An Improved Construction Method for MIHCs on Cycle Composition Networks

Hsun Su, Yuan-Kang Shih, and Shin-Shin Kao

Abstract

Many well-known interconnection networks, such as k ary n-cubes, recursive circulant graphs, generalized recursive circulant graphs, circulant graphs and so on, are shown to belong to the family of cycle composition networks. Recently, various studies about mutually independent hamiltonian cycles, abbreviated as MIHC's, on interconnection networks are published. In this paper, using an improved construction method, we obtain MIHC's on cycle composition networks with a much weaker condition than the known result. In fact, we established the existence of MIHC's in the cycle composition networks and the result is optimal in the sense that the number of MIHC's we constructed is maximal.

Keywords—Hamiltonian cycle, k-ary n-cube, cycle composition networks, mutually independent.

I. Introduction and Preliminaries

The architecture of an interconnection network is usually represented by a graph, in which vertices and edges correspond to processors and communication links, respectively. Thus, we use the terms graph and network interchangeably.
For the graph definitions and notations, we follow [1]. A graph G consists of a nonempty set $V(G)$ and a subset $E(G)$ of $\{(u, v) \mid(u, v)$ is an unordered pair of $V(G)\}$. The set $V(G)$ is called the vertex set of G and $E(G)$ is called the edge set. Two vertices u and v are adjacent if $(u, v) \in E(G)$. For a vertex u of G, we denote the degree of u by $\operatorname{deg}(u)=$ $|\{v \mid(u, v) \in E(G)\}|$. A graph G is r-regular if for every vertex $u \in G, \operatorname{deg}(u)=r$.

A matching of size n in a graph G is a set of n edges with no shared endpoints. The vertices belonging to the edges of a matching are saturated by the matching; the others are unsaturated. A perfect matching is a matching that saturates every vertex of G.
A path is represented by a finite sequence of vertices $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\rangle$, where every two consecutive vertices are adjacent. The length of a path P is the number of edges in P. We write the path $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ as $\left\langle v_{0}, v_{1}, \ldots, v_{s}, P_{1}, v_{i}, \ldots, v_{j}, P_{2}, v_{t}, \ldots, v_{n}\right\rangle$, where $P_{1}=$ $\left\langle v_{s}, v_{s+1}, \ldots, v_{i}\right\rangle$ and $P_{2}=\left\langle v_{j}, v_{j+1}, \ldots, v_{t}\right\rangle$. A hamiltonian path between u and v, where u and v are two distinct vertices of G, is a path joining u to v that visits every vertex of G exactly once. Two paths $P_{1}=\left\langle u_{0}, u_{1}, \ldots, u_{m}\right\rangle$ and $P_{2}=\left\langle v_{0}, v_{1}, \ldots, v_{m}\right\rangle$ from a to b are independent if $u_{0}=v_{0}=a, u_{m}=v_{m}=b$, and $u_{i} \neq v_{i}$ for
H. Su and $\mathrm{S} .-\mathrm{S}$. Kao are with the Department of Applied Mathematics, Chung-Yuan Christian University, Chungli, Taiwan 32023, R.O.C
H. Su is with Department of Public Finance and Taxation, Takming University of Science and Technology, Taipei City, Taiwan 11451, R.O.C.
Y.-K. Shih is with the Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan 30010, R.O.C.
$1 \leq i \leq m-1$ [9]. In [6], two paths $P_{1}^{\prime}=\left\langle u_{0}, u_{1}, \ldots, u_{m}\right\rangle$ and $P_{2}^{\prime}=\left\langle v_{0}, v_{1}, \ldots, v_{m}\right\rangle$ are full-independent if $u_{i} \neq v_{i}$ for all $0 \leq i \leq m$. Paths with the same number of vertices are mutually independent(resp. mutually full-independent) if every two different paths are independent(resp. full-independent). A graph G is hamiltonian connected if there is a hamiltonian path joining any two distinct vertices of G. A graph G is called 1 -vertex-fault-tolerant hamiltonian connected if it remains hamiltonian connected after removing any vertex in G.
A cycle is a path of at least three vertices such that the first vertex is the same as the last vertex. A hamiltonian cycle of G is a cycle that traverses every vertex of G exactly once. A hamiltonian graph is a graph with a hamiltonian cycle. The length of a cycle C is the number of edges/vertices in C. Two cycles $C_{1}=\left\langle u_{0}, u_{1}, \ldots, u_{k}, u_{0}\right\rangle$ and $C_{2}=\left\langle v_{0}, v_{1}, \ldots, v_{k}, v_{0}\right\rangle$ beginning at s are independent if $u_{0}=v_{0}=s$ and $u_{i} \neq v_{i}$ for $1 \leq i \leq k$ [11]. Cycles beginning at s with the same length are mutually independent if every two different cycles are independent. A graph G is said to contain n MIHCs if there exist n hamiltonian cycles in G beginning at any vertex s such that the n cycles are mutually independent. There are numerous studies in MIHCs. Readers can refer to [7]-[15].
In 2008, Kueng et al. introduced the cycle composition networks [4], abbreviated as CCN's. Let $k \geq 4, n \geq 6$, $r \geq 2$ be integers, and G_{i} be a r-regular graph with n vertices for $0 \leq i \leq k-1$. From now on, all additions and subtractions are considered modulo k. Let $M_{i, j}$ be an arbitrary perfect matching between the vertices of G_{i} and those of G_{j} and $\mathcal{M}=\bigcup_{i=0}^{k-1} M_{i, i+1}$. The cycle composition network $\tilde{G}=\operatorname{CCN}\left(G_{0}, G_{1}, \ldots, G_{k-1} ; \mathcal{M}\right)$ is defined to be the graph with the vertex set $V(\tilde{G})=\bigcup_{i=0}^{k-1} V\left(G_{i}\right)$ and the edge set $E(\tilde{G})=\bigcup_{i=0}^{k-1}\left(E\left(G_{i}\right)\right) \cup \mathcal{M}$. We abbreviate $\operatorname{CCN}\left(G_{0}, G_{1}, \ldots, G_{k-1} ; \mathcal{M}\right)$ as CCN_{k}. See Figure 1 for an illustration. Many well-known interconnection networks, such as k-ary n-cubes, recursive circulant graphs, generalized recursive circulant graphs, circulant graphs and so on, are shown to belong to the family of CCN's. Hence, CCN's have attracted many studies and research interests [2]-[4].
Suppose that each G_{i} contains r MIHCs. More precisely, for any vertex s_{i} of G_{i}, where $0 \leq i \leq k-1$, there exist r hamiltonian cycles in G_{i} beginning at the vertex s_{i} such that the r cycles are mutually independent in G_{i}. Is it true that $\tilde{G}=\operatorname{CCN}\left(G_{0}, G_{1}, \ldots, G_{k-1} ; \mathcal{M}\right)$ contains $(r+2)$ MIHCs? In [5], M.-F. Hsieh et. al. derived the following result.

Theorem 1: For $k \geq 6$, let $\left\{G_{i}\right\}_{i=0}^{k-1}$ be $k r$-regular hamil-

Fig. 1. An illustration for $\operatorname{CCN}_{k}=\operatorname{CCN}\left(G_{0}, G_{1}, \ldots, G_{k-1} ; \mathcal{M}\right)$.
tonian graphs with n vertices. Suppose that each G_{i} contains r MIHCs and r mutually full-independent hamiltonian paths between any r pairs of distinct vertices of G_{i}, and is 1 -vertex-fault-tolerant hamiltonian connected. Then there exist $r+2$ MIHCs in CCN_{k}.

Obviously, each vertex of \tilde{G} has exactly $r+2$ neighbors. However, the requirement that each G_{i} contains r mutually full-independent hamiltonian paths between any r pairs of vertices of G_{i} seems to be unnecessarily strict. Besides, to check whether this requirement is satisfied on each G_{i} is a difficult task. Consequently, Theorem 1 is of little practical use. In this paper, using a different construction scheme, we are able to achieve the same result with a much weaker condition on G_{i}. (See Theorem 4).
The following notations are defined for the rest of the paper. Let u_{i} be a vertex of G_{i} for some i. We use $l^{j} u_{i-j}$ to denote the vertex of G_{i-j} such that there exists a path in \mathcal{M} of the form $\left\langle u_{i}, l u_{i-1}, l^{2} u_{i-2}, \ldots, l^{j} u_{i-j}\right\rangle$. Similarly, we use $r^{j} u_{i+j}$ to denote the vertex of G_{i+j} such that there exists a path in \mathcal{M} of the form $\left\langle u_{i}, r u_{i+1}, r^{2} u_{i+2}, \ldots, r^{j} u_{i+j}\right\rangle$. W.L.O.G., let $u \in$ G_{0} and $u=u_{0}$. See Figure 1 for an illustration. It is possible that there exists a cycle beginning at u with the length k of the form $\left\langle u=u_{0}, r u_{1}, r^{2} u_{2}, \ldots, r^{k-2} u_{k-2}, r^{k-1} u_{k-1}, u_{0}\right\rangle$. More specifically, $r^{i} u_{i}=l^{k-i} u_{i-k}$ for any $1 \leq i \leq k-1$.

II. Main Results

Let $k \geq 4$ and $n \geq 6$. Throughout this section, we use the symbol $C C N_{k}$ for $C C N\left(G_{0}, G_{1}, \ldots, G_{k-1} ; \mathcal{M}\right)$, which is a cycle composition network composed of k graphs $\left\{G_{i} \mid G_{i}\right.$ is a r-regular graph with $\left|G_{i}\right|=n$ for $\left.0 \leq i \leq k-1\right\}$ and k perfect matchings $\mathcal{M}=\bigcup_{i=0}^{k-1} M_{i, i+1}$, for simplicity.

Lemma 1: Consider any $C C N_{k}$. Suppose that G_{0} contains r MIHCs beginning at any given vertex, denoted by $\left\{\overline{C_{0}^{i}}\right.$ $0 \leq i \leq r-1\}$, and there exists some edge $\left(a_{0}, b_{0}\right)$ such that $\left(a_{0}, b_{0}\right) \in \overline{C_{0}^{i}}$ for all $0 \leq i \leq r-1$. Let $a_{1} \in V\left(G_{1}\right)$ and
$b_{r-1} \in V\left(G_{r-1}\right)$ be arbitrary. If there is a path P between a_{1} and b_{r-1} such that P visits each vertex of $\bigcup_{i=1}^{k-1} G_{i}$ in $C C N_{k}$ exactly once, then $C C N_{k}$ contins r MIHCs starting with any vertex in G_{0} and passing through a common edge.

Proof: W.L.O.G., let $s_{0} \in V\left(G_{0}\right)$ be the beginning vertex. Obviously, for $1 \leq i \leq r-1, \bar{C}_{0}^{i}$ is of the form $\left\langle s_{0}, A^{i}, a_{0}, b_{0}, B^{i}, s_{0}\right\rangle$, where A^{i} and B^{i} are two disjoint paths in G_{0} such that A^{i} is between s_{0} and a_{0}, B^{i} is between b_{0} and s_{0}, and $A_{i} \bigcup B_{i}=V\left(G_{0}\right)$. Since $\left\{\overline{C_{0}^{i}} \mid 0 \leq i \leq r-1\right\}$ are MIHCs in G_{0}, it must be $\left|A_{i}\right| \neq\left|A_{j}\right|$ and $\left|B_{i}\right| \neq\left|B_{j}\right|$ for $i \neq j$. Otherwise, a_{0} or b_{0} might appear at the same timestep on different \bar{C}_{0}^{i} 's.

Note that $r a_{1} \in V\left(G_{1}\right)$ and $l b_{r-1} \in V\left(G_{r-1}\right)$. It is known that there is a path P between $r a_{1}$ and $l b_{r-1}$ such that P visits every vertex of $\bigcup_{i=1}^{k-1} G_{i}$ in $C C N_{k}$ exactly once. Let $C_{i}=\left\langle s_{0}, A^{i}, a_{0}, r a_{1}, P, l b_{r-1}, b_{0}, B^{i}, s_{0}\right\rangle$. It is easy to see that $\left\{C_{i} \mid 1 \leq i \leq r-1\right\}$ forms a set of r MIHCs of $C C N_{k}$, and each C_{i} contains the edge ($a_{0}, r a_{1}$), which is the common edge.

Theorem 2: Consider $C C N_{4}$. For $0 \leq i \leq 3$, suppose that G_{i} satisfies the following two requirements - (1) G_{i} is 1-vertex-fault-tolerant hamiltonian connected. (2) Starting from any vertex of G_{i}, there exist r MIHCs passing through a common edge of G_{i}. Then CCN_{4} contains $r+2$ MIHCs passing through a common edge.

Proof: W.L.O.G., let s_{0} be an arbitrary vertex of G_{0}. We want to construct $r+2$ MIHCs starting at s_{0} in $C C N_{4}$. It is known that G_{0} contains r MIHCs beginning at s_{0} and passing through a common edge of G_{0}. Let u_{1} and v_{2} be any two vertices in G_{1} and G_{2}, respectively. Since G_{i} is hamiltonian connected, there exist three hamiltonian paths P_{1}, P_{2} and P_{3}, such that P_{1} connects $r a_{1}$ and u_{1} in G_{1}, P_{2} connects $r u_{2}$ and v_{2} in G_{2}, and P_{3} connects $r v_{3}$ and $l b_{3}$ in G_{3}. Then $P=$ $\left\langle r a_{1}, P_{1}, u_{1}, r u_{2}, P_{2}, v_{2}, r v_{3}, P_{3}, l b_{3}\right\rangle$ is a path between $r a_{1}$ and $l b_{3}$ that visits each vertex of $\left\{G_{i} \mid 1 \leq i \leq 3\right\}$ exactly once. By Lemma $1, C C N_{4}$ contains r MIHCs, denoted by $\left\{C_{i} \mid 0 \leq i \leq r-1\right\}$, and each C_{i} contains the common edge ($a_{0}, r a_{1}$).
Now, we construct the $(r+1)$-th MIHC of $C C N_{4}$ beginning at s_{0}. In G_{3}, choose a vertex x_{3} which is adjacent to $l s_{3}$ and $x_{3} \neq l b_{3}$. Since G_{3} is 1 -vertex-fault-tolerant hamiltonian connected, there is a hamiltonian path T_{3} of $G_{3}-\left\{l s_{3}\right\}$ between $l a_{3}$ and x_{3}. We can write T_{3} as $\left\langle l a_{3}, Q_{3}, y_{3}, x_{3}\right\rangle$. Since G_{i} is 1 -vertex-fault-tolerant hamiltonian connected, $G_{0}-\left\{s_{0}\right\}$ contains a hamiltonian path Q_{0} that connects $r y_{0}$ and $a_{0}, G_{1}-\left\{r s_{1}\right\}$ contains a hamiltonian path Q_{1} that connects $r a_{1}$ and $l^{2} x_{1}$, and $G_{2}-\left\{l x_{2}\right\}$ contains a hamiltonian path Q_{2} that connects $r^{2} s_{2}$ and $l^{2} a_{2}$. Let $C_{r}=$ $\left\langle s_{0}, r s_{1}, r^{2} s_{2}, Q_{2}, l^{2} a_{2}, l a_{3}, Q_{3}, y_{3}, r y_{0}, Q_{0}, \underline{a_{0}, r a_{1}}, Q_{1}, l^{2} x_{1}\right.$, $\left.l x_{2}, x_{3}, l s_{3}, s_{0}\right\rangle$. It is easy to see that $\overline{C_{r}}$ is mutually independent of the r MIHCs $\left\{C_{i} \mid 0 \leq i \leq r-1\right\}$ constructed by Lemma 1, and C_{r} passes through the edge $\left(a_{0}, r a_{1}\right)$, which is underlined in C_{r}.

Finally, we construct the $(r+2)$-th MIHC of $C C N_{4}$ beginning at s_{0}. In G_{2}, choose a vertex w_{2} such that w_{2} is adjacent to $r^{2} s_{2}$ and $w_{2} \neq l x_{2}$. Choose another vertex z_{2} in G_{2} such that $z_{2} \neq r^{2} a_{2}$ and $z_{2} \neq r^{2} s_{2}$. Since G_{3} is hamil-
tonian connected, there exists a hamiltonian path R_{3} of G_{3} that connects $l s_{3}$ and $r z_{3}$. Since G_{i} is 1 -vertex-fault-tolerant hamiltonian connected, $G_{0}-\left\{s_{0}\right\}$ contains a hamiltonian path R_{0} between $r^{2} z_{0}$ and $a_{0}, G_{1}-\left\{r s_{1}\right\}$ contains a hamiltonian path R_{1} between $r a_{1}$ and $l z_{1}$, and $G_{2}-\left\{r^{2} s_{2}\right\}$ contains a hamiltonian path R_{2} between z_{2} and w_{2}. Let $C_{r+1}=$ $\left\langle s_{0}, l s_{3}, R_{3}, r z_{3}, r^{2} z_{0}, R_{0}, a_{0}, r a_{1}, R_{1}, l z_{1}, z_{2}, R_{2}, w_{2}, r^{2} s_{2}\right.$, $\left.r s_{1}, s_{0}\right\rangle$. Consequently, C_{r+1} is mutually independent of $\left\{C_{i} \mid\right.$ $0 \leq i \leq r\}$ constructed above and passes through the common edge $\left(a_{0}, r a_{1}\right)$, which is underlined. See Figure 2 for an illustration.
C_{i}
$0 \leq$

C_{r+1}	G_{3}	$G_{0}-\left\{s_{0}\right\}$			$G_{l}-\left\{r s_{l}\right\}$			G_{2}	$r^{2} s_{2}$
	R_{3}	$r^{2} r_{3} r^{2} z_{0}$	R_{0}	a_{0}	ra	R_{I}	$1 z_{1} z_{2}$	R_{2}	

Fig. 2. An illustration of Theorem 2 .
Theorem 3: Suppose that $C C N_{5}$ is constructed by five r regular graphs G_{i} with n vertices for $0 \leq i \leq 4$, and each G_{i} is 1 -vertex-fault-tolerant hamiltonian connected and contains r MIHCs passing through a fixed edge from any vertex of G_{i}. Then $C C N_{5}$ contains $r+2$ MIHCs passing through a fixed edge.

Proof: W.L.O.G., we let s_{0} be the beginning vertex and $\bar{C}_{0}^{0}, \bar{C}_{0}^{1}, \cdots, \bar{C}_{0}^{r-1}$ be the r MIHCs beginning at s_{0} and passing through the fixed edge $\left(a_{0}, b_{0}\right)$ in G_{0}. Hence we can write \bar{C}_{0}^{i} as $\left\langle s_{0}, A^{i}, a_{0}, b_{0}, B^{i}, s_{0}\right\rangle$ for $0 \leq i \leq r-1$. We will construct the $r+2$ MIHCs beginning at s_{0} and passing through a fixed edge in CCN_{5}.

Consider the first r MIHCs of $C C N_{5}$ beginning at s_{0}. Let u_{1}, v_{2} and u_{3} be any three vertices in G_{1}, G_{2} and G_{3}, respectively. There exist four hamiltonian paths P_{1}, P_{2}, P_{3} and P_{4} joining from $r a_{1}$ to $u_{1}, r u_{2}$ to $v_{2}, r v_{3}$ to u_{3} and $r u_{4}$ to $l b_{4}$ in G_{1}, G_{2}, G_{3} and G_{4}, respectively. Set $C_{i}=\left\langle s_{0}, A^{i}, a_{0}, r a_{1}, P_{1}, u_{1}, r u_{2}, P_{2}, v_{2}, r v_{3}, P_{3}, u_{3}\right.$, $\left.r u_{4}, P_{4}, l b_{4}, b_{0}, B^{i}, s_{0}\right\rangle$ for $0 \leq i \leq r-1$. Then, the r MIHCs are $C_{0}, C_{1}, \cdots, C_{r-1}$, which pass through the fixed edge $\left(a_{0}, r a_{1}\right)$.

Now, we consider the $(r+1)$-th MIHC of $C C N_{5}$ beginning at s_{0}. In G_{4}, choose a vertex x_{4} which is adjacent to $l s_{4}$ and $x_{4} \neq l b_{4}$. Since G_{4} is 1 -vertex-fault-tolerant hamiltonian connected, there is a hamiltonian path T_{4} of $G_{4}-\left\{l s_{4}\right\}$ between $l a_{4}$ and x_{4}. W.L.O.G., T_{4} can be written as $\left\langle l a_{4}, Q_{4}, y_{4}, x_{4}\right\rangle$. In G_{3}, choose a vertex $l x_{3} \neq r^{3} s_{3}$. If $l x_{3}=r^{3} s_{3}$, we have to choose another vertex x_{4}, which is adjacent to $l s_{4}$, for $l x_{3} \neq r^{3} s_{3}$. Since G_{3} is 1 -vertex-fault-tolerant hamiltonian connected, there is a hamiltonian path Q_{3} of $G_{3}-\left\{l x_{3}\right\}$ between $r d_{3}$ and $l^{2} a_{3}$, it can be written as $\left\langle r d_{3}, Q_{3}, l^{2} a_{3}\right\rangle$. Let d_{2} be any vertex in G_{2} not adjacent to $l^{2} a_{3}$. Using the 1-vertex-fault-tolerant hamiltonian connected property of G_{0}, G_{1} and G_{2}, there exist three hamiltonian paths Q_{0}, Q_{1} and
Q_{2} of $G_{0}-\left\{s_{0}\right\}, G_{1}-\left\{r s_{1}\right\}$ and $G_{2}-\left\{l^{2} x_{2}\right\}$ from $r y_{0}$ to $a_{0}, r a_{1}$ to $l^{3} x_{1}$ and $r^{2} s_{2}$ to d_{2}, respectively. Let $C_{r}=$ $\left\langle s_{0}, r s_{1}, r^{2} s_{2}, Q_{2}, d_{2}, r d_{3}, Q_{3}, l^{2} a_{3}, l a_{4}, Q_{4}, y_{4}, r y_{0}, Q_{0}\right.$,
$\left.a_{0}, r a_{1}, Q_{1}, l^{3} x_{1}, l^{2} x_{2}, l x_{3}, x_{4}, l s_{4}, s_{0}\right\rangle$. Therefore, C_{r} is mutually independent of the first r MIHCs $C_{0}, C_{1}, \cdots, C_{r-1}$ and passes the fixed edge $\left(a_{0}, r a_{1}\right)$.

Finally, we consider the last MIHC of $C C N_{5}$ beginning at s_{0}. Let w_{1}, z_{2} and w_{4} be any three vertices in G_{1}, G_{2} and G_{4}, where w_{4} is not adjacent to a_{0} and z_{2} is not adjacent to $r^{3} s_{3}$. There exist two hamiltonian paths R_{3} and R_{4} joining from $r z_{3}$ to $r^{3} s_{3}$ and $l s_{4}$ to w_{4} in G_{3} and G_{4}. And using the 1 -vertex-fault-tolerant hamiltonian connected property of G_{0}, G_{1} and G_{2}, there exist three hamiltonian paths R_{0}, R_{1} and R_{2} of $G_{0}-\left\{s_{0}\right\}, G_{1}-\left\{r s_{1}\right\}$ and $G_{2}-\left\{r^{2} s_{2}\right\}$ from $r w_{0}$ to $a_{0}, r a_{1}$ to w_{1} and $r w_{2}$ to z_{2}, respectively. We let $C_{r+1}=$ $\left\langle s_{0}, l s_{4}, R_{4}, w_{4}, r w_{0}, R_{0}, a_{0}, r a_{1}, R_{1}, w_{1}, r w_{2}, R_{2}, z_{2}, r z_{3}, R_{3}\right.$, $\left.r^{3} s_{3}, r^{2} s_{2}, r s_{1}, s_{0}\right\rangle$. So, $\overline{C_{r+1}}$ is mutually independent of the first $r+1$ MIHCs $C_{0}, C_{1}, \cdots, C_{r}$ and passes the fixed edge $\left(a_{0}, r a_{1}\right)$. See Figure 3 for an illustration.

Fig. 3. An illustration of Theorem 3 .
Theorem 4: Suppose that $C C N_{k}$ is constructed by $k r$ regular graphs G_{i} with n vertices for $0 \leq i \leq k-1$. If each G_{i} is 1-vertex-fault-tolerant hamiltonian connected and contains r MIHCs passing through a fixed edge from any vertex of G_{i}, then $C C N_{k}$ contains $r+2$ MIHCs passing through a fixed edge.

Proof: W.L.O.G., we let s_{0} be the beginning vertex and $\bar{C}_{0}^{0}, \bar{C}_{0}^{1}, \cdots, \bar{C}_{0}^{r-1}$ be the r MIHCs beginning at s_{0} and passing through the fixed edge $\left(a_{0}, b_{0}\right)$ in G_{0}. Hence we can write \bar{C}_{0}^{i} as $\left\langle s_{0}, A^{i}, a_{0}, b_{0}, B^{i}, s_{0}\right\rangle$ for $0 \leq i \leq r-1$. We will construct the $r+2$ MIHCs beginning at s_{0} passing through a fixed edge in $C C N_{k}$.

Consider the first r MIHCs of $C C N_{k}$ beginning at s_{0}. We choose distinct vertices $u_{i}, v_{i} \in G_{i}$ for $2 \leq i \leq k-3$ such that $\left(v_{i-1}, u_{i}\right) \in E\left(C C N_{k}\right)$ for $3 \leq i \leq k-3$. Let $U_{1}\left(u_{2}, v_{k-3}\right)=$ $\left\langle u_{2}, P_{2}, v_{2}, u_{3}, P_{3}, v_{3}, \cdots, u_{k-3}, P_{k-3}, v_{k-3}\right\rangle$, where P_{i} is a hamiltonian path of C_{i} between u_{i} and v_{i} for $2 \leq i \leq k-3$. Let u_{1} and u_{k-2} be any two vertices in G_{1} and G_{k-2}, respectively. There exist three hamiltonian paths P_{1}, P_{k-2} and P_{k-1} joining from $r a_{1}$ to $u_{1}, r v_{k-2}$ to u_{k-2} and $r u_{k-1}$ to $l b_{k-1}$ in G_{1}, G_{k-2} and G_{k-1}, respectively. Set $C_{i}=$ $\left\langle s_{0}, A^{i}, \underline{a_{0}, r a_{1}}, P_{1}, u_{1}, r u_{2}, U_{1}\left(r u_{2}, v_{k-3}\right), v_{k-3}, r v_{k-2}, P_{k-2}\right.$, $\left.u_{k-2}, r \bar{u}_{k-1}, P_{k-1}, l b_{k-1}, b_{0}, B^{i}, s_{0}\right\rangle$ for $0 \leq i \leq r-1$. Then, the r MIHCs are $C_{0}, C_{1}, \cdots, C_{r-1}$ which pass through the fixed edge $\left(a_{0}, r a_{1}\right)$.

Now, we consider the $(r+1)$-th MIHC of $C C N_{k}$ beginning at s_{0}. We choose distinct vertices $c_{i}, d_{i} \in G_{i}$ for $2 \leq i \leq k-3$ such that $\left(c_{i-1}, d_{i}\right) \in E\left(C C N_{k}\right)$ for
$3 \leq i \leq k-3$. Since G_{i} is 1-vertex-fault-tolerant hamiltonian connected for $2 \leq i \leq k-3$, let $U_{x}\left(c_{2}, d_{k-3}\right)=$ $\left\langle c_{2}, Q_{2}, d_{2}, c_{3}, Q_{3}, d_{3}, \cdots, c_{k-3}, Q_{k-3}, d_{k-3}\right\rangle$, where Q_{i} is a hamiltonian path of $C_{i}-\left\{l^{k-i-1} x_{i}\right\}$ between c_{i} and d_{i} for $2 \leq i \leq k-3$. In G_{k-1}, choose a vertex x_{k-1} which is adjacent to $l s_{k-1}$ and $x_{k-1} \neq l b_{k-1}$. Since G_{k-1} is 1-vertex-fault-tolerant hamiltonian connected, there is a hamiltonian path T_{k-1} of $G_{k-1}-\left\{l s_{k-1}\right\}$ between $l a_{k-1}$ and x_{k-1}. W.L.O.G., T_{k-1} can be written as $\left\langle l a_{k-1}, Q_{k-1}, y_{k-1}, x_{k-1}\right\rangle$. Let d_{k-2} be any vertex in $G_{k-2}-\left\{l x_{k-2}, l^{2} a_{k-2}\right\}$. Using the 1 -vertex-fault-tolerant hamiltonian connected property of G_{0}, G_{1} and G_{k-2}, there exist three hamiltonian paths Q_{0}, Q_{1} and Q_{k-2} of $G_{0}-\left\{s_{0}\right\}, G_{1}-\left\{r s_{1}\right\}$ and $G_{2}-\left\{l x_{2}\right\}$ from $r y_{0}$ to a_{0}, $r a_{1}$ to $l^{k-2} x_{1}$ and d_{k-2} to $l^{2} a_{k-2}$, respectively. And let $X_{Q}=\left\langle l^{k-3} x_{2}, l^{k-4} x_{3}, \cdots, l x_{k-2}\right\rangle$. Let $C_{r}=$ $\left\langle s_{0}, r s_{1}, r^{2} s_{2}, U_{x}\left(r^{2} s_{2}, l d_{k-2}\right), l d_{k-2}\right), d_{k-2}, Q_{k-2}, l^{2} a_{k-2}$, $l a_{k-1}, Q_{k-1}, y_{k-1}, r y_{0}, Q_{0}, \underline{a_{0}, r a_{1}}, Q_{1}, l^{k-2} x_{1}, l^{k-3} x_{2}, X_{Q}$, $\left.l x_{k-2}, x_{k-1}, l s_{k-1}, s_{0}\right\rangle$. Therefore, C_{r} is mutually independent of the first r MIHCs $C_{0}, C_{1}, \cdots, C_{r-1}$ and passes the fixed edge $\left(a_{0}, r a_{1}\right)$.
Finally, we construct the last MIHC of $C C N_{k}$ beginning at s_{0}. We choose distinct vertices $w_{i}, z_{i} \in G_{i}$ for $2 \leq i \leq k-3$ such that $\left(w_{i-1}, z_{i}\right) \in E\left(C C N_{k}\right)$ for $3 \leq i \leq k-3$. Since G_{i} is 1-vertex-fault-tolerant hamiltonian connected for $2 \leq i \leq k-3$, let $U_{x}\left(w_{2}, z_{k-3}\right)=$ $\left\langle w_{2}, R_{2}, z_{2}, w_{3}, R_{3}, z_{3}, \cdots, w_{k-3}, R_{k-3}, z_{k-3}\right\rangle$, where R_{i} is a hamiltonian path of $C_{i}-\left\{r^{i} s_{i}\right\}$ between w_{i} and z_{i} for $2 \leq i \leq k-3$. Let w_{1}, w_{k-2} and z_{k-1} be any three vertices in G_{1}, G_{k-2} and G_{k-1}, where z_{k-1} is not adjacent to a_{0}. There exist a hamiltonian path R_{k-2} joining from $l^{2} s_{k-2}$ to w_{k-2} in G_{k-2}. Using the 1-vertex-fault-tolerant hamiltonian connected property of G_{0}, G_{1} and G_{k-1}, there exist three hamiltonian paths R_{0}, R_{1} and R_{k-1} of $G_{0}-\left\{s_{0}\right\}, G_{1}-\left\{r s_{1}\right\}$ and $G_{k-1}-\left\{l s_{k-1}\right\}$ from $r z_{0}$ to $a_{0}, r a_{1}$ to w_{1} and $r w_{k-1}$ to z_{k-1}, respectively. Let $S_{R}=\left\langle r^{k-3} s_{k-3}, r^{k-2} s_{k-2}, \cdots, r s_{1}\right\rangle$, and z_{k-3} be adjacent to $r^{k-3} s_{k-3}$. We let $C_{r+1}=$ $\left\langle s_{0}, l s_{k-1}, l^{2} s_{k-2}, R_{k-2}, w_{k-2}, r w_{k-1}, R_{k-1}, z_{k-1}, r z_{0}, R_{0}\right.$, $a_{0}, r a_{1}, R_{1}, w_{1}, r w_{2}, U_{s}\left(r w_{2}, z_{k-3}\right), z_{k-3}, r^{k-3} s_{k-3}, S_{R}, r s_{1}$, $\left.s_{0}\right\rangle$. To avoid the collision of $U_{1}\left(r u_{2}, v_{k-3}\right)$ and $U_{s}\left(r w_{2}, z_{k-3}\right)$, which means $\left|S_{R}\right|+\left|R_{k-3}\right| \leq\left|B^{i}\right|+\left|P_{k-1}\right|+$ $\left|P_{k-1}\right|$, we have $(k-3)+(n-1) \leq 1+n+n \Rightarrow k \leq n+5$. So, C_{r+1} is mutually independent of the first $r+1$ MIHCs $C_{0}, C_{1}, \cdots, C_{r}$ and passes the fixed edge $\left(a_{0}, r a_{1}\right)$. See Figure 4 for an illustration.

Fig. 4. An illustration of Theorem 4.

III. Conclusion

Let $k \geq 4, n \geq 6, r \geq 2$ be integers and G_{i} be a r regular graph with n vertices for $0 \leq i \leq k-1$. In this paper, we prove that under a much weaker condition than [5],
given any vertex u of the cycle composition network $\mathrm{CCN}_{k}=$ $\operatorname{CCN}\left(G_{0}, G_{1}, \ldots, G_{k-1} ; \mathcal{M}\right)$, there exist $(r+2)$ hamiltonian cycles in CCN_{k} beginning at u such that the $(r+2)$ cycles are mutually independent. The result is optimal since each vertex of the cycle composition network has exactly $(r+2)$ neighbors. It is known that many well-known interconnection networks, such as k-ary n-cubes, recursive circulant graphs $G\left(c d^{m}, d\right)$, generalized recursive circulant graphs $G\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$, circulant graphs $C\left(n: c_{1}, c_{2}, \ldots, c_{k}\right)$ and so on, belong to the family of the cycle composition networks. To our knowledge, the above results of $G\left(c d^{m}, d\right), G\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ and $C\left(n: c_{1}, c_{2}, \ldots, c_{k}\right)$ have not been published yet. Our study has established the existence of MIHCs in these three families as long as the conditions of Theorem 4 are verified.

Acknowledgement

This work was supported in part by the National Science Council of the Republic of China under Contract NSC100-2115-M-033-005-. Corresponding to S.-S. Kao. Email: skao@math.cycu.edu.tw.

References

[1] J. A. Bondy and U. S. R Murty, Graph Theory with Applications, NorthHolland, New York, 1980.
[2] Y.-C. Chen, L.-H. Hsu and Jimmy J. M. Tan, A recursively construction scheme for super fault-tolerant hamiltonian graphs, Applied Mathematics and Computation, Vol. 177, pp.465-481, 2006.
[3] Y.-C. Chen, Jimmy J. M. Tan, L.-H. Hsu and S.-S. Kao, Superconnectivity and super-edge-connectivity for some interconnection networks, Applied Mathematice and Computation, Vol. 140, pp.245-254, 2003.
[4] T.-L. Kueng, C.-K. Lin, Tyne Liang, Jimmy J.M. Tan and L.-H. Hsu, Fault-tolerant hamiltonian connectedness of cycle composition networks, Applied Mathematice and Computation, Vol. 196, pp.245-256, 2008.
[5] M.-F. Hsieh, H. Su, S.-S. Kao, L.-Y. Hsu, and Y.-K. Shih, Mutually Independent Hamiltonian Cycles on Cycle Composition Networks, in Proceeding of 2011 International Conference on Data Engineering and Internet Technology (DEIT 2011), Bali, Indonesia, pp. 124-129.
[6] S.-Y. Hsieh, Fault-tolerant mutually independent Hamiltonian cycles embedding on hypercubes, in Proceedings of the First International Conference on Innovative Computing, Information and Control, 2, pp. 288-292, 2006.
[7] S.-Y. Hsieh and P.-Y. Yu, Fault-free Mutually Independent Hamiltonian Cycles in Hypercubes with Faulty Edges, Journal of Combinatorial Optimization, Vol. 13, pp.153-162, 2007.
[8] Kao, S.-S. Wang, P.-H.: Mutually independent Hamiltonian cycles in k -ary n -cubes when k is odd. In Proceedings of American Conference on Applied Mathematics, Harvard University, Boston, USA, 116-121 (2009).
[9] C.-K. Lin, H.-M. Huang, L.-H. Hsu and S. Bau, Mutually Independent Hamiltonian Paths in Star Networks, Networks, Vol. 46, pp.110-117, 2005.
[10] C.-K. Lin, Y.-K. Shih, Jimmy J. M. Tan, and L.-H. Hsu, Mutually Independent Hamiltonian Cycles in Some Graphs, Ars Combinatoria, accepted.
[11] C.-K. Lin, Jimmy J. M. Tan, H.-M. Huang, D. Frank Hsu, and L.-H. Hsu, Mutually Independent Hamiltonian Cycles for the Pancake Graphs and the Star Graphs, Discrete Mathematics, Vol. 309, pp.5474-5483, 2009.
[12] Y.-K. Shih, H.-C. Chuang, S.-S. Kao and Jimmy J. M. Tan, Mutually Independent Hamiltonian Cycles in dual-cubes, The Journal of Supercomputing, Vol. 54, pp. 239-251, 2010.
[13] Y.-K. Shih, C.-K. Lin, D. Frank Hsu, Jimmy J. M. Tan, and L.-H. Hsu, The Construction of Mutually Independent Hamiltonian Cycles in Bubble-Sort Graphs, International Journal of Computer Mathematics, Vol. 87, pp. 2212-2225, 2010.
[14] H. Su, J.-L. Pan and S.-S. Kao, Mutually Independent Hamiltonian Cycles in k-ary n-cubes when k is even, Computers and Electrical Engineering, Vol. 37, pp.319-331, 2011.
[15] C.-M. Sun, C.-K. Lin, H.-M. Huang and L.-H. Hsu, Mutually Independent Hamiltonian Paths and Cycles in Hypercubes, Journal of Interconnection Networks, Vol. 7, pp.235-255, 2006
[16] S. A. Wong, Hamiltonian cycles and paths in butterfly graphs, Networks, Vol. 26, pp.145-150, 1995.

Hsun Su received his Bachelor and Master Degree from Feng Chia University, Taiwan in 1987 and 1989, respectively. He has been working in the Department of Public Finance and Taxation, Takming University of Science and Technology since 1989 until now. His research interests include combinatorial optimization and graph theory in interconnection networks.

Yuan-Kang Shih received the B.S. degree in the Department of Mathematics from Fu Jen Catholic University, Hsinchuang, Taipei County, Taiwan, R.O.C. in 2004. He received his M.S. degree from the Department of Applied Mathematics from Chung Yuan Christian University, Chungli, Taiwan, R.O.C. in 2006. He is now a student in the Ph.D. program in the College of Computer Science in the National Chiao Tung University, Hsinchu, Taiwan, R.O.C. His research interests include interconnection networks, fault-tolerant problems, and graph theory.

Shin-Shin Kao received her Bachelor from National Tzing Hua University in Taiwan in 1990, and her Ph.D. from University of California, Los Angeles, USA in 1995. She has joined the Department of Applied Mathematics in Chung-Yuan Christian University in Taiwan since 1995 and is a full professor now. Her research interests include combinatorial optimization, interconnection networks, and graph theory.

