
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:4, 2019

303

An Improved Dynamic Window Approach with
Environment Awareness for Local Obstacle

Avoidance of Mobile Robots
Baoshan Wei, Shuai Han, Xing Zhang

Abstract—Local obstacle avoidance is critical for mobile robot
navigation. It is a challenging task to ensure path optimality and
safety in cluttered environments. We proposed an Environment
Aware Dynamic Window Approach in this paper to cope with
the issue. The method integrates environment characterization into
Dynamic Window Approach (DWA). Two strategies are proposed
in order to achieve the integration. The local goal strategy guides
the robot to move through openings before approaching the final
goal, which solves the local minima problem in DWA. The adaptive
control strategy endows the robot to adjust its state according
to the environment, which addresses path safety compared with
DWA. Besides, the evaluation shows that the path generated from
the proposed algorithm is safer and smoother compared with
state-of-the-art algorithms.

Keywords—Adaptive control, dynamic window approach,
environment aware, local obstacle avoidance, mobile robots.

I. INTRODUCTION

LOCAL obstacle avoidance is an important issue for

autonomous robot research. Given a start location and a

goal location, the robot is asked to move from the start point to

the goal and avoid collision with obstacles. The environment

is partially known or dynamic [1]. A typical case is that only

sensor information is used for the local obstacle avoidance

algorithm. Although considerable efforts have been devoted to

this field, it remains challenging for the robot to escape from

local minima and avoid collision in cluttered environments.

The local obstacle avoidance algorithm can be divided into

two categories, that is, environment-based and search-based.

The environment-based method generates motion commands

based on the goal and the obstacle information. Early

remarkable techniques include Artificial Potential Field (APF)

[2], Virtual Field Histogram (VFH) [3] and its successor

VFH+ [4]. APF is quite simple, but local minima as well as

oscillation often happens owing to its nature. VFH and VFH+

address this problem by introducing the polar histogram. The

polar histogram represents the distribution of virtual forces of

surrounding obstacles. Then, a guide direction can be deduced

from the polar histogram. However, oscillation still exists

due to the discontinuity of the guide direction. Reference [5]

proposes an improved Artificial Potential Method (I-APF). The

author claims that by adding the turning-around strategy, the

robot is able to escape from local minima. Improved Follow

the Gap (I-FGM) method is proposed in [6]. The geometry

information of obstacle gaps is utilized to determine the best

Baoshan Wei is with the Beijing University of Posts and
Telecommunications, China (e-mail: wbsbupt@bupt.edu.cn).

motion direction. The consideration of kinematic constraints

of the robot is insufficient in nearly all environment-based

method. They pay more attention on constraints of the

environment.

On the contrary, the search-based method generates feasible

paths based on kinematic constraints of the robot and modify

it by collision check. Early studies include Curvature Velocity

Method (CVM) [7] and Dynamic Window Approach (DWA)

[8]. Nevertheless, they suffer the trouble of local minima

and high risk of collision in cluttered environments. Later

researchers try to compute with local methods recursively

to expand all possible robot paths after several steps. The

motion command that can lead the robot to the best

path is chosen. Virtual Field Histogram with Look-Ahead

Verification (VFH*) [9] and Dynamic Window Approach

with Look-Ahead Verification (DWA*) [10] are two typical

algorithms. The cost is that more time is spent on path finding.

References [11] and [12] aim to find feasible and collision free

paths based on random sampling in the state space. However,

deciding an accurate distance measurement is a non-trivial

work. References [13] and [14] propose methods based on

the state lattice. Even though the state lattice has a powerful

ability to generate a feasible path under differential constraints,

it requires a high fidelity dynamic model of the system and

the sampled path is sub-optimal.

The proposed method in this paper combines

environment-based method (VFH+) and search-based

method (DWA) to deal with the problem of local minima

and path safety. Local goal and adaptive control are proposed

to integrate the environment information into the algorithm.

The local goal is within the sensory area of the robot and

moving with the robot. It helps the robot to jump out of

local minima and moving toward the final goal. The adaptive

control leads to adaptive speed and adaptive attention on

obstacle avoidance according to the environment. It accounts

for the safety in cluttered areas. Apart from that, the proposed

algorithm inherits the kinematic constraint in DWA, thus, the

path generated is smooth and easily for the robot to execute.

The paper is organized as follows. Next section briefly

describes key metrics to characterize the environment. Section

III detailed explains the proposed algorithm. Performance

evaluation is carried in Section IV. Finally, conclusions are

given in Section V.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:4, 2019

304

II. ENVIRONMENT CHARACTERIZATION

We borrow the polar histogram from VFH+ and furthermore

derive another two quantitative descriptors of the environment,

i.e., opening spaciousness and “corridor” length.

A. Polar Histogram

The polar histogram proposed in VFH+ [4] is a modification

of that in VFH [3]. It successfully represents the distribution

of obstacles by using the magnitude, i.e., the virtual force. In

the meantime, the geometry of the robot is integrated into the

distribution.

An example of the robot and obstacles is shown in Fig. 1.

In this paper, the world frame is chosen as the fixed frame and

counter-clockwise is adopted as the positive direction. Besides,

0◦ refers to the positive direction of x-axis. The robot position

coordinate is expressed as x(r) = (xr, yr, θr). An obstacle

with coordinate (i, j) in the grid map is denoted as obsi,j . Each

obstacle is enlarged by the robot radius (rrobot), which is the

distance from the robot center to its furthest perimeter point.

For safety insurance, the obstacle is further enlarged by rsafe.

The radius of the solid circle and the radius of the dashed

circle around the obstacle are rrobot and r (r = rrobot+rsafe)

respectively. The distance to the robot is di,j and the relative

direction to the robot is βi,j . The surrounding direction of

the robot is divided into sectors with resolution of θreso. The

default θreso is configured as 5◦, thus, 72 sectors are generated.

The sensory area of the robot is limited within the large dashed

circle of whom the radius is ract. Fig. 2 shows the normalized

polar histogram in Fig. 1.

Fig. 1 Robot and obstacles representation in world frame

B. Opening Spaciousness

Although the polar histogram provides detailed obstacle

distribution information around the robot, it is not suitable

for compressing the overall information of the surrounding

environment.

As shown in Fig. 1, the local active region (the large

dashed circle) is divided into four sections in the robot frame:

Fig. 2 Polar histogram corresponding to robot position in Fig. 1

left section ([135◦, 225◦]), front section ([45◦, 135◦]), right

section ([−45◦, 45◦]) and back section ([225◦, 315◦]). For

convenience, they are numbered as section 1, 2, 3 and 4,

respectively. Since the robot is restricted to move froward,

the back section is ignored.

Three quantitative metrics are built to characterize the

obstacle property in the ith section (1 ≤ i ≤ 3).

1) Available distance for the robot to move: The median

value of clearances from obstacles of the robot, denoted

as Qi, is adopted to represent the feature. Compared

with the average value and the extreme value, the median

value is less sensitive to outliers. The local active region

is considered as spacious if this metric is large.

2) Dispersion of the obstacle distribution: The interquartile

range of the surrounding obstacle directions, denoted as

Di, is used. It reflects whether the surrounding obstacles

are gathered in specific direction or dispersed in many

directions. The local active region is considered as

spacious if this metric is small.

3) Obstacle density: The amount of space occupied by

obstacles, denoted as ρi, is used to characterize the

density. The local active region is considered as spacious

if this metric is small.

After that, they are combined into one metric, namely, the

opening spaciousness (Pi) in section i, which is defined as:

Pi =
σ ·Qi − (1− σ) · log(Di)

ρi
, (1)

where σ is a balanced weight factor of available distance and

dispersion of the obstacle distribution. The introduction of log
function aims to scale Di to be comparable with the other two

metrics.

Then, the spaciousness metrics from three sections are

merged into one metric, i.e., the spaciousness of the local

active region, which is denoted as P :

P =

3∑
i=1

δi · Pi, (2)

where δi is the linear weight factor of the ith section.

Owing to the fact that P is updated in real time, drastic

value change may happen. In order to prevent this problem, a

simple filter is recommended, which is defined as:

P̂ (n) = ε · P (n) + (1− ε) · P̂ (n−1), (3)

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:4, 2019

305

where P̂ (n) and P (n) are smoothed spaciousness and raw

spaciousness of the local active region respectively at the nth

control loop. A smooth factor, denoted as ε, is introduced to

serve as a filter weight factor. The larger it is, the more weight

is given to current observed spaciousness.

C. “Corridor” Length

It is beneficial for the robot to recognize corridors in indoor

environments. A metric (CL) is conducted to satisfy this

demand, which is defined as:

CL = ract ·max(βl
max − βl

min, β
r
max − βr

min). (4)

As shown in Fig. 1, CL can be thought as the corridor length

when a number of close obstacles are aligned. βl
min, βr

min,

βl
max and βr

max are the minimum direction of obstacles on the

left side, the minimum direction of obstacles on the right side,

the maximum direction of obstacles on the left side and the

maximum direction of obstacles on the right side respectively.

III. EA-DWA: ENVIRONMENT AWARE DYNAMIC

WINDOW APPROACH

The proposed Environment Aware Dynamic Window

Approach (EA-DWA) will be explained in this section. It

is within the Model Predictive Control framework. In order

to add the “Environment Aware” property to DWA, two

strategies, i.e., the local goal and the adaptive control are

proposed. The local goal is created to replace the global

goal in DWA. It can better guide the robot through complex

environments. The adaptive control accounts for adaptive

speed and adaptive attention on obstacle avoidance. When the

surrounding area is cluttered, the robot will actively slow down

and pay more attention on obstacle avoidance, otherwise, it

will speed up and focus more on the local goal. The algorithm

detail is shown in the pseudo.

The robot is differential driven, whose motion model is

defined as:

ẋ(t) = (vleft(t) + vright(t))cosθ(t)/2

ẏ(t) = (vleft(t) + vright(t))sinθ(t)/2

θ̇(t) = (vright(t)− vleft(t))/L,

(5)

where vleft(t), vright(t) and θ(t) are the translational velocity

of the left wheel, the translational velocity of the right

wheel and the heading direction of the robot respectively.

The translational velocity of the robot is v = (vleft(t) +
vright(t))/2. L is the distance between the left wheel center

and the right wheel center.

A. Local Goal Position

The local goal acts as a guide to lead the robot. Two steps

are needed to decide its position: firstly, choosing the best

heading, secondly, determining the proper position according

to the selected heading.

Algorithm 1 EA-DWA: Environment Aware Dynamic

Window Approach

Input: grid map map, initial robot position start(x0, y0, θ0), goal
position goal(xt, yt) and distance tolerance to the goal dtol

Output: path=[(x0, y0), (x1, y1), ..., (xn, yn)] from start to goal
1: x := start; path := []
2: while d(x, goal) < dtol do
3: add x to path
4: localmap := calcLocalMap(map, x);
5: if localGoalChangeF lag then
6: θg := calcGoalDirection(x, localmap, goal)
7: localgoal := calcGoalPosition(x, θg)
8: end if
9: (v,w) := adaptiveDWA(x, localgoal, localmap)

10: x := motion(x, v, w)
11: end while
12: Return path

1) Local Heading: We adopt the direction selection

procedure in VFH+ and make three major improvements:

• Threshold of the polar histogram: Only one threshold is

used to classify openings and barriers.

• Candidate sector generation: More candidates are

generated.

• Direction cost function: Opening width is added to

modify the cost function in VFH+.

After generating a normalized continuous polar histogram,

a threshold (τh) need to de defined to generate a binary polar

histogram. The sector whose magnitude value is below this

threshold is considered to be included in the opening. What

is different from VFH+ is that only one threshold is applied

and no masked polar histogram is generated. The reason is

that DWA can model kinematic constraints of the robot better

than the masked polar histogram.

The candidate generation in VFH+ is too rough and may

leave out better candidate choice, so it is reasonable to increase

candidate numbers. We use width to represent the opening

width, i.e., the sector numbers in that opening. Three types

of openings are defined: very narrow openings (width < 2),

narrow openings (2 ≤ width < 6) and spacious openings

(width ≥ 6). The opening width is computed as:

width = kr − kl, (6)

where kr, kl are the rightmost and leftmost sector of the

opening respectively. The candidate sector is generated as

follows. For very narrow openings, there is no candidate

sector. For narrow openings, only middle sector (kcenter =
(kl + kr)/2) is chosen and for spacious openings, candidate

sectors are chosen from kl+1 to kr − 1, with increment of 1.

The candidate spaciousness, denoted as width(c), is

not considered in the cost function of VFH+. Here, the

candidate spaciousness means the width of the opening where

the candidate is located. A modified cost with candidate

spaciousness is defined as:

ĝ(c) = g(c) + λ4 · width(c), (7)

where

width(c) = k(c)r − k
(c)
l , (8)

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:4, 2019

306

g(c) = λ1 ·Δ(c, kt)+λ2 ·Δ(c,
θr

θreso
)+λ3 ·Δ(c, kd,n−1), (9)

Δ(c1, c2) = min{|c1 − c2|, |c1 − c2 − s|, |c1 − c2 + s|}, (10)

s = 2π/θreso. (11)

c is a candidate sector. g(c) is the direction cost function in

VFH+. k
(c)
l , k

(c)
r are the leftmost and rightmost sector of the

opening in which the candidate c is located respectively. kt
is the sector in which the goal direction is located. θr is the

current heading direction of the robot. θreso is the predefined

resolution of angles. kd,n−1 is the selected candidate sector

in previous control loop. Linear weighting factors of the

candidate direction function are denoted as λi. The constraints

of them are defined as:

λ1 > 0.5, λi > 0, i = 2, 3
∑
i

λi = 1.
(12)

2) Local Position: DWA employs the goal heading

alignment to deal with the relationship between the robot and

the goal. However, the robot gets trapped frequently due to

this cost function. In DWA, the robot always tries to align

with the goal heading all the time and it severely restricts the

sample range in velocity space. Even no such velocity may

avoid colliding with obstacles when the robot is surrounded

by obstacles. On the contrary, if the heading cost is replaced

by distance cost, the problem no longer exists. So only local

heading is not enough, a local goal with coordinate (xg , yg)

is necessary.

As shown in Fig. 3, after choosing the best local goal

heading, we need to determine how far (dg) it is away from

the robot current position. The rule is as follows:

dg = cos(vmax − vr) · ract. (13)

dg is no larger than ract. This constraint accounts for the

meaning of “local”, which means the local goal is always

inside the sensory range of the robot. Besides, it is reactive to

velocity change. vmax is the maximum translational velocity of

the robot. When current speed (vr) is high, it tends to be more

conservative, that is, more close to the robot. When the speed

is slow, it tends to be aggressive instead. The motivation is that

high speed brings about high risk of colliding with obstacles.

B. Local Goal Update Frequency

It is of no need and even harmful for the local goal to

change after each control loop (Δt). First, during Δt, the robot

cannot move far and the surrounding environment change is

not notable. Second, high update frequency may worsen the

discontinuity of the selected local goal direction. The key point

is how to determine local goal update frequency. Three metrics

are defined to solve this problem, namely, distance traveled,

angle rotated (in place or not) and distance to the nearest

obstacle.

Fig. 3 Local goal position

1) Distance Traveled: If a fixed distance (d̄r) is defined as

a threshold of distance traveled, the local goal is not updated

until the robot moves so far. In such way, no environment

information is utilized. It is hard to manually set this parameter

since no one is sure that what distance threshold is best, but

some metrics of the environment can be extracted to help the

decision. In section II, “corridor length” (CL) is mentioned,

which can be added to modify the fixed distance threshold

to become a dynamic one (d̂r). The dynamic threshold of

distance traveled is calculated by:

d̂r = min(d̄r, CL). (14)

2) Angle Rotated: When the robot tries to rotate itself, it

may happen that some obstacles block the way to the goal,

then it is exact the time to update the local goal. However,

the threshold of angle rotated is no easy to manually set

as well. The barrier width can be utilized though. Barrier

means continuous sectors which are of value 1 in binary

polar histogram, the way of calculating the ith barrier width

(width
(i)
obs) is the same as opening width which is defined in

(6). The threshold of angle rotated is expressed as:

θ̂r = min
i∈B

(θreso · width(i)
obs), (15)

where B is the barrier set.

3) Distance to Nearest Obstacle: When the robot travels

in cluttered area, it can be very close to obstacles. To ensure

safety, a distance threshold must be set, thus the robot is able

to correct the local goal more frequently without approaching

obstacles too close. Currently, the threshold is defined as:

d̂obs = η · r, (16)

where η is a factor which adjust the sensitivity to obstacles.

The value ranging from 1.5 to 3.0 is recommended.

C. Adaptive DWA

1) Adaptive Speed: The speed is vital for obstacle

avoidance. The robot must be able to adjust the speed

according to the outer dynamic changes, including distance

to the final goal and the surrounding environment. The cost

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:4, 2019

307

function defined in DWA cannot meet this demand. Besides,

the speed cost in DWA keeps speeding up the robot all through

the navigation process, which causes high risk of colliding

with obstacles and less choice in velocity space.

In the new proposed method, the configured maximum

speed (vmax) of the possible velocity space Vp becomes

dynamic (v̂max), and it is calculated by:

v̂max = vmax · tanh(dt/kvt) · tanh(P̂ /kvo), (17)

where dt is the distance to the final goal. P̂ is local active

region spaciousness defined from (1)-(3). kvt and kvo are

smooth factors of goal awareness and obstacle awareness

respectively.

In this way, the possible velocity space Vp becomes adaptive

to the goal and the environment. Vp accounts for the velocity

limit of the robot. When the robot sample velocities from the

space, the candidate velocity becomes adaptive as well.

2) Adaptive Cost: This section presents two modifications:

modified cost function and adaptive cost weight.

As mentioned above, the goal heading cost function draws

back the DWA performance, thus, a better goal distance cost

function is designed to take over it. The goal here means local

goal, denoted as (xg, yg). Suppose the robot is in position

x(r) = (xr, yr, θr), and there are n candidate velocities

(vi, wi), i ∈ {1, 2, ...n}. v and w are translational velocity

and rotational velocity of the robot respectively. For each

candidate, apply the motion model defined in (5) for T/Δt
times (T is the simulation time), then new robot positions

(x̂(1), x̂(2), ...x̂(n)) can be acquired. The goal distance cost is

defined as:

goal(vi, wi) = d(x̂(i), (xg, yg)). (18)

Compared with the goal heading cost, the goal distance cost

can start up robot without the help of speed cost. The reason

is that higher v with direction aligned with the local goal

will have a lower cost, thus is preferred among all candidate

velocities.

When it comes to the clearance cost, the distance to

possible collision obstacles is replaced by euclidean distance

to all obstacles in the local active region. In this way, the

robot is able to keep away from obstacles rather than just

prevent hitting obstacles. The clearance cost is designed as a

piece-wise function and defined as:

clearance(v, w) =

⎧⎨
⎩

1/ract if dobs > ract
dinf if dobs < r

1/dobs otherwise

, (19)

where

dobs = min
obs∈OBS

d(v, w, obs). (20)

dobs means the euclidean distance to the nearest obstacle

in local active region. dinf is the configured value, which

punishes the near collision heavily.

In different scenarios, the robot need to take different

reactions. For example, if no obstacle blocks the robot from

the goal, then it should be more goal oriented, otherwise, it

should pay more attention to obstacle avoidance. The solution

is adaptive cost weight with respect to the local active region

spaciousness and it is presented as:

f̂(v, w) = μ̂1 ·goal(v, w)+μ̂2 ·clearance(v, w)+μ̂3 ·speed(v),
(21)

where

speed(v) = 1− v/vmax, (22)

μ̂2 = μ̂
(0)
2 · (1− μ̂3 − tanh(P̂ /kpo))

μ̂1 = 1− μ̂3 − μ̂2.
(23)

μ̂1, μ̂2 and μ̂3 are goal cost weight, clearance cost weight

and speed cost weight respectively. Among them, only μ̂3 is

manually set. The initial clearance cost weight is denoted as

μ̂
(0)
2 . Usually, μ̂3 is no more than 0.2 and μ̂

(0)
2 is larger than

0.5. kpo is the smooth factor of the adaptive clearance cost

weight. The weight factor of the goal cost and the clearance

cost become dynamic compared with DWA.

IV. EVALUATION

In this section, experimental results are obtained in

the simulated environment. Simulation configuration,

improvement compared with DWA and comparison with

state-of-the-art algorithms are detailed explained.

The simulated environment is built with Gazebo, which

serves as a powerful platform in robot research community.

Fig. 4 shows the simulation environment in our experiment.

Fig. 4 Gazebo simulation environment

Clearpath Husky robot was used for the algorithm

evaluation. It is a commercial robot platform with differential

drive. The maximum translational velocity (vmax) and

maximum rotational velocity (wmax) are 1m/s and 40◦/s
respectively. The maximum accelerations are 0.2m/s2 and

40◦/s2 for translation and rotation respectively. The robot

radius (rrobot) is set to 0.5m and the safe distance (rsafe)

is set to 0.2m. The sensory area (ract) is set to 4.0m, which

is the working range of the low-cost LIDAR.

We compare the proposed EA-DWA with two

state-of-the-art algorithms, i.e., I-APF [5] and I-FGM

[6]. They also make use of obstacle environment information

to escape from local minima. I-APF adds on a virtual

force to enable turning-around behavior of the robot, while

I-FGM considers the geometry information of obstacles. The

algorithm parameters are configured as follows. In EA-DWA,

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:4, 2019

308

the control loop (Δt) is set to 0.1s and the prediction time

(T) is set to 3.0s. In I-APF, the attraction force weight and the

repulsive force weight are set to 35.0 and 30.0 respectively.

In I-FGM, the sight range of the robot is set to 180◦.

Figs. 5-7 visualize paths in three scenarios: T-shape

scenario, U-shape scenario and cluttered scenario. Obstacles

are colored in black in the occupancy grid map. The cross

dot stands for the robot. The circle point stands for the start

position and the star point stands for the goal position. The

dashed circle is the active region around the robot. Both the

robot heading and the goal direction are represented as arrows.

Figs. 5 and 6 show the simulation in T-shape and U-shape

scenarios respectively, which are typical scenarios of local

minima. In both scenarios, the robot equipped with DWA is

trapped at the start position and cannot move at all, thus, a

modified DWA is used for the comparison. In the modified

version, the heading cost is replaced with the distance cost

defined in (18), except for that the local goal (xg, yg) is

replaced with the final goal (xt, yt). This configuration is

denoted as “global goal”. As for the EA-DWA, we eliminate

adaptive control in the two scenarios in order to evaluate the

effect of the local goal, which is denoted as “local goal”.

The other two are paths generated from I-APF and I-FGM. In

T-shape scenario (Fig. 5), although the modified DWA (global

goal) is able to reach the final goal, the path is quite close

to obstacles. On the contrast, the local goal tries to guide the

robot through the center of openings, therefore the path is

safer. In U-shape scenario (Fig. 6), with global goal, the robot

is trapped. With the local goal, the robot firstly moves toward

the opening in the front left and then moves toward the final

goal. That is exactly what the robot should do to escape from

the local minima. The I-APF method and the I-FGM method

can escape from local minima, however, some drawbacks are

obvious. Both of them tend to be too much close to obstacles.

The reason is that none of them consider collision checking. In

order to prevent collision, only manual adjustment of attractive

force weight and repulsive force weight is available for I-APF.

I-FGM tries to manually adjust gap direction weight and goal

direction weight instead. Apart from that, the path generated

from I-FGM is unnecessarily long. The reason is that to make

the path safer, it focuses more on passing large gap rather than

going toward the goal.

The experiment carried in Fig. 7 aims to evaluate the effect

of the adaptive control of EA-DWA. Fig. 7 (b) eliminates

the adaptive control from EA-DWA, which is denoted as

“non-adaptive control”. Fig. 7 (a) reserves the adaptive control,

which is denoted as “adaptive control”. Figs. 7 (c) and (d)

are paths generated from I-APF and I-FGM respectively.

Compared with others, the path with adaptive control is

smoother and safer. Furthermore, unlike I-APF and I-FGM,

the path is feasible for the controller to execute due to the

consideration of velocity constraints of the robot in EA-DWA.

Figs. 8 and 9 share the same scenario with that in Fig. 7. The

translational velocity comparison between adaptive control and

non-adaptive control is shown in Fig. 8. Without the adaptive

control, the robot blindly accelerates until reaching the speed

limit or collision happens, as shown in Fig. 8 (b). The three

steep falls in the graph indicate three collisions. However, with

(a) (b)

(c) (d)

Fig. 5 Path comparison in T-shape scenario: (a) local goal, (b) global goal,
(c) I-APF, (d) I-FGM

(a) (b)

(c) (d)

Fig. 6 Path comparison in U-shape scenario: (a) local goal, (b) global goal,
(c) I-APF, (d) I-FGM

the assistance of adaptive control, the robot is aware of the goal

and the environment property. When the robot approaches the

goal, the overall trend of the speed is decreasing. The robot

may also accelerate if the environment spaciousness increases.

As a result, the adaptive speed reduces the risk of collision

and guarantees high efficiency of speed utilization. Besides,

the translational velocity command is smoother, which is vital

for energy efficiency. Fig. 9 shows the obstacle cost weight

change along the path in Fig. 7 (a). There are two valleys

(one is near the 300th step and the other is near the 400th

step) corresponding to the two hills in Fig. 8 (a). It indicates

that more aggressive speed selection and less attention on

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:4, 2019

309

(a) (b)

(c) (d)

Fig. 7 Path comparison in cluttered scenario: (a) adaptive control, (b)
non-adaptive control, (c) I-APF, (d) I-FGM

(a)

(b)

Fig. 8 Translational velocity comparison between adaptive control and
non-adaptive control in cluttered scenario. (a) adaptive control, (b)

non-adaptive control

obstacle avoidance occur with the increase of environment

spaciousness. Compared with I-APF and I-FGM, the proposed

EA-DWA can automatically change the attention on obstacle

avoidance based on the surrounding environment. Therefore,

the path is more optimal.

In order to evaluate the performance quantitatively, four

metrics are defined, that is, path safety, path length, path

smoothness and control steps needed to reach the goal. The

Fig. 9 Obstacle cost weight change with adaptive control

path safety is the minimum distance to obstacle border. The

control step is the execution times of motion controller before

reaching the goal. The Bending Energy [15] is utilized to

characterize the path smoothness (smooth), which is defined

as:

smooth =
1

n

n∑
i=1

k2(xi, yi)

k(xi, yi) =
f ′′(xi)

(1 + (f ′(xi))2)
3
2

yi = f(xi),

(24)

where (xi, yi) is the coordinate of the ith point in the path.

Smaller smooth indicates smoother path.

Table I shows the quantitative comparison of EA-DWA,

I-APF and I-FGM. It can be seen that in all three scenarios,

the path generated from EA-DWA is safer and smoother.

Compared with I-APF, the path is longer and more control

steps are needed, which is the cost of more precise control.

Due to the ability of adjusting attention on obstacles

adaptively, EA-DWA can find optimal path with shorter length

compared with I-FGM.

TABLE I
PERFORMANCE COMPARISON OF EA-DWA, I-APF AND I-FGM

Metrics EA-DWA I-APF I-FGM

T-shape

Safety 0.72 0.30 0.07
Path length 10.26 9.40 12.00

Path smoothness 0.18 2.89 7.64
Control steps 348 94 120

U-shape

Safety 0.32 0.13 -0.01
Path length 10.51 9.50 33.90

Path smoothness 0.51 1.26 2.14
Control steps 274 95 339

Cluttered

Safety 0.54 0.01 -0.10
Path length 21.33 20.40 40.30

Path smoothness 0.19 0.67 3.62
Control steps 543 204 403

V. CONCLUSION

The proposed algorithm integrates environment awareness

into the Model Predictive Control framework. The quantitative

descriptor of the environment is the source of environment

awareness while the two key techniques, i.e., the local goal

and the adaptive control, are tools for environment awareness.

It makes great improvement on local minima escaping

and path safety compared with DWA. Besides, experiments

show that the algorithm is competitive in path safety and

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:4, 2019

310

path smoothness compared with state-of-the-art methods. We

believe that such strategy has dramatic application prospect in

cluttered environments for mobile robots.

REFERENCES

[1] Hoy, Michael, Alexey S. Matveev, and Andrey V. Savkin, “Algorithms
for collision-free navigation of mobile robots in complex cluttered
environments: a survey,” Robotica, vol. 33, pp. 463-497, 2015.

[2] Borenstein, Johann, and Yoram Koren, “Real-time obstacle avoidance for
fast mobile robots,” IEEE Transactions on systems, Man, and Cybernetics,
vol. 19, pp. 1179-1187, 1989.

[3] Borenstein, Johann, and Yoram Koren, “The vector field histogram-fast
obstacle avoidance for mobile robots,” IEEE transactions on robotics and
automation, vol. 7, pp. 278-288, 1991.

[4] Ulrich, Iwan, and Johann Borenstein, “VFH+: Reliable obstacle avoidance
for fast mobile robots,” in Proc. ICRA Conf., 1998, pp. 1572-1577.

[5] Weerakoon, Tharindu, Kazuo Ishii, and Amir Ali Forough Nassiraei, “An
artificial potential field based mobile robot navigation method to prevent
from deadlock,” Journal of Artificial Intelligence and Soft Computing
Research, vol. 5, pp. 189-203, 2015.

[6] Demir, Mustafa, and Volkan Sezer, “Improved follow the gap method for
obstacle avoidance,” in Advanced Intelligent Mechatronics (AIM), 2017,
pp. 1435-1440.

[7] Simmons, Reid, “The curvature-velocity method for local obstacle
avoidance,” in Proc. ICRA Conf., 1996, pp. 3375-3382.

[8] Fox, Dieter, Wolfram Burgard, and Sebastian Thrun, “The dynamic
window approach to collision avoidance,” IEEE Robotics & Automation
Magazine, vol. 4, pp. 23-33, 1997.

[9] Ulrich, Iwan, and Johann Borenstein, “VFH*: Local obstacle avoidance
with look-ahead verification,” in Proc. ICRA Conf., 2000, pp. 2505-2511.

[10] Chou, Chih-Chung, Feng-Li Lian, and Chieh-Chih Wang,
“Characterizing indoor environment for robot navigation using velocity
space approach with region analysis and look-ahead verification,” IEEE
Transactions on Instrumentation and Measurement, vol. 60, pp. 442-451,
2011.

[11] Blanco, Jose Luis, Mauro Bellone, and Antonio Gimenez-Fernandez,
“TP-Space RRT: kinematic path planning of non-holonomic any-shape
vehicles,” International Journal of Advanced Robotic Systems, vol. 12,
pp. 55-63, 2015.

[12] Devaurs D, Simon T and Corts J, “Optimal path planning in complex
cost spaces with sampling-based algorithms,” IEEE Transactions on
Automation Science and Engineering, vol. 13, pp. 415-424, 2016.

[13] Samaniego, Ricardo, Joaquin Lopez, and Fernando Vazquez, “Path
planning for non-circular, non-holonomic robots in highly cluttered
environments,” Sensors, vol. 17, pp. 1876-1894, 2017.

[14] Napoli, Michael E., Harel Biggie, and Thomas M. Howard, “Learning
models for predictive adaptation in state lattices,” Field and Service
Robotics, vol. 5, pp. 285-300, 2018.

[15] Van Vliet, Lucas J., and Piet W. Verbeek, “Curvature and bending energy
in digitized 2D and 3D images,” in Proceedings of the Scandinavian
Conference on Image Analysis, 1993, pp. 1403-1410.

