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Abstract—Many well-known interconnection networks, such as k-
ary n-cubes, recursive circulant graphs, generalized recursive cir-
culant graphs, circulant graphs and so on, are shown to belong
to the family of cycle composition networks. Recently, various
studies about mutually independent hamiltonian cycles, abbreviated
as MIHC’s, on interconnection networks are published. In this paper,
using an improved construction method, we obtain MIHC’s on cycle
composition networks with a much weaker condition than the known
result. In fact, we established the existence of MIHC’s in the cycle
composition networks and the result is optimal in the sense that the
number of MIHC’s we constructed is maximal.

Keywords—Hamiltonian cycle, k-ary n-cube, cycle composition
networks, mutually independent.

I. INTRODUCTION AND PRELIMINARIES

The architecture of an interconnection network is usually
represented by a graph, in which vertices and edges correspond
to processors and communication links, respectively. Thus, we
use the terms graph and network interchangeably.

For the graph definitions and notations, we follow [1]. A
graph G consists of a nonempty set V (G) and a subset E(G)
of {(u, v) | (u, v) is an unordered pair of V (G)}. The set
V (G) is called the vertex set of G and E(G) is called the
edge set. Two vertices u and v are adjacent if (u, v) ∈ E(G).
For a vertex u of G, we denote the degree of u by deg(u) =
|{v | (u, v) ∈ E(G)}|. A graph G is r-regular if for every
vertex u ∈ G, deg(u) = r.

A matching of size n in a graph G is a set of n edges
with no shared endpoints. The vertices belonging to the edges
of a matching are saturated by the matching; the others are
unsaturated. A perfect matching is a matching that saturates
every vertex of G.

A path is represented by a finite sequence of ver-
tices 〈v0, v1, v2, . . . , vn〉, where every two consecutive ver-
tices are adjacent. The length of a path P is the num-
ber of edges in P . We write the path 〈v0, v1, v2, . . . , vn〉
as 〈v0, v1, . . . , vs, P1, vi, . . . , vj , P2, vt, . . . , vn〉, where P1 =
〈vs, vs+1, . . . , vi〉 and P2 = 〈vj , vj+1, . . . , vt〉. A hamiltonian
path between u and v, where u and v are two distinct
vertices of G, is a path joining u to v that visits every
vertex of G exactly once. Two paths P1 = 〈u0, u1, . . . , um〉
and P2 = 〈v0, v1, . . . , vm〉 from a to b are independent
if u0 = v0 = a, um = vm = b, and ui �= vi for

H. Su and S.-S. Kao are with the Department of Applied Mathematics,
Chung-Yuan Christian University, Chungli, Taiwan 32023, R.O.C.

H. Su is with Department of Public Finance and Taxation, Takming
University of Science and Technology, Taipei City, Taiwan 11451, R.O.C..

Y.-K. Shih is with the Department of Computer Science, National Chiao
Tung University, Hsinchu, Taiwan 30010, R.O.C.

1 ≤ i ≤ m − 1 [9]. In [6], two paths P ′
1 = 〈u0, u1, . . . , um〉

and P ′
2 = 〈v0, v1, . . . , vm〉 are full-independent if ui �= vi for

all 0 ≤ i ≤ m. Paths with the same number of vertices are
mutually independent(resp. mutually full-independent) if every
two different paths are independent(resp. full-independent). A
graph G is hamiltonian connected if there is a hamiltonian
path joining any two distinct vertices of G. A graph G
is called 1-vertex-fault-tolerant hamiltonian connected if it
remains hamiltonian connected after removing any vertex in
G.

A cycle is a path of at least three vertices such that
the first vertex is the same as the last vertex. A hamilto-
nian cycle of G is a cycle that traverses every vertex of
G exactly once. A hamiltonian graph is a graph with a
hamiltonian cycle. The length of a cycle C is the number
of edges/vertices in C. Two cycles C1 = 〈u0, u1, . . . , uk, u0〉
and C2 = 〈v0, v1, . . . , vk, v0〉 beginning at s are independent
if u0 = v0 = s and ui �= vi for 1 ≤ i ≤ k [11]. Cycles
beginning at s with the same length are mutually independent
if every two different cycles are independent. A graph G is
said to contain n MIHCs if there exist n hamiltonian cycles
in G beginning at any vertex s such that the n cycles are
mutually independent. There are numerous studies in MIHCs.
Readers can refer to [7]–[15].

In 2008, Kueng et al. introduced the cycle composition
networks [4], abbreviated as CCN’s. Let k ≥ 4, n ≥ 6,
r ≥ 2 be integers, and Gi be a r-regular graph with n
vertices for 0 ≤ i ≤ k − 1. From now on, all additions
and subtractions are considered modulo k. Let Mi,j be an
arbitrary perfect matching between the vertices of Gi and
those of Gj and M =

⋃k−1
i=0 Mi,i+1. The cycle composition

network G̃ = CCN(G0, G1, . . . , Gk−1;M) is defined to
be the graph with the vertex set V (G̃) =

⋃k−1
i=0 V (Gi) and

the edge set E(G̃) =
⋃k−1

i=0 (E(Gi)) ∪ M. We abbreviate
CCN(G0, G1, . . . , Gk−1;M) as CCNk. See Figure 1 for an
illustration. Many well-known interconnection networks, such
as k-ary n-cubes, recursive circulant graphs, generalized recur-
sive circulant graphs, circulant graphs and so on, are shown to
belong to the family of CCN’s. Hence, CCN’s have attracted
many studies and research interests [2]–[4].

Suppose that each Gi contains r MIHCs. More precisely,
for any vertex si of Gi, where 0 ≤ i ≤ k − 1, there exist r
hamiltonian cycles in Gi beginning at the vertex si such that
the r cycles are mutually independent in Gi. Is it true that
G̃ = CCN(G0, G1, . . . , Gk−1;M) contains (r + 2) MIHCs?
In [5], M.-F. Hsieh et. al. derived the following result.

Theorem 1: For k ≥ 6, let {Gi}k−1
i=0 be k r-regular hamil-
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Fig. 1. An illustration for CCNk =CCN(G0, G1, . . . , Gk−1;M).

tonian graphs with n vertices. Suppose that each Gi contains
r MIHCs and r mutually full-independent hamiltonian paths
between any r pairs of distinct vertices of Gi, and is 1-vertex-
fault-tolerant hamiltonian connected. Then there exist r + 2
MIHCs in CCNk.

Obviously, each vertex of G̃ has exactly r + 2 neighbors.
However, the requirement that each Gi contains r mutually
full-independent hamiltonian paths between any r pairs of
vertices of Gi seems to be unnecessarily strict. Besides, to
check whether this requirement is satisfied on each Gi is a
difficult task. Consequently, Theorem 1 is of little practical
use. In this paper, using a different construction scheme, we
are able to achieve the same result with a much weaker
condition on Gi. (See Theorem 4).

The following notations are defined for the rest of the paper.
Let ui be a vertex of Gi for some i. We use ljui−j to denote
the vertex of Gi−j such that there exists a path in M of the
form 〈ui, lui−1, l

2ui−2, . . . , l
jui−j〉. Similarly, we use rjui+j

to denote the vertex of Gi+j such that there exists a path in M
of the form 〈ui, rui+1, r

2ui+2, . . . , r
jui+j〉. W.L.O.G., let u ∈

G0 and u = u0. See Figure 1 for an illustration. It is possible
that there exists a cycle beginning at u with the length k of
the form 〈u = u0, ru1, r

2u2, . . . , r
k−2uk−2, r

k−1uk−1, u0〉.
More specifically, riui = lk−iui−k for any 1 ≤ i ≤ k − 1.

II. MAIN RESULTS

Let k ≥ 4 and n ≥ 6. Throughout this section, we use the
symbol CCNk for CCN(G0, G1, . . . , Gk−1;M), which is a
cycle composition network composed of k graphs {Gi | Gi is
a r-regular graph with |Gi| = n for 0 ≤ i ≤ k − 1} and k
perfect matchings M =

⋃k−1
i=0 Mi,i+1, for simplicity.

Lemma 1: Consider any CCNk. Suppose that G0 contains
r MIHCs beginning at any given vertex, denoted by {Ci

0 |
0 ≤ i ≤ r− 1}, and there exists some edge (a0, b0) such that
(a0, b0) ∈ Ci

0 for all 0 ≤ i ≤ r − 1. Let a1 ∈ V (G1) and

br−1 ∈ V (Gr−1) be arbitrary. If there is a path P between a1
and br−1 such that P visits each vertex of

⋃k−1
i=1 Gi in CCNk

exactly once, then CCNk contins r MIHCs starting with any
vertex in G0 and passing through a common edge.

Proof: W.L.O.G., let s0 ∈ V (G0) be the beginning
vertex. Obviously, for 1 ≤ i ≤ r − 1, C

i

0 is of the form
〈s0, Ai, a0, b0, B

i, s0〉, where Ai and Bi are two disjoint paths
in G0 such that Ai is between s0 and a0, Bi is between b0
and s0, and Ai

⋃
Bi = V (G0). Since {Ci

0 | 0 ≤ i ≤ r − 1}
are MIHCs in G0, it must be |Ai| �= |Aj | and |Bi| �= |Bj | for
i �= j. Otherwise, a0 or b0 might appear at the same timestep
on different C

i

0’s.
Note that ra1 ∈ V (G1) and lbr−1 ∈ V (Gr−1). It is known

that there is a path P between ra1 and lbr−1 such that P
visits every vertex of

⋃k−1
i=1 Gi in CCNk exactly once. Let

Ci = 〈s0, Ai, a0, ra1, P, lbr−1, b0, B
i, s0〉. It is easy to see

that {Ci | 1 ≤ i ≤ r− 1} forms a set of r MIHCs of CCNk,
and each Ci contains the edge (a0, ra1), which is the common
edge.

Theorem 2: Consider CCN4. For 0 ≤ i ≤ 3, suppose that
Gi satisfies the following two requirements – (1) Gi is 1-
vertex-fault-tolerant hamiltonian connected. (2) Starting from
any vertex of Gi, there exist r MIHCs passing through a
common edge of Gi. Then CCN4 contains r + 2 MIHCs
passing through a common edge.

Proof: W.L.O.G., let s0 be an arbitrary vertex of G0. We
want to construct r + 2 MIHCs starting at s0 in CCN4. It is
known that G0 contains r MIHCs beginning at s0 and passing
through a common edge of G0. Let u1 and v2 be any two
vertices in G1 and G2, respectively. Since Gi is hamiltonian
connected, there exist three hamiltonian paths P1, P2 and P3,
such that P1 connects ra1 and u1 in G1, P2 connects ru2

and v2 in G2, and P3 connects rv3 and lb3 in G3. Then P =
〈ra1, P1, u1, ru2, P2, v2, rv3, P3, lb3〉 is a path between ra1
and lb3 that visits each vertex of {Gi | 1 ≤ i ≤ 3} exactly
once. By Lemma 1, CCN4 contains r MIHCs, denoted by
{Ci | 0 ≤ i ≤ r− 1}, and each Ci contains the common edge
(a0, ra1).

Now, we construct the (r+1)-th MIHC of CCN4 beginning
at s0. In G3, choose a vertex x3 which is adjacent to ls3
and x3 �= lb3. Since G3 is 1-vertex-fault-tolerant hamiltonian
connected, there is a hamiltonian path T3 of G3 − {ls3}
between la3 and x3. We can write T3 as 〈la3, Q3, y3, x3〉.
Since Gi is 1-vertex-fault-tolerant hamiltonian connected,
G0 − {s0} contains a hamiltonian path Q0 that connects
ry0 and a0, G1 − {rs1} contains a hamiltonian path Q1

that connects ra1 and l2x1, and G2 − {lx2} contains a
hamiltonian path Q2 that connects r2s2 and l2a2. Let Cr =
〈s0, rs1, r2s2, Q2, l

2a2, la3, Q3, y3, ry0, Q0, a0, ra1, Q1, l
2x1,

lx2, x3, ls3, s0〉. It is easy to see that Cr is mutually
independent of the r MIHCs {Ci | 0 ≤ i ≤ r−1} constructed
by Lemma 1, and Cr passes through the edge (a0, ra1),
which is underlined in Cr.

Finally, we construct the (r + 2)-th MIHC of CCN4

beginning at s0. In G2, choose a vertex w2 such that w2 is
adjacent to r2s2 and w2 �= lx2. Choose another vertex z2 in
G2 such that z2 �= r2a2 and z2 �= r2s2. Since G3 is hamil-
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tonian connected, there exists a hamiltonian path R3 of G3

that connects ls3 and rz3. Since Gi is 1-vertex-fault-tolerant
hamiltonian connected, G0−{s0} contains a hamiltonian path
R0 between r2z0 and a0, G1 − {rs1} contains a hamiltonian
path R1 between ra1 and lz1, and G2 − {r2s2} contains
a hamiltonian path R2 between z2 and w2. Let Cr+1 =
〈s0, ls3, R3, rz3, r

2z0, R0, a0, ra1, R1, lz1, z2, R2, w2, r
2s2,

rs1, s0〉. Consequently, Cr+1 is mutually independent of {Ci |
0 ≤ i ≤ r} constructed above and passes through the common
edge (a0, ra1), which is underlined. See Figure 2 for an
illustration.

Ci

0 i r-1 G1 G2 G3

Ai P1
Bi

P2
P3s0 s0

b0lb3rv3ru2ra1 u1a0 v2

Cr
G2 –{lx2} G3 –{x3,ls3} G0 –{s0} G1 –{rs1}

Q2 Q3 Q0 Q1s0 s0rs1 r2s2 l2a2 la3
y3 ry0 a0 ra1 l2x1lx2 x3 ls3

Cr+1 G3 G0 –{s0} G1 –{rs1} G2

R3 R0 R1 R2 s0s0
ls3 rz3 r2z0 a0 ra1 lz1 z2 w2

r2s2

rs1

Fig. 2. An illustration of Theorem 2 .

Theorem 3: Suppose that CCN5 is constructed by five r-
regular graphs Gi with n vertices for 0 ≤ i ≤ 4, and each Gi

is 1-vertex-fault-tolerant hamiltonian connected and contains
r MIHCs passing through a fixed edge from any vertex of Gi.
Then CCN5 contains r + 2 MIHCs passing through a fixed
edge.

Proof: W.L.O.G., we let s0 be the beginning vertex and
C

0

0, C
1

0, · · · , C
r−1

0 be the r MIHCs beginning at s0 and passing
through the fixed edge (a0, b0) in G0. Hence we can write C

i

0

as 〈s0, Ai, a0, b0, B
i, s0〉 for 0 ≤ i ≤ r− 1. We will construct

the r+2 MIHCs beginning at s0 and passing through a fixed
edge in CCN5.

Consider the first r MIHCs of CCN5 beginning at s0.
Let u1, v2 and u3 be any three vertices in G1, G2 and
G3, respectively. There exist four hamiltonian paths P1, P2,
P3 and P4 joining from ra1 to u1, ru2 to v2, rv3 to
u3 and ru4 to lb4 in G1, G2, G3 and G4, respectively.
Set Ci = 〈s0, Ai, a0, ra1, P1, u1, ru2, P2, v2, rv3, P3, u3,
ru4, P4, lb4, b0, B

i, s0〉 for 0 ≤ i ≤ r− 1. Then, the r MIHCs
are C0, C1, · · ·, Cr−1, which pass through the fixed edge
(a0, ra1).

Now, we consider the (r+1)-th MIHC of CCN5 beginning
at s0. In G4, choose a vertex x4 which is adjacent to ls4 and
x4 �= lb4. Since G4 is 1-vertex-fault-tolerant hamiltonian con-
nected, there is a hamiltonian path T4 of G4 −{ls4} between
la4 and x4. W.L.O.G., T4 can be written as 〈la4, Q4, y4, x4〉.
In G3, choose a vertex lx3 �= r3s3. If lx3 = r3s3, we have
to choose another vertex x4, which is adjacent to ls4, for
lx3 �= r3s3. Since G3 is 1-vertex-fault-tolerant hamiltonian
connected, there is a hamiltonian path Q3 of G3 − {lx3}
between rd3 and l2a3, it can be written as 〈rd3, Q3, l

2a3〉.
Let d2 be any vertex in G2 not adjacent to l2a3. Using the
1-vertex-fault-tolerant hamiltonian connected property of G0,
G1 and G2, there exist three hamiltonian paths Q0, Q1 and

Q2 of G0 − {s0}, G1 − {rs1} and G2 − {l2x2} from ry0
to a0, ra1 to l3x1 and r2s2 to d2, respectively. Let Cr =
〈s0, rs1, r2s2, Q2, d2, rd3, Q3, l

2a3, la4, Q4, y4, ry0, Q0,
a0, ra1, Q1, l

3x1, l
2x2, lx3, x4, ls4, s0〉. Therefore, Cr is mu-

tually independent of the first r MIHCs C0, C1, · · ·, Cr−1 and
passes the fixed edge (a0, ra1).

Finally, we consider the last MIHC of CCN5 beginning at
s0. Let w1, z2 and w4 be any three vertices in G1, G2 and
G4, where w4 is not adjacent to a0 and z2 is not adjacent to
r3s3. There exist two hamiltonian paths R3 and R4 joining
from rz3 to r3s3 and ls4 to w4 in G3 and G4. And using the
1-vertex-fault-tolerant hamiltonian connected property of G0,
G1 and G2, there exist three hamiltonian paths R0, R1 and
R2 of G0 − {s0}, G1 − {rs1} and G2 − {r2s2} from rw0 to
a0, ra1 to w1 and rw2 to z2, respectively. We let Cr+1 =
〈s0, ls4, R4, w4, rw0, R0, a0, ra1, R1, w1, rw2, R2, z2, rz3, R3,
r3s3, r

2s2, rs1, s0〉. So, Cr+1 is mutually independent of the
first r + 1 MIHCs C0, C1, · · ·, Cr and passes the fixed edge
(a0, ra1). See Figure 3 for an illustration.

Ci
0 i r-1
s0 Ai a0 ra1

G1
P1 u1 ru2 P2

G2
v2 rv3

G3
u3 ru4

G4
P3 P4 s0lb4 b0 Bi

Cr+1
s0 ls4

G4
R4 w4 rw0

G0 –{s0}
R0 a0 ra1

G1 –{rs1}
R1 rw2w1 R2

G2 –{r2s2}
z2 rz3

G3
R3 s0r3s3

r2s2
rs1

Cr
s0 rs1 r2s2

G2 –{l2x2}
Q2 d2 rd3 Q3

G3 –{lx3}
l2a3 la4

G4 –{x4,ls4}
Q4 y4 ry0

G0 –{s0}
Q0 a0 ra1 Q1

G1 –{rs1}
l3x1

l2x2
lx3 x4 s0ls4

Fig. 3. An illustration of Theorem 3 .

Theorem 4: Suppose that CCNk is constructed by k r-
regular graphs Gi with n vertices for 0 ≤ i ≤ k−1. If each Gi

is 1-vertex-fault-tolerant hamiltonian connected and contains
r MIHCs passing through a fixed edge from any vertex of Gi,
then CCNk contains r + 2 MIHCs passing through a fixed
edge.

Proof: W.L.O.G., we let s0 be the beginning vertex and
C

0

0, C
1

0, · · · , C
r−1

0 be the r MIHCs beginning at s0 and passing
through the fixed edge (a0, b0) in G0. Hence we can write C

i

0

as 〈s0, Ai, a0, b0, B
i, s0〉 for 0 ≤ i ≤ r− 1. We will construct

the r+2 MIHCs beginning at s0 passing through a fixed edge
in CCNk.

Consider the first r MIHCs of CCNk beginning at s0. We
choose distinct vertices ui, vi ∈ Gi for 2 ≤ i ≤ k−3 such that
(vi−1, ui) ∈ E(CCNk) for 3 ≤ i ≤ k−3. Let U1(u2, vk−3) =
〈u2, P2, v2, u3, P3, v3, · · · , uk−3, Pk−3, vk−3〉, where Pi is a
hamiltonian path of Ci between ui and vi for 2 ≤ i ≤ k − 3.
Let u1 and uk−2 be any two vertices in G1 and Gk−2,
respectively. There exist three hamiltonian paths P1, Pk−2

and Pk−1 joining from ra1 to u1, rvk−2 to uk−2 and ruk−1

to lbk−1 in G1, Gk−2 and Gk−1, respectively. Set Ci =
〈s0, Ai, a0, ra1, P1, u1, ru2, U1(ru2, vk−3), vk−3, rvk−2, Pk−2,
uk−2, ruk−1, Pk−1, lbk−1, b0, B

i, s0〉 for 0 ≤ i ≤ r − 1.
Then, the r MIHCs are C0, C1, · · ·, Cr−1 which pass through
the fixed edge (a0, ra1).

Now, we consider the (r + 1)-th MIHC of CCNk be-
ginning at s0. We choose distinct vertices ci, di ∈ Gi for
2 ≤ i ≤ k − 3 such that (ci−1, di) ∈ E(CCNk) for
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3 ≤ i ≤ k − 3. Since Gi is 1-vertex-fault-tolerant hamil-
tonian connected for 2 ≤ i ≤ k − 3, let Ux(c2, dk−3) =
〈c2, Q2, d2, c3, Q3, d3, · · · , ck−3, Qk−3, dk−3〉, where Qi is a
hamiltonian path of Ci − {lk−i−1xi} between ci and di for
2 ≤ i ≤ k − 3. In Gk−1, choose a vertex xk−1 which is
adjacent to lsk−1 and xk−1 �= lbk−1. Since Gk−1 is 1-vertex-
fault-tolerant hamiltonian connected, there is a hamiltonian
path Tk−1 of Gk−1 − {lsk−1} between lak−1 and xk−1.
W.L.O.G., Tk−1 can be written as 〈lak−1, Qk−1, yk−1, xk−1〉.
Let dk−2 be any vertex in Gk−2 − {lxk−2, l

2ak−2}. Using
the 1-vertex-fault-tolerant hamiltonian connected property of
G0, G1 and Gk−2, there exist three hamiltonian paths Q0,
Q1 and Qk−2 of G0 − {s0}, G1 − {rs1} and G2 − {lx2}
from ry0 to a0, ra1 to lk−2x1 and dk−2 to l2ak−2, respec-
tively. And let XQ = 〈lk−3x2, l

k−4x3, · · · , lxk−2〉. Let Cr =
〈s0, rs1, r2s2, Ux(r

2s2, ldk−2), ldk−2), dk−2, Qk−2, l
2ak−2,

lak−1, Qk−1, yk−1, ry0, Q0, a0, ra1, Q1, l
k−2x1, l

k−3x2, XQ,
lxk−2, xk−1, lsk−1, s0〉. Therefore, Cr is mutually indepen-
dent of the first r MIHCs C0, C1, · · ·, Cr−1 and passes the
fixed edge (a0, ra1).

Finally, we construct the last MIHC of CCNk beginning
at s0. We choose distinct vertices wi, zi ∈ Gi for
2 ≤ i ≤ k − 3 such that (wi−1, zi) ∈ E(CCNk) for
3 ≤ i ≤ k− 3. Since Gi is 1-vertex-fault-tolerant hamiltonian
connected for 2 ≤ i ≤ k − 3, let Ux(w2, zk−3) =
〈w2, R2, z2, w3, R3, z3, · · · , wk−3, Rk−3, zk−3〉, where Ri is
a hamiltonian path of Ci − {risi} between wi and zi for
2 ≤ i ≤ k − 3. Let w1, wk−2 and zk−1 be any three vertices
in G1, Gk−2 and Gk−1, where zk−1 is not adjacent to a0.
There exist a hamiltonian path Rk−2 joining from l2sk−2 to
wk−2 in Gk−2. Using the 1-vertex-fault-tolerant hamiltonian
connected property of G0, G1 and Gk−1, there exist three
hamiltonian paths R0, R1 and Rk−1 of G0−{s0}, G1−{rs1}
and Gk−1−{lsk−1} from rz0 to a0, ra1 to w1 and rwk−1 to
zk−1, respectively. Let SR = 〈rk−3sk−3, r

k−2sk−2, · · · , rs1〉,
and zk−3 be adjacent to rk−3sk−3. We let Cr+1 =
〈s0, lsk−1, l

2sk−2, Rk−2, wk−2, rwk−1, Rk−1, zk−1, rz0, R0,
a0, ra1, R1, w1, rw2, Us(rw2, zk−3), zk−3, r

k−3sk−3, SR, rs1,
s0〉. To avoid the collision of U1(ru2, vk−3) and
Us(rw2, zk−3), which means |SR|+ |Rk−3| ≤ |Bi|+ |Pk−1|+
|Pk−1|, we have (k−3)+(n−1) ≤ 1+n+n ⇒ k ≤ n+5.
So, Cr+1 is mutually independent of the first r + 1 MIHCs
C0, C1, · · ·, Cr and passes the fixed edge (a0, ra1). See
Figure 4 for an illustration.

Ci

0 i r-1

s0 Ai a0 ra1 P1

G1

u1 ru2

G2

Pk-3U1(ru2,vk-3)

Gk-3

vk-3 rvk-2

Gk-2

Pk-2
uk-2

Gk-1

Pk-1ruk-1
lbk-1 b0 Bi

s0P2

lsk-1

Cr+1 Gk-2
G2 –{r2s2} Gk-3 –{rk-3sk-3} rk-3sk-3

s0 Rk-2
wk-2

Gk-1 –{lsk-1}

rwk-1
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Fig. 4. An illustration of Theorem 4 .

III. CONCLUSION

Let k ≥ 4, n ≥ 6, r ≥ 2 be integers and Gi be a r-
regular graph with n vertices for 0 ≤ i ≤ k − 1. In this
paper, we prove that under a much weaker condition than [5],

given any vertex u of the cycle composition network CCNk =
CCN(G0, G1, . . . , Gk−1;M), there exist (r + 2) hamiltonian
cycles in CCNk beginning at u such that the (r+2) cycles are
mutually independent. The result is optimal since each vertex
of the cycle composition network has exactly (r+2) neighbors.
It is known that many well-known interconnection networks,
such as k-ary n-cubes, recursive circulant graphs G(cdm, d),
generalized recursive circulant graphs G(hk, hk−1, . . . , h1),
circulant graphs C(n : c1, c2, . . . , ck) and so on, belong to the
family of the cycle composition networks. To our knowledge,
the above results of G(cdm, d), G(hk, hk−1, . . . , h1) and
C(n : c1, c2, . . . , ck) have not been published yet. Our study
has established the existence of MIHCs in these three families
as long as the conditions of Theorem 4 are verified.
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