 
and similarity relation are more commonly used. The variable 
precision rough set model in [6] controls classification of the 
incomplete system by setting a threshold value, so that the 
model is more general and more flexible to get the granularity 
of knowledge, but it is not symmetric. Although the limited and 
variable precision tolerance model in [11] is symmetric, but the 
two models consider that two small probability equivalent 
objects are indiscernible. The model proposed in this paper 
overcomes this shortcoming and gets a more accurate and 

reasonable result. Based on this work, the next step is to do 
further exploration on this new model and makes the 
knowledge representation simpler and efficient. 
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