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Abstract—The conjugate gradient optimization algorithm 

usually used for nonlinear least squares is presented and is 
combined with the modified back propagation algorithm yielding 
a new fast training multilayer perceptron (MLP) algorithm 
(CGFR/AG). The approaches presented in the paper consist of 
three steps: (1) Modification on standard back propagation 
algorithm by introducing gain variation term of the activation 
function, (2) Calculating the gradient descent on error with 
respect to the weights and gains values and (3) the determination 
of the new search direction by exploiting the information 
calculated by gradient descent in step (2) as well as the previous 
search direction. The proposed method improved the training 
efficiency of back propagation algorithm by adaptively modifying 
the initial search direction. Performance of the proposed method 
is demonstrated by comparing to the conjugate gradient algorithm 
from neural network toolbox for the chosen benchmark. The 
results show that the number of iterations required by the 
proposed method to converge is less than 20% of what is required 
by the standard conjugate gradient and neural network toolbox 
algorithm.  

 
Keywords—Back-propagation, activation function, conjugate 

gradient, search direction, gain variation.  
 

I.  INTRODUCTION 
RADIENT based methods are one of the most widely 
used error minimization methods used to train back 

propagation networks. The back-propagation (BP) training 
algorithm is a supervised learning method for multi-layered 
feed-forward neural networks [1]. It is essentially a 
gradient descent local optimization technique which 
involves backward error correction of the network weights. 
Despite the general success of back-propagation in learning 
the neural networks, several major deficiencies are still 
needed to be solved. First, the back-propagation algorithm 
will get trapped in local minima especially for non-linearly 
separable problems [2] such as the XOR problem [3]. 
Having trapped into local minima, back-propagation may 
lead to failure in finding a global optimal solution. Second, 
the convergence rate of back-propagation is still too slow 
even if learning can be achieved.  
Furthermore, the convergence behavior of the back-
propagation algorithm depends very much on the choices 
of initial values of connection weights and the parameters  
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in the algorithm such as the learning rate and the 
momentum. 

Improving the training efficiency of neural network 
based algorithm is an active area of research and numerous 
papers have been proposed in the literature. Early days of 
back propagation algorithms saw improvements on: (i) 
selection of better energy function [4-6]; (ii) selection of 
dynamic learning rate and momentum [7-9].   

Later, as summarized by Bishop[10] various 
optimization techniques were suggested for improving the 
efficiency of error minimization process or in other words 
the training efficiency. Among these are methods of 
Fletcher and Powel[11] and the Fletcher-Reeves[12] that 
improve the conjugate gradient method of Hestenes and 
Stiefel[13] and the family of Quasi-Newton algorithms 
proposed by Huang[14]. 

Among BP learning speed-up algorithms, those using the 
“gain variation” term are among the easiest to implement. 
The gain variation term controls the steepness of the 
activation function. It has been recently shown that a BP 
algorithm using gain variation term in an activation 
function converges faster than the standard BP algorithm 
[15-17]. However, it was not noticed that gain variation 
term can modify the local gradient to give an improved 
gradient search direction for each training iteration. 

This paper suggests that a simple modification to the 
initial search direction can also substantially improve the 
training efficiency of almost all major optimization 
methods. It was discovered that if the initial search 
direction is locally modified by a gain value used in the 
activation function of the corresponding node, significant 
improvements in the convergence rates can be achieved 
irrespective of the optimization algorithm used. 
Furthermore the proposed method is robust, easy to 
compute, and easy to implement into well known nonlinear 
conjugate gradient algorithms as will be shown later in 
next section. 

The remaining of the paper is organised as follows: 
Section II illustrates the proposed method. Sections III 
discuss the the implementation of the proposed method 
with Conjugate gradient method. Experiments and 
simulation results are discussed in section IV. The final 
section contains concluding remarks and short discussion 
for further research. 

 
II.  THE PROPOSED METHOD 

In this section, a novel approach for improving the 
training efficiency of gradient descent method (back 
propagation algorithm) is presented. The proposed method 
modifies the initial search direction by changing the gain 
value adaptively for each node. 
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The following iterative algorithm is proposed by the 
authors for changing the initial search direction using a 
gain value. 
 
Initialize the weight vector with random values and the 
vector of gain values with one. Repeat the following steps 
1,2 and 3 on an epoch-by-epoch basis until the given error 
minimization criteria are satisfied. 

Step 1       By introducing gain value into activation 
function, calculate the gradient for 
weight vector by using Equation (6), and 
gradient for gain value by using 
Equation (9). 

Step 2 Calculate the gradient descent on error 
with respect to the weights and gains 
values. 

Step 3  Use the gradient weight vector and 
gradient of gain calculated in step 1 to 
calculate the new weight vector and 
vector of new gain values for use in the 
next epoch. 

 
In general, the objective of a learning process in neural 

network is to find a weight vector w which minimizes the 
difference between the actual output and the desired 
output. Namely, 

)(min wE
nw ℜ∈

                      (1) 

 
Suppose for a particular input pattern 0o  and let the 
input layer is layer 0. The desired output is the 
teacher pattern T

nttt ]...[ 1= , and the actual output is 
L
ko , where L  denotes the output layer. Define an 

error function on that pattern as,  
 

∑ −=
k

L
kk otE 2)(

2
1                    (2) 

 
The overall error on the training set is simply the 

sum, across patterns, of the pattern error E .  
Consider a multilayer feed forward neural 

network(FNN) [1] has one output layer and one input layer 
with one or more hidden layers. Each layer has a set of 
units, nodes, or neurons. It is usually assumed that each 
layer is fully connected with a previous layer without direct 
connections between layers which are not consecutive. 
Each connection has a weight. Let s

ko  be the activation 
of the thk  node of layer s , and let Ts

n
ss ooo ]...[ 1= be the 

column vector of the activation values in the layer s   
and the input layer as layer 0.  Let s

ijw be the weight 

on the connection from the thi  node in layer 1−s  to 

the thj node in layer s , and let Ts
nj

s
j

s
j www ]...[ 1= be 

the column vector of weights from layer 1−s  to 
the thj node of layer s . The net input to the thj node 
of layer s  is defined as 

∑ −− ==
k

s
k

s
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ss
j

s
j owownet 1

,
1 ),( , and let 

Ts
n

ss netnetnet ]...[ 1= be the column vector of the net 

input values in layer s . The activation of a node is 
given by a function of its net input, 

)( s
j

s
j

s
j netcfo =                     (3) 

where f  is any function with bounded derivative, 
and s

jc  is a real value called the gain of the node. 
Note that this activation function becomes the usual 
logistic activation function if 1=s

jc . 
By introducing “gain variation” term in this activation 

function, then only updating formulas for s
1δ are changed 

while others are the same as the standard back propagation.  
To simplify the calculation, taken from the equation (2) 

we then can perform gradient descent on E with respect 
to s

ijw . The chain rule yields  
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where

s
j

s
j net

E
∂
∂

−=δ . In particular, the first three 

factors of (4) indicate that  
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As we noted that the iterative formula (5) 

for s
1δ is the same as standard back propagation [18] 

except for the appearance of the value gain. By 
combining (4) and (5) yields the learning rule for 
weights: 

1−=
∂
∂

=Δ s
j

s
js

ij

s
ij o

w
Ew ηδη                (6) 

 
whereη is a small positive constant called ‘step 
length’ or ‘learning rate’ and the search direction or 
gradient vector is gwd s

ij =Δ= .   
In this approach, at step n is the calculation for gradient 

of error )(ng is modified by including the variation of gain 
value to yield 

 )()( )()()()()( ns
j

nns
j

ns
ij

n cgcwd =Δ=           (7) 
 
The gradient descent on error with respect to the gain 

can also be calculated by using the chain rule as previously 
described; it is easy to compute as  

s
j
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Then the gradient descent rule for the gain value becomes, 

  
s
j

s
js

j
s
j c

net
c ηδ=Δ                      (9) 

 
At the end of each iteration the new gain value is 

updated using a simple gradient based method as 
given by the formula, 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2569

 

  s
j

old
j

new
j ccc Δ+=                   (10) 

 
 

III.  THE IMPLEMENTATION OF PROPOSED METHOD WITH 
CONJUGATE GRADIENT METHOD 

One of the remarkable properties of the conjugate 
gradient method is its ability to generate, in a very 
economical fashion, a set of vectors with a property known 
as conjugacy [10]. Most widely used conjugate gradient 
algorithms are given by Fletcher and Powel [11] and the 
Fletcher-Reeves [12]. Both these procedures generate 
conjugate directions of search and therefore aim to 
minimize a positive definite quadratic function of 
n variables in n  steps.  

Our proposed algorithm known as CGFR/AG begins the 
minimization process with an initial estimate 0w and an 
initial search direction as: 

  000 )( gwEd −=−∇=                      (11) 

 
Then, for every epoch by using our proposed 

method in Equation (7) the search direction at (n+1)th 
iteration is calculated as: 

)()()( ,,1,
1

1 ninninni
n

n cdcc
w

Ed β
δ
δ

+−= +
+

+
        (12) 

 
where the scalar

nβ  is to be determined by the requirement 
that

nd and
1+nd must fulfil the conjugacy property[10]. There 

are many formulae for the parameter
nβ . In this paper we 

used the formula introduced by Fletcher and Reeves [12] 
and is given as: 

n
T
n

n
T
n

n gg
gg 11

1
++

+ =β                      (13) 

 
The complete CGFR/AG algorithm works as follows; 
Step 1 Initializing the weight vector randomly, the 

gradient vector 00 =g  and gain value as one. 
Let the first search direction 

00 gd = . Set 

00 =β , 1=epoch  and 1=n . Let Nt  is the 
number of weight parameters. Select a 
convergence tolerence CT .     

Step 2 At step n , evaluate gradient vector )( nn cg  
with respect to gain vector 

nc  and calculate 
gain vector.  

Step 3 Evaluate )( nwE . If CTwE n <)(  then STOP 
training ELSE go to step 4. 

Step 4  Calculate a new search direction: 
11)( −−+−= nnnnn dcgd β  

Step 5  For the first iteration, check if 1>n  THEN 
with the function of gain,  

update 
)()(

)()( 1111
1

nnn
T
n

nnn
T
n

n cgcg
cgcg ++++

+ =β  ELSE go 

to step 6.   
Step 6  If 0]/)1[( =+ Ntepoch  THEN ‘restart’ the 

gradient vector with )( 11 −−−= nnn cgd  ELSE 
go to step 7. 

Step 7 Calculate the optimal value for learning rate 
*
nη by using line search technique such as: 

)(min)(
0

*
nnnnnn dwEdwE ηη

λ
+=+

≥
 

Step 8  Update 
nw : 

nnnn dww *
1 η−=+

 
Step 9  Evaluate new gradient vector )( 11 ++ nn cg  with 

respect to gain value 
1+nc . 

Step10Calculate new search direction: 
nnnnnn dccgd )()( 111 β+−= +++  

Step11 Set 1+= nn  and go to step 2. 
 
 

IV.  SIMULATION RESULTS 
The performance criterion used in this research focuses 

on the speed of convergence, measured in number of 
iterations and CPU time. The benchmark problems used to 
verify our algorithm are taken from the open literature by 
Prechelt [19]. Four classification problems have been 
tested including Iris classification problem, 7 bit parity 
problem, Wisconsin breast cancer classification problem 
and diabetes classification problem.  

The simulations have been carried out on a Pentium IV 
with 3 GHz PC Dell, 1 GB RAM and using MATLAB 
version 6.5.0 (R13). 

On each problem, three algorithms have been simulated. 
The first algorithm is standard conjugate gradient with 
Fletcher-Reeves update(traincgf) from ‘Matlab Neural 
Network Toolbox version 4.0.1’. The other two algorithms 
are standard conjugate gradient  (CGFR) and our proposed 
conjugate gradient  method with adaptive gain 
(CGFR/AG).  

To compare the performance of the proposed algorithm 
with respect to other standard optimization algorithms from 
the MATLAB neural network toolbox,  network 
parameters such as network size and architecture (number 
of nodes, hidden layers etc), values for the initial weights 
and gain parameters were kept same.  For all problems the 
neural network had one hidden layer with five hidden 
nodes and sigmoid activation function was used for all 
nodes.  All algorithms were tested using the same initial 
weights that were initialized randomly from range [0, 1] 
and received the input patterns for training in the same 
sequence. 

Toolbox default values were used for the heuristic 
parameters, of the above algorithms, unless stated 
otherwise. For the proposed of comparison, all tested 
algorithms were fixed with the values of learning rate = 0.3 
and momentum term = 0.4. The initial value used for the 
gain parameter was one.  

The results of all three algorithms will be presented as 
table which summarize the performance of the algorithms 
for simulations that have reached solution. All algorithms 
were trained with 100 trials, if an algorithm fails to 
converge, it is considered that it fails to train the FNN, but 
its epochs, CPU time and generalization accuracy are not 
included in the statistical analysis of the algorithms.  
 

A.   Iris Classification Problem 
This is a classical classification dataset made famous by 

Fisher[20], who used it to illustrate principles of 
discriminant analysis. This is perhaps the best-known 
database to be found in the pattern recognition literature. 
Fisher's paper is a classic in the field and is referenced 
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frequently to this day. The selected architecture of the FNN 
is 4-5-3 with target error was set as 0.01 and the maximum 
epochs to 2000. 

 
TABLE I 

THE CPU TIME NEEDED TO CONVERGE FOR IRIS CLASSIFICATION 
PROBLEM [24] 

IRIS classification problem  
(target error=0.01) 

 

Number 
of 

Epochs 

CPU 
time(s)/Epoch 

Total time 
of 

converge 
traincgf 69 5.54x10-2 3.8071 
CGFR 39 4.90 x10-2 1.9146 
CGFR/AG 29 4.94 x10-2 1.4232 
 
Table I shows that the proposed algorithm reached the 

target error after only about 29 epochs as opposed to the 
standard CGFR at about 39 epochs and clearly we see that 
there is an improvement ratio, nearly 2.4, for the number of 
epochs compare to neural network toolbox, and almost 
2.6749 for the convergence time.  
 

B.  7 Bit Parity Problem 
The parity problem is also one of the most popular initial 

testing tasks and very demanding classification for neural 
network to solve, because the target-output changes 
whenever a single bit in the input vector changes and this 
makes generalization difficult  and learning does not 
always converge easily [21]. The selected architecture of 
the FNN is 7-5-1. The target error has been set to 0.1 and 
the maximum epochs to 2000. 

 
TABLE II 

THE CPU TIME NEEDED TO CONVERGE FOR 7 BIT PARITY PROBLEM 
7 bit parity (target error=0.1)  

Number 
of 

Epochs 

CPU 
time(s)/Epoch 

Total time 
of 

converge 
traincgf 273 3.88x10-2 10.6129 
CGFR 147 7.26x10-2 10.6496 
CGFR/AG 114 7.12x10-2 8.1057 
 
Table II shows that the proposed algorithm exhibit very 

good average performance in order to reach target error 
with only 114 epochs as opposed to the standard CGFR at 
about 147 epochs and traincgf with 273 epochs. The result 
clearly shows that the new algorithm outperform others 
two algorithm with an improvement ratio, nearly 1.3, for 
the total time of converge.  

 
C.  Winconsin Breast Cancer Problem 
This dataset was created based on the ‘breast cancer 

Wisconsin’ problem dataset from UCI repository of 
machine learning databases from Dr. William H. Wolberg 
[22].  This problem tries to diagnosis of breast cancer by 
trying to classify a tumor as either benign or malignant 
based on cell descriptions gathered by microscopic 
examination. The selected architecture of the FNN is 9-5-2. 
The target error is set as to 0.015 and the maximum epochs 
to 2000. 

 
 
 
 

TABLE III 
THE CPU TIME NEEDED TO CONVERGE FOR BREAST CANCER PROBLEM 

[23] 
Breast cancer problem  

(target error=0.015) 
 

Number 
of 

Epochs 

CPU 
time(s)/Epoch 

Total time 
of 

converge 
traincgf 71 5.34x10-2 3.7883 
CGFR 65 5.11x10-2 3.3060 
CGFR/AG 39 4.00x10-2 1.5503 

 
 

In Table III, it is worth noticing that the performance of 
the CGFR/AG training algorithm since it take only 39 
epochs to reach the target error compare to CGFR at about 
65 epochs and worst for traincgf that need about 71epochs 
to converge. Still the proposed algorithm outperforms 
others two algorithms with an improvement ratio, nearly 
2.5, for the total time of converge.  
 

D.  Diabetes Classification Problem 
This dataset was created based on the ‘Pima Indians 

diabetes’ problem dataset from the UCI repository of 
machine learning database. From the dataset doctors try to 
diagnose diabetes of Pima Indians based on personal data 
(age, number of times pregnant) and the results of medical 
examinations (e.g. blood pressure, body mass index, result 
of glucose tolerance test, etc.) before decide whether a 
Pima Indian individual is diabetes positive or not. The 
selected architecture of the Feed-forward Neural Network 
is 8-5-2. The target error is set to 0.01 and the maximum 
epochs to 1000. 

 
TABLE IV 

THE CPU TIME NEEDED TO CONVERGE FOR DIABETES PROBLEM [23] 
Diabetes classification problem 

 (target error=0.01) 
 

Number 
of 

Epochs 

CPU 
time(s)/Epoch 

Total time 
of 

converge 
traincgf 97 4.12x10-2 4.0060 
CGFR 50 5.16x10-2 2.6000 
CGFR/AG 40 5.05x10-2 2.0030 
 
Table IV shows that the new algorithm reached the target 

error after only about 40 epochs as opposed to the standard 
CGFR at about 97 epochs and clearly we see that there is 
an improvement ratio, nearly 2.5, for the number of epochs 
compare to neural network toolbox, and almost 2 for the 
convergence time.  

 
V.   CONCLUSION 

In this paper, new fast learning algorithm for neural 
networks based on Fletcher-Reeves update with adaptive 
gain (CGFR/AG) training algorithms is introduced.  The 
proposed method improved the training efficiency of back 
propagation neural network algorithms by adaptively 
modifying the initial search direction. The initial search 
direction is modified by introducing the gain value. The 
proposed algorithm is generic and easy to implement in all 
commonly used gradient based optimization processes. The 
simulation results showed that the proposed algorithm is 
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robust and has a potential to significantly enhance the 
computational efficiency of the training process. 
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