
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

267

Abstract—Stipples are desired for pattern fillings and

transparency effects. In contrast, some graphics standards, including
OpenGL ES 1.1 and 2.0, omitted this feature. We represent details of
providing line stipples and polygon stipples, through combining
texture mapping and alpha blending functions. We start from the
OpenGL-specified stipple-related API functions. The details of
mathematical transformations are explained to get the correct texture
coordinates. Then, the overall algorithm is represented, and its
implementation results are followed. We accomplished both of line
and polygon stipples, and verified its result with conformance test
routines.

Keywords—Stipple operation, OpenGL ES, Implementation.

I. INTRODUCTION
N the field of computer graphics, the line stippling means
applying the given patterns while drawing a line segment, as

shown in Fig. 1. Most of line stipples are used for drawing
dotted or dashed lines [1]. Without this feature, we need a huge
set of line segments to represent dotted or dashed lines, even
with remarkable efficiency degradation.

Fig. 1 Stippled line segments from our implementation

For the interior pixels of a polygon, the polygon stippling

controls the final decision of pixel output, at the final output
stage [1]. The polygon stipple patterns are used as a final stage
masking patterns. The user provides a black-white image as the
mask, and this small pattern is regularly repeated in the polygon
interior. This feature is imperatively necessary for the
implementation of the screen door transparency [2]. Fig. 2(c)
shows an example of screen door transparency effect, with the
mask of Fig. 2(b).

In the case of desktop-based original OpenGL, they provide

Prof. Nakhoon Baek is with the School of Computer Science and

Technology, Kyungpook National University, Daegu 702-701, Korea (e-mail:
oceancru@gmail.com).

This research is supported by Ministry of Culture, Sports and
Tourism(MCST) and Korea Creative Content Agency(KOCCA) in the Culture
Technology(CT) Research & Development Program(Immersive Game
Contents CT Co-Research Center).

all the features of such line stippling and polygon stippling.
However, in the area of mobile graphics applications, the target
systems of mobile phones and tablet PC’s have limited
resources, and they intensively removed these not yet widely
used features.

As the result, the typical mobile graphics standards,
including OpenGL ES 1.1 [3] and OpenGL ES 2.0 [4], do not
have any stippling support. In contrast, a considerable number
of applications still need the line stipple features and/or the
polygon stipple features.

In this paper, we represent a systematic way of realizing the
line stipple and the polygon stipple features, based on the fixed
graphics pipeline of OpenGL ES 1.1. At least to our best
knowledge, there has been no literature on the implementation
details of stipples.

In Section II, we start from our basic strategy, we show
internal transformation sequences and details of our
implemented algorithm. Our implementation results are
presented in Section III. Conclusions and future works are
followed in Section IV.

II. OUR STRATEGY
We used the texture mapping technique with alpha channels,

as the fundamental strategy. From the API functions for stipple
operations, we will explain the texture coordinate calculation
process in Section II B, and the overall algorithm is followed in
Section II C.

A. API Functions for Stipple Operations
To specify the stipple operations, we need some API

functions. As an example, we show the stipple-related API
functions from the OpenGL specification, as follows:

Line Stipple (int factor, ushort pattern);
The parameter factor specifies a multiplier for each bit in the

line stipple pattern. If factor is 3, for example, each bit in the
pattern is used three times before the next bit in the pattern is
used.

The parameter pattern specifies a 16-bit integer whose bit
pattern determines which pixels of a line will be drawn when
the line is rasterized.

Line stippling masks out certain fragments produced by
rasterization; those fragments will not be drawn.

Enable(LINE_STIPPLE);
Disable(LINE_STIPPLE);

Enables and disables the line stipple features, resepectively.

PolygonStipple (unsigned byte patter[4]);
The parameter pattern specifies a pointer to 32×32 stipple

Nakhoon Baek

An Implementation of Stipple Operations

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

268

pattern, as shown in Fig. 2(b). This pattern is used to masks out
certain pixels produced by rasterization, as shown in Fig. 2(c).
Notice that the original image shown in Fig. 2(a) is stippled
with the pattern in Fig. 2(b), to produce the masked pixels.

Enables and disables the polygon stipple features,
resepectively.

Now, we aim to implement all these API features
independently on OpenGL ES or other stipple-not-supported
graphics libraries.

B. Calculation of Texture Coordinates
To implement the stipple operations through texture

mapping process, we naturally need to calculate the suitable
texture coordinates for each vertex of geometric entities.
Typical 3D graphics libraries, such as OpenGL and DirectX,
manages their own full 3D geometry transformation pipelines,
and user-provided object coordinates (xobj, yobj, zobj, wobj) are
transformed to the final screen coordinates (xscr, yscr, zscr, 1), as
follows:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

obj

obj

obj

obj

scr

scr

scr

1 w
z
y
x

z
y
x

M (1)

where M is the internal transformation matrix. Then, we assign
the 2D texture coordinates (s, t) to the exactly same value of the
screen coordinate (xscr, yscr) as follows:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

scr

scr

y
x

t
s

, (2)

and we can accomplish the correct stipple results.

Only the technical problem is that the typical 3D graphics
libraries do not provide any method to get the finally calculated
screen coordinates, (xscr, yscr, zscr, 1). To overcome this technical
difficulty, we have implemented our own emulated 3D
transformation process, which works just as the system 3D
geometry transformation pipeline. For OpenGL applications, as
an example, we queried the contents of its internal modelview
matrix and the projection matrix, to calculate the overall
transformation matrix M. Then, we perform the geometric
transformation of Equation (1) for each vertex, and assign their
corresponding texture coordinates.

C. Overall Algorithm
The details of operation steps can be summarized as follows:
Step 0. Generate texture images from the line/polygon

stipple patterns, as the pre-processing step. They specify a 1D

pattern for the line stipples, while a 2D image pattern for
polygon stipples. We first reconstruct a 3D texture image from
these patterns, and store them into the graphics system. The
stipple pattern should be converted to an alpha-channel image,
where the alpha values are 1.0 for opaque pixels and 0.0 for
transparent pixels.

Step 1. From user-defined vertices, get the window
coordinates on the screen, based on the geometry pipeline
settings. First of all, the line stipples and polygon stipples are
specified in the final window coordinates. Thus, we need to
calculate the window coordinates for each of target vertices.
We simulate the geometric transformation pipeline, to finally
get the window coordinates from the original object
coordinates of target vertices.

Step 2. We set the corresponding texture coordinates, based
on the window coordinates. For each vertex of the given lines
and polygons, set its texture coordinate according to its window
coordinate. These texture coordinates are used to simulate the
stipple patterns with the texture mapping process.

Step 3. Draw the line or the polygon primitive, with
alpha-channeled texture.� As the final step, the output
primitives are processed with the alpha-blending feature
enabled. Thus, only the pixels with alpha values of 1.0 will be
rendered, which performs the actual stipple processing.

This algorithm steps are implemented to accomplish both of
line and polygon stipples. The implementation results are
followed in the next section.

III. IMPLEMENTATION RESULTS
We have implemented the line stipple and polygon stipple

API (application program interface) functions, according to the
OpenGL 2.1 specification [1], over the OpenGL ES 1.1
hardware, which lacks all the stippling operations. Our full
software implementation requires one texture unit wholly for
the stippling operations. Since typical OpenGL ES 1.1
hardware systems provide more than or equal to 4 texture units,
our requirement is not critical for most applications.

Fig. 1 shows the examples of the line stipple patterns
rendered by our implementation. As shown here, various kinds
of dotted and dashed lines are easily accomplished. Fig. 2, 3,
and 4 show the original image, the polygon stipple pattern, and
the final polygon-stippled image, respectively, as a good
example of the screen door transparency effect.

To approve the correctness of our implementation, we used
some selected tests from the official OpenGL-related
conformance test suites [5]. Our implementation finally passed
all these test routines.

Enable(POLYGON_STIPPLE);
 Disable(POLYGON_STIPPLE);

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

269

Fig. 2 Original Image

32 pixels

32 pixels

Fig. 3 A polygon stipple pattern

Fig. 4 An example polygon stipple image from our implementation

IV. CONCLUSION
Stipple patterns are still useful for the lines and polygons

drawing, in computer graphics area. In contrast, current
OpenGL ES graphics standards do not support these features,
mainly due to their limited hardware resources. In this paper,
we propose a systematic way of supporting these features. Our
implementation supports stippling operations specified in the
official OpenGL 2.1 standard, and its correctness is proven
with official conformance test routines.

ACKNOWLEDGMENT
This research is supported by Ministry of Culture, Sports and

Tourism (MCST) and Korea Creative Content Agency
(KOCCA) in the Culture Technology (CT) Research &
Development Program (Immersive Game Contents CT
Co-Research Center).

REFERENCES
[1] M. Segal and K. Akeley, The OpenGL Graphics System: A Specification,

Version 2.1, Dec 2006.
[2] J. D. Mulder, F. C. A. Groen, and J. J. van Wijk, “Pixel Masks for

Screen-Door Transparency”, Proc. of VIS’98, 1998.
[3] D. Blythe, OpenGL ES Common/Common-Lite Profile Specification,

Khronos Group, 2007.
[4] A. Munshi and J. Leech, OpenGL ES Common Profile Specification,

Version 2.0.24 (Full Specification), Apr 2009.
[5] OpenGL SC Conformance Test Suites, http://www.khronos.org/openglsc.

Nakhoon Baek is currently an associate professor in the School of Computer
Science and Engineering at Kyungpook National University, Korea. He
received his B.A., M.S., and Ph.D. degrees in Computer Science from Korea
Advanced Institute of Science and Technology (KAIST) in 1990, 1992, and
1997, respectively. His research interests include graphics standards, graphics
algorithms and real-time rendering. He is now also the Chief Engineer of
Mobile Graphics Inc., Korea.

