
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2567

Abstract—The conjugate gradient optimization algorithm

usually used for nonlinear least squares is presented and is
combined with the modified back propagation algorithm yielding
a new fast training multilayer perceptron (MLP) algorithm
(CGFR/AG). The approaches presented in the paper consist of
three steps: (1) Modification on standard back propagation
algorithm by introducing gain variation term of the activation
function, (2) Calculating the gradient descent on error with
respect to the weights and gains values and (3) the determination
of the new search direction by exploiting the information
calculated by gradient descent in step (2) as well as the previous
search direction. The proposed method improved the training
efficiency of back propagation algorithm by adaptively modifying
the initial search direction. Performance of the proposed method
is demonstrated by comparing to the conjugate gradient algorithm
from neural network toolbox for the chosen benchmark. The
results show that the number of iterations required by the
proposed method to converge is less than 20% of what is required
by the standard conjugate gradient and neural network toolbox
algorithm.

Keywords—Back-propagation, activation function, conjugate

gradient, search direction, gain variation.

I. INTRODUCTION
RADIENT based methods are one of the most widely
used error minimization methods used to train back

propagation networks. The back-propagation (BP) training
algorithm is a supervised learning method for multi-layered
feed-forward neural networks [1]. It is essentially a
gradient descent local optimization technique which
involves backward error correction of the network weights.
Despite the general success of back-propagation in learning
the neural networks, several major deficiencies are still
needed to be solved. First, the back-propagation algorithm
will get trapped in local minima especially for non-linearly
separable problems [2] such as the XOR problem [3].
Having trapped into local minima, back-propagation may
lead to failure in finding a global optimal solution. Second,
the convergence rate of back-propagation is still too slow
even if learning can be achieved.
Furthermore, the convergence behavior of the back-
propagation algorithm depends very much on the choices
of initial values of connection weights and the parameters

N. M. Nawi is with Faculty of Information Technology and

Multimedia, Kolej Universiti Teknologi Tun Hussein Onn (KUiTTHO),
P. O. Box 101, 86400, Parit Raja, Batu Pahat, Johor Darul Takzim,
Malaysia (e-mail: matyie.usm97@gmail.com).

M. R. Ransing  and R. S. Ransing  are with Civil and Computational
Engineering Centre, University of Wales, Singleton Park, Swansea, SA2
8PP, United Kingdom (phone:+440-1792 295902; fax: :+440-1792
295903; e-mail: R.S.Ransing@swansea.ac.uk).

in the algorithm such as the learning rate and the
momentum.

Improving the training efficiency of neural network
based algorithm is an active area of research and numerous
papers have been proposed in the literature. Early days of
back propagation algorithms saw improvements on: (i)
selection of better energy function [4-6]; (ii) selection of
dynamic learning rate and momentum [7-9].

Later, as summarized by Bishop[10] various
optimization techniques were suggested for improving the
efficiency of error minimization process or in other words
the training efficiency. Among these are methods of
Fletcher and Powel[11] and the Fletcher-Reeves[12] that
improve the conjugate gradient method of Hestenes and
Stiefel[13] and the family of Quasi-Newton algorithms
proposed by Huang[14].

Among BP learning speed-up algorithms, those using the
“gain variation” term are among the easiest to implement.
The gain variation term controls the steepness of the
activation function. It has been recently shown that a BP
algorithm using gain variation term in an activation
function converges faster than the standard BP algorithm
[15-17]. However, it was not noticed that gain variation
term can modify the local gradient to give an improved
gradient search direction for each training iteration.

This paper suggests that a simple modification to the
initial search direction can also substantially improve the
training efficiency of almost all major optimization
methods. It was discovered that if the initial search
direction is locally modified by a gain value used in the
activation function of the corresponding node, significant
improvements in the convergence rates can be achieved
irrespective of the optimization algorithm used.
Furthermore the proposed method is robust, easy to
compute, and easy to implement into well known nonlinear
conjugate gradient algorithms as will be shown later in
next section.

The remaining of the paper is organised as follows:
Section II illustrates the proposed method. Sections III
discuss the the implementation of the proposed method
with Conjugate gradient method. Experiments and
simulation results are discussed in section IV. The final
section contains concluding remarks and short discussion
for further research.

II. THE PROPOSED METHOD

In this section, a novel approach for improving the
training efficiency of gradient descent method (back
propagation algorithm) is presented. The proposed method
modifies the initial search direction by changing the gain
value adaptively for each node.

An Improved Learning Algorithm based on the
Conjugate Gradient Method for Back

Propagation Neural Networks
N. M. Nawi, M. R. Ransing, and R. S. Ransing

G

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2568

The following iterative algorithm is proposed by the
authors for changing the initial search direction using a
gain value.

Initialize the weight vector with random values and the
vector of gain values with one. Repeat the following steps
1,2 and 3 on an epoch-by-epoch basis until the given error
minimization criteria are satisfied.

Step 1 By introducing gain value into activation
function, calculate the gradient for
weight vector by using Equation (6), and
gradient for gain value by using
Equation (9).

Step 2 Calculate the gradient descent on error
with respect to the weights and gains
values.

Step 3 Use the gradient weight vector and
gradient of gain calculated in step 1 to
calculate the new weight vector and
vector of new gain values for use in the
next epoch.

In general, the objective of a learning process in neural

network is to find a weight vector w which minimizes the
difference between the actual output and the desired
output. Namely,

)(min wE
nw ℜ∈

 (1)

Suppose for a particular input pattern 0o and let the
input layer is layer 0. The desired output is the
teacher pattern T

nttt]...[1= , and the actual output is
L
ko , where L denotes the output layer. Define an

error function on that pattern as,

∑ −=
k

L
kk otE 2)(

2
1 (2)

The overall error on the training set is simply the

sum, across patterns, of the pattern error E .
Consider a multilayer feed forward neural

network(FNN) [1] has one output layer and one input layer
with one or more hidden layers. Each layer has a set of
units, nodes, or neurons. It is usually assumed that each
layer is fully connected with a previous layer without direct
connections between layers which are not consecutive.
Each connection has a weight. Let s

ko be the activation
of the thk node of layer s , and let Ts

n
ss ooo]...[1= be the

column vector of the activation values in the layer s
and the input layer as layer 0. Let s

ijw be the weight

on the connection from the thi node in layer 1−s to

the thj node in layer s , and let Ts
nj

s
j

s
j www]...[1= be

the column vector of weights from layer 1−s to
the thj node of layer s . The net input to the thj node
of layer s is defined as

∑ −− ==
k

s
k

s
kj

ss
j

s
j owownet 1

,
1),(, and let

Ts
n

ss netnetnet]...[1= be the column vector of the net

input values in layer s . The activation of a node is
given by a function of its net input,

)(s
j

s
j

s
j netcfo = (3)

where f is any function with bounded derivative,
and s

jc is a real value called the gain of the node.
Note that this activation function becomes the usual
logistic activation function if 1=s

jc .
By introducing “gain variation” term in this activation

function, then only updating formulas for s
1δ are changed

while others are the same as the standard back propagation.
To simplify the calculation, taken from the equation (2)

we then can perform gradient descent on E with respect
to s

ijw . The chain rule yields

s
ij

s
j

s
j

s
j

s
j

s

ss
ij w

net
net
o

o
net

net
E

w
E

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂ +

+ ...
1

1

1

1

1
1

11
1 .)('.]....[−

+

+

++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−= s
j

s
j

s
j

s
j

s
nj

s
j

s
n

s ocnetcf
w

w

Mδδ (4)

where

s
j

s
j net

E
∂
∂

−=δ . In particular, the first three

factors of (4) indicate that
∑ ++=

k

s
j

s
j

s
j

s
jk

s
k

s cnetcfw)(')(1
,

1
1 δδ (5)

As we noted that the iterative formula (5)

for s
1δ is the same as standard back propagation [18]

except for the appearance of the value gain. By
combining (4) and (5) yields the learning rule for
weights:

1−=
∂
∂

=Δ s
j

s
js

ij

s
ij o

w
Ew ηδη (6)

whereη is a small positive constant called ‘step
length’ or ‘learning rate’ and the search direction or
gradient vector is gwd s

ij =Δ= .
In this approach, at step n is the calculation for gradient

of error)(ng is modified by including the variation of gain
value to yield

)()()()()()()(ns
j

nns
j

ns
ij

n cgcwd =Δ= (7)

The gradient descent on error with respect to the gain

can also be calculated by using the chain rule as previously
described; it is easy to compute as

s
j

s
j

s
j

k

s
jk

s
ks

j

netnetcfw
c
E)(')(1

,
1∑ ++=

∂
∂ δ (8)

Then the gradient descent rule for the gain value becomes,

s
j

s
js

j
s
j c

net
c ηδ=Δ (9)

At the end of each iteration the new gain value is

updated using a simple gradient based method as
given by the formula,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2569

 s
j

old
j

new
j ccc Δ+= (10)

III. THE IMPLEMENTATION OF PROPOSED METHOD WITH
CONJUGATE GRADIENT METHOD

One of the remarkable properties of the conjugate
gradient method is its ability to generate, in a very
economical fashion, a set of vectors with a property known
as conjugacy [10]. Most widely used conjugate gradient
algorithms are given by Fletcher and Powel [11] and the
Fletcher-Reeves [12]. Both these procedures generate
conjugate directions of search and therefore aim to
minimize a positive definite quadratic function of
n variables in n steps.

Our proposed algorithm known as CGFR/AG begins the
minimization process with an initial estimate 0w and an
initial search direction as:

 000)(gwEd −=−∇= (11)

Then, for every epoch by using our proposed

method in Equation (7) the search direction at (n+1)th
iteration is calculated as:

)()()(,,1,
1

1 ninninni
n

n cdcc
w

Ed β
δ
δ

+−= +
+

+
 (12)

where the scalar

nβ is to be determined by the requirement
that

nd and
1+nd must fulfil the conjugacy property[10]. There

are many formulae for the parameter
nβ . In this paper we

used the formula introduced by Fletcher and Reeves [12]
and is given as:

n
T
n

n
T
n

n gg
gg 11

1
++

+ =β (13)

The complete CGFR/AG algorithm works as follows;
Step 1 Initializing the weight vector randomly, the

gradient vector 00 =g and gain value as one.
Let the first search direction

00 gd = . Set

00 =β , 1=epoch and 1=n . Let Nt is the
number of weight parameters. Select a
convergence tolerence CT .

Step 2 At step n , evaluate gradient vector)(nn cg
with respect to gain vector

nc and calculate
gain vector.

Step 3 Evaluate)(nwE . If CTwE n <)(then STOP
training ELSE go to step 4.

Step 4 Calculate a new search direction:
11)(−−+−= nnnnn dcgd β

Step 5 For the first iteration, check if 1>n THEN
with the function of gain,

update
)()(

)()(1111
1

nnn
T
n

nnn
T
n

n cgcg
cgcg ++++

+ =β ELSE go

to step 6.
Step 6 If 0]/)1[(=+ Ntepoch THEN ‘restart’ the

gradient vector with)(11 −−−= nnn cgd ELSE
go to step 7.

Step 7 Calculate the optimal value for learning rate
*
nη by using line search technique such as:

)(min)(
0

*
nnnnnn dwEdwE ηη

λ
+=+

≥

Step 8 Update
nw :

nnnn dww *
1 η−=+

Step 9 Evaluate new gradient vector)(11 ++ nn cg with

respect to gain value
1+nc .

Step10Calculate new search direction:
nnnnnn dccgd)()(111 β+−= +++

Step11 Set 1+= nn and go to step 2.

IV. SIMULATION RESULTS
The performance criterion used in this research focuses

on the speed of convergence, measured in number of
iterations and CPU time. The benchmark problems used to
verify our algorithm are taken from the open literature by
Prechelt [19]. Four classification problems have been
tested including Iris classification problem, 7 bit parity
problem, Wisconsin breast cancer classification problem
and diabetes classification problem.

The simulations have been carried out on a Pentium IV
with 3 GHz PC Dell, 1 GB RAM and using MATLAB
version 6.5.0 (R13).

On each problem, three algorithms have been simulated.
The first algorithm is standard conjugate gradient with
Fletcher-Reeves update(traincgf) from ‘Matlab Neural
Network Toolbox version 4.0.1’. The other two algorithms
are standard conjugate gradient (CGFR) and our proposed
conjugate gradient method with adaptive gain
(CGFR/AG).

To compare the performance of the proposed algorithm
with respect to other standard optimization algorithms from
the MATLAB neural network toolbox, network
parameters such as network size and architecture (number
of nodes, hidden layers etc), values for the initial weights
and gain parameters were kept same. For all problems the
neural network had one hidden layer with five hidden
nodes and sigmoid activation function was used for all
nodes. All algorithms were tested using the same initial
weights that were initialized randomly from range [0, 1]
and received the input patterns for training in the same
sequence.

Toolbox default values were used for the heuristic
parameters, of the above algorithms, unless stated
otherwise. For the proposed of comparison, all tested
algorithms were fixed with the values of learning rate = 0.3
and momentum term = 0.4. The initial value used for the
gain parameter was one.

The results of all three algorithms will be presented as
table which summarize the performance of the algorithms
for simulations that have reached solution. All algorithms
were trained with 100 trials, if an algorithm fails to
converge, it is considered that it fails to train the FNN, but
its epochs, CPU time and generalization accuracy are not
included in the statistical analysis of the algorithms.

A. Iris Classification Problem
This is a classical classification dataset made famous by

Fisher[20], who used it to illustrate principles of
discriminant analysis. This is perhaps the best-known
database to be found in the pattern recognition literature.
Fisher's paper is a classic in the field and is referenced

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2570

frequently to this day. The selected architecture of the FNN
is 4-5-3 with target error was set as 0.01 and the maximum
epochs to 2000.

TABLE I

THE CPU TIME NEEDED TO CONVERGE FOR IRIS CLASSIFICATION
PROBLEM [24]

IRIS classification problem
(target error=0.01)

Number
of

Epochs

CPU
time(s)/Epoch

Total time
of

converge
traincgf 69 5.54x10-2 3.8071
CGFR 39 4.90 x10-2 1.9146
CGFR/AG 29 4.94 x10-2 1.4232

Table I shows that the proposed algorithm reached the

target error after only about 29 epochs as opposed to the
standard CGFR at about 39 epochs and clearly we see that
there is an improvement ratio, nearly 2.4, for the number of
epochs compare to neural network toolbox, and almost
2.6749 for the convergence time.

B. 7 Bit Parity Problem
The parity problem is also one of the most popular initial

testing tasks and very demanding classification for neural
network to solve, because the target-output changes
whenever a single bit in the input vector changes and this
makes generalization difficult and learning does not
always converge easily [21]. The selected architecture of
the FNN is 7-5-1. The target error has been set to 0.1 and
the maximum epochs to 2000.

TABLE II

THE CPU TIME NEEDED TO CONVERGE FOR 7 BIT PARITY PROBLEM
7 bit parity (target error=0.1)

Number
of

Epochs

CPU
time(s)/Epoch

Total time
of

converge
traincgf 273 3.88x10-2 10.6129
CGFR 147 7.26x10-2 10.6496
CGFR/AG 114 7.12x10-2 8.1057

Table II shows that the proposed algorithm exhibit very

good average performance in order to reach target error
with only 114 epochs as opposed to the standard CGFR at
about 147 epochs and traincgf with 273 epochs. The result
clearly shows that the new algorithm outperform others
two algorithm with an improvement ratio, nearly 1.3, for
the total time of converge.

C. Winconsin Breast Cancer Problem
This dataset was created based on the ‘breast cancer

Wisconsin’ problem dataset from UCI repository of
machine learning databases from Dr. William H. Wolberg
[22]. This problem tries to diagnosis of breast cancer by
trying to classify a tumor as either benign or malignant
based on cell descriptions gathered by microscopic
examination. The selected architecture of the FNN is 9-5-2.
The target error is set as to 0.015 and the maximum epochs
to 2000.

TABLE III
THE CPU TIME NEEDED TO CONVERGE FOR BREAST CANCER PROBLEM

[23]
Breast cancer problem

(target error=0.015)

Number
of

Epochs

CPU
time(s)/Epoch

Total time
of

converge
traincgf 71 5.34x10-2 3.7883
CGFR 65 5.11x10-2 3.3060
CGFR/AG 39 4.00x10-2 1.5503

In Table III, it is worth noticing that the performance of
the CGFR/AG training algorithm since it take only 39
epochs to reach the target error compare to CGFR at about
65 epochs and worst for traincgf that need about 71epochs
to converge. Still the proposed algorithm outperforms
others two algorithms with an improvement ratio, nearly
2.5, for the total time of converge.

D. Diabetes Classification Problem
This dataset was created based on the ‘Pima Indians

diabetes’ problem dataset from the UCI repository of
machine learning database. From the dataset doctors try to
diagnose diabetes of Pima Indians based on personal data
(age, number of times pregnant) and the results of medical
examinations (e.g. blood pressure, body mass index, result
of glucose tolerance test, etc.) before decide whether a
Pima Indian individual is diabetes positive or not. The
selected architecture of the Feed-forward Neural Network
is 8-5-2. The target error is set to 0.01 and the maximum
epochs to 1000.

TABLE IV

THE CPU TIME NEEDED TO CONVERGE FOR DIABETES PROBLEM [23]
Diabetes classification problem

 (target error=0.01)

Number
of

Epochs

CPU
time(s)/Epoch

Total time
of

converge
traincgf 97 4.12x10-2 4.0060
CGFR 50 5.16x10-2 2.6000
CGFR/AG 40 5.05x10-2 2.0030

Table IV shows that the new algorithm reached the target

error after only about 40 epochs as opposed to the standard
CGFR at about 97 epochs and clearly we see that there is
an improvement ratio, nearly 2.5, for the number of epochs
compare to neural network toolbox, and almost 2 for the
convergence time.

V. CONCLUSION

In this paper, new fast learning algorithm for neural
networks based on Fletcher-Reeves update with adaptive
gain (CGFR/AG) training algorithms is introduced. The
proposed method improved the training efficiency of back
propagation neural network algorithms by adaptively
modifying the initial search direction. The initial search
direction is modified by introducing the gain value. The
proposed algorithm is generic and easy to implement in all
commonly used gradient based optimization processes. The
simulation results showed that the proposed algorithm is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2571

robust and has a potential to significantly enhance the
computational efficiency of the training process.

REFERENCES
[1] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Learning internal

representations by error propagation. in D.E. Rumelhart and J.L.
McClelland (eds), Parallel Distributed Processing, 1986. 1: p. 318-
362.

[2] Marco Gori and Alberto Tesi, On the problem of local minima in
back-propagation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1992. 14(1): p. 76-86.

[3] E.K. Blum, Approximation of Boolean functions by sigmoidal
networks: Part I: XOR and other two-variable functions. Neural
Computation, 1989. 1(4): p. 532-540.

[4] A. van Ooyen and B. Nienhuis, Improving the convergence of the
back-propagation algorithm. Neural Networks, 1992. 5: p. 465-471.

[5] M. Ahmad and F.M.A. Salam, Supervised learning using the cauchy
energy function. International Conference on Fuzzy Logic and
Neural Networks, 1992.

[6] Pravin Chandra and Yogesh Singh, An activation function adapting
training algorithm for sigmoidal feedforward networks.
Neurocomputing, 2004. 61: p. 429-437.

[7] R.A. Jacobs, Increased rates of convergence through learning rate
adaptation. Neural Networks, 1988. 1: p. 295-307.

[8] M. K. Weir, A method for self-determination of adaptive learning
rates in back propagation. Neural Networks, 1991. 4: p. 371-379.

[9] X. H. Yu, G.A. Chen, and S.X. Cheng, Acceleration of
backpropagation learning using optimized learning rate and
momentum. Electronics Letters, 1993. 29(14): p. 1288-1289.

[10] Bishop C. M., Neural Networks for Pattern Recognition. 1995:
Oxford University Press.

[11] R. Fletcher and M. J. D. Powell, A rapidly convergent descent
method for nlinimization. British Computer J., 1963: p. 163-168.

[12] Fletcher R. and Reeves R. M., Function minimization by conjugate
gradients. Comput. J., 1964. 7(2): p. 149-160.

[13] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systerns. J. Research NBS, 1952. 49: p. 409.

[14] Huang H.Y., A unified approach to quadratically convergent
algorithms for function minimization. J. Optim. Theory Appl., 1970.
5: p. 405-423.

[15] Thimm G., Moerland F., and Emile Fiesler, The Interchangeability
of Learning Rate an Gain in Back propagation Neural Networks.
Neural Computation, 1996. 8(2): p. 451-460.

[16] Holger R. M. and Graeme C. D., The Effect of Internal Parameters
and Geometry on the Performance of Back-Propagation Neural
Networks. Environmental Modeling and Software, 1998. 13(1): p.
193-209.

[17] Eom K. and Jung K., Performance Improvement of Back
propagation algorithm by automatic activation function gain tuning
using fuzzy logic. Neurocomputing, 2003. 50: p. 439-460.

[18] Rumelhart D. E., Hinton G. E., and Williams R. J., Learning internal
representations by back-propagation errors. Parallel Distributed
Processing, 1986. 1 (Rumelhart D.E. et al. Eds.): p. 318-362.

[19] L. Prechelt, Proben1 - A set of Neural Network Bencmark Problems
and Benchmarking Rules. Technical Report 21/94, 1994: p. 1-38.

[20] Fisher R.A., The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 1936. 7: p. 179 -188.

[21] Erik Hjelmas and P.W. Munro, A comment on parity problem.
Technical Report, 1999: p. 1-7.

[22] Mangasarian O. L. and W.W. H., Cancer diagnosis via linear
programming. SIAM News, 1990. 23(5): p. 1-18.

[23] Lutz Prechelt, ftp://ftp.ira.uka.de/pub/neuron/proben1.tar.gz. 1994.
[24] R. A. Fisher, ftp://ftp.ics.uci.edu/pub/machine-

learningdatabases/iris/iris.data. 1988.

Nazri Mohd Nawi received his B.S. degree in
Computer Science from University of Science
Malaysia (USM), Penang, Malaysia. His M.Sc.
degree in computer science was received from
University of Technology Malaysia (UTM),
Skudai, Johor, Malaysia. He has been working
toward his Ph.D. degree in Mechanical
Engineering department, University of Wales
Swansea. At present, his research interests are
in optimisation, data mining and neural
networks.

Meghana R. Ransing received the B.Sc. from
University of Poona, Pune, India and the Ph.D.
degree in engineering from the University of
Wales Swansea in 1995 and 2003. She is
currently a senior research officer in school of
engineering at the University of Wales
Swansea. She has published over 10 papers in
refereed journals. Her research interests are in
data analysis and natural computing.

Rajesh S. Ransing is a Senior Lecturer at the
University of Wales Swansea. He received his
B.E in Mechanical Engineering from
University of Poona, Pune, India, he received
his M.E. from Indian Institute of Science,
Bangalore, India and his Ph.D. from University
of Wales Swansea in 1989, 1992 and 1996. He
has published over 30 papers in refereed
journals, one patent and has organised many
symposiums, workshop, and conferences on
this topic. He is also on the executive

committee of Natural Computing Applications Forum.
His research interests are in the fields of data analysis, optimisation

methods, natural computing and nano-meso scale computation.
.

