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Abstract In view of their importance and usefulness in 
reliability theory and probability distributions, several generalizations 
of the inverse Gaussian distribution and the Krätzel function are 
investigated in recent years. This has motivated the authors to 
introduce and study a new generalization of the inverse Gaussian 
distribution and the Krätzel function associated with a product of a 
Bessel function of the third kind )(zK  and a - Fox-Wright 
generalized hyper geometric function introduced in this paper. The 
introduced function turns out to be a unified gamma-type function. Its 
incomplete forms are also discussed. Several properties of this 
gamma-type function are obtained. By means of this generalized 
function, we introduce a generalization of inverse Gaussian 
distribution, which is useful in reliability analysis, diffusion 
processes, and radio techniques etc. The inverse Gaussian distribution 
thus introduced also provides a generalization of the Krätzel function. 
Some basic statistical functions associated with this probability 
density function, such as moments, the Mellin transform, the moment 
generating function, the  hazard rate function, and the mean residue 
life function are  also obtained.

Keywords Fox-Wright function, Inverse Gaussian distribution, 
Krätzel function & Bessel function of the third kind. 

I. INTRODUCTION 

HE Krätzel function )(xZ  is defined by   
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where  )(tK  is the Bessel function of the third kind or 
Macdonald function, as in [9].   

For  1 the function (1) was introduced by [20] as a 
kernel of the integral transform 

dttfxtZxfK )(
0

)())(( ; (x>0)

which is called by his name as the Krätzel function, as in [19], 
established asymptotic behavior of the function (1) for 1
together with the composition with a special differential 
operator. Reference [20] also defined a Bessel-type transform 
and obtained its properties by using the Mellin transform. This 
function is recently extended by [17] from x>0 to complex 

,Cz and its representations in terms of the well-known H-
function are established. The results obtained being different 
for > 0 and 0  are applied to derive explicit forms of 
Krätzel function in terms of the Fox-Wright generalized 
hypergeometric function.  

Note 1: We note that the integral (1) occurs in the study of 
astrophysical thermonuclear functions, which are derived on 
the basis of Boltzmann- Gibbs statistical mechanics. This 
integral has been evaluated by [21] by applying the statistical 
techniques. Recently a short and straightforward analytic 
proof of this integral is given by [26].  

Definition of   Fox-Wright generalized hypergeometric 
function: We define the Fox-Wright generalized 
hypergeometric function by means of the Mellin-Barnes type 
integral in the form 
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where  |)arg(| z ))1(( 2/1i  and the poles of the 
integrand of (2) are assumed to be simple. The contour L is 
one of the contours L= LLL ,  and L= iL .These 
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contours are explicitly defined in the monographs by [23], and 
[16]. We give the conditions for the representation of 
Fox-Wright generalized hypergeometric function )(zRqp  to 

be represented by a Mellin – Barnes integral of the form   (2). 
It may be noted that different conditions are obtained for the 
above three contours. Here we give conditions for the 
contour LL . For remaining contours the conditions of 

representation of the function  )(zRqp  can be obtained from 

the conditions given by [18]. The result is given below in the 
form of a theorem. 

Theorem1: 
Let ),...,1;,...,2(,,,, qjpiRjBiACjbiaa  be such that 

the conditions 

iA
kia , ),;1,;,...,2( 011 NkAaapi     (3)       

and
iAjajAkia )()( , ( )11,1,,....,1,; Aaapjiji                                                                                   

 are satisfied. Let 1)1( qp  and either of the 
following conditions hold: 

0,1 z ; ;||0,1 z
2/1)Re(,||,1 z

Then the Fox-Wright generalized hypergeometric 
function  has the Mellin-Barnes integral representation given 
by  (2), where the path of integration  LL separates all 

the poles )( 0Ns  to the left and all the poles given 
by 

ias  where, 

piaaN ,...,1;1with;0 1;0  to the 

right. 
The theorem readily follows from the result given in [18]. 

It is interesting to observe that for p = 2 and q = 1, the function 
)(zRqp defined by (2) reduces to Dotsenko function, as in 

[7], and [8], );;;,(12 zcbaR , defined by 
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(5) 
where |arg (-z)|<  and the poles of the integrand of  (5) are  
assumed to be simple . Here   (.)12  is a special case of the 
Fox-Wright generalized hypergeometric function defined by  

[22], [29], and [30]. It may be noted that the result (4) can be 
obtained from (5) by calculating the  residues at the poles of  

)( s  at the points given by  .0Ns Reference [8] also 
obtained the inversion formula for the integral transform and 
the exact solution of a Fredholm integral equation of the first 
kind involving such a function in the kernel. It is interesting to 
observe that for  ,1  (4) reduces to a Gauss hypergeometric 

function );;,(12 zcbaF . When z is replaced by z/a and a
tends to infinity, then (4) yields its confluent form as  

0
11

)!)((

)(

)(
)();,;;(

k
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kkc

zkb

b
czcbR                                 

where Ccb, ;

Re(c)>Re(b)>0, ;R ,..2,1,0, kckb

A generalization of the Krätzel function is introduced and 
studied by [3].  In the same paper, a generalized inverse 
Gaussian distribution is also defined and its various statistical 
properties are investigated. A generalization of Kratzel 
function and associated probability distributions are studied by 
[25]. In a recent paper, [24] has introduced a generalization of 
the Krätzel function and inverse Gaussian distribution in the 
form 

dtptKtpzS pcba

0

1
2/1

,,;,,
, )(2)(        

                           d
t
zcbaR );;,,(12                         

where 0)Re(,0,, pz

0;0)||Re(,0)||Re( ba
     

The object of this paper is to consider a further 
generalization of the Krätzel function and inverse Gaussian 
distribution by using the product of -generalized Fox-
Wright hypergeometric function introduced in the next section 
and the well known Bessel function of the third kind )(xK in 
[1]. This function turns out to be a generalized gamma-type 
function. Corresponding incomplete functions are introduced 
and some of their properties are investigated. These functions 
are employed to define and study a new probability density 
function. Special cases of the parameters in the result (14) give 
rise to certain well-known densities. Some statistical 
properties are also derived. A study of this new function 
defined by (7) in the next section will give deeper, general and 
useful results in the theory of special functions, integral 
transforms and  probability  distributions, which are useful in 
reliability theory and diffusion problems.  
The following generalized inverse Gaussian distribution is due 
to [11]. 
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)exp(1),,()(
t
batatbaAtf , a, b, t > 0,   

                    (6)  

where, 
1

0

1 )exp(),;( dt
t
battbaA

The inverse Gaussian distribution arises as the density of 
the first passage time of the Brownian motion with positive 
drift. Such models are used in reliability theory, theory of 
demographic rates, as in [13], [14]. Applications of the 
distribution defined by (6) are discussed by [14] in several 
applied problems, such as fractures of air-conditioning 
equipment and traffic data etc. A comprehensive account of 
the inverse Gaussian distribution with applications can be 
found in [6]. 

II. A UNIFIED  GAMMA-TYPE (KRATZEL)  
FUNCTION 

Definition 1: A unified gamma-type function is defined 
as

2/1
,,;;,...,;,...,,

,
2)(12

pzS pbbaaa qp

dt
t
zbbaaaRptKt qpqp );;/,,...;,...,,()( 120

1

                                                                                  (7) 
 where, 0)Re(,0,, pz         
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pi
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i

             

When p = 2 and q = 1, the above result reduces to the 
following one given by [25] 

dt
t
zcbaRptKt

pzS pcba
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           (8)   

where, 0)Re(,0,, pz                                                

.0;0)||Re(,0)||Re( ba When z is 

replaced by z/a and a tends to infinity in (8), then we arrive at 
the following result associated with -confluent 
hypergeometric function  

dt
t
zcbRptKt

pzS pcb

);;,()(
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where, 0,0)Re(,0,, pz ;
,....2,1,0, kckb                                       

If we further set ,2/1  is replaced by ,2/1 then by 
virtue of the identity 

)exp(
2/1

2
)(2/1 x

x
xK ,                                       

We obtain the generalized gamma-type function recently 
studied by [3] in the following form:  

)(,2/1,2/1;,
, zpcbS = )(,2/1;,

, zpcbS = )2(,;,
, zpcbB           

dt
t

zcbRptt );;,(110
)exp(1 ,                             (10) 

where ,0)Re(,0,, pz

,...2,1,0,;0;0)Re( kbkcb and

B pcb ,;.
, (.) is the notation for generalized gamma-type 

function defined  by [3]. 
Next, if we set ,1, pcb then (10) reduces to the 

Krätzel function in the notation );1,( z  for the Krätzel 
function employed by [3] as: 

dtztttzzZ )exp();1,()(
0

1

where, .0)Re(,0)Re( z                                              
Special cases of the generalized function (7): 
A.  If we set ,2/1  we obtain the generalized gamma 

function  )(,2/1,;,...,,...,,
,

12 zS pbbaaa qp

dt
t
zbbaaaRptt qpqp );;,...,;,...,,()exp( 120

1

                                                                                             (11) 
which for p = 2 and q = 1 gives  

dt
t
zcbaRpttzS pcba );;,,()exp()( 120

1,2/1,;,,
,

                                                                                          (12) 
where Re(p)>0, Re(z)>0, 

,...2,1,0,0)Re(,0)Re( cba .

If we take p = q = 1  , cbba 1,  in (11), then we 
obtain the gamma-type function studied by [2] : 

),;,()(
1,

,2/1,2/1;,
pcbzz

pcb
S =

dt
t
zcbRptt );;,(110

)exp(1 (13)

Note 2: The result (12) also gives the Laplace transform of 
the Dotsenko function defined by (3). 

 B.   When   b   or z tends to zero in (13), it reduces to a 
well-known gamma function. Further, if we set 

,2/1,,1 bc  is replaced by 2/1 then (9) 
yields a known result given in [10], pp.146 (2): 

)(,2/1,2/1;,
1,1 zS pbb = dt

t
zptt )exp()exp(

0

1
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(2 2/12/12/ pzK
p
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where Re(p)>0, Re(z)>0
DERIVATIVES OF THE S-FUNCTION: As a consequence 

of the definition of the S-function defined by (7) and 
differential properties of Fox-Wright generalized 
hypergeometric function defined by (2), the following results 
are easily derived.
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III. ASSOCIATED FAMILIES OF    INCOMPLETE S-

FUNCTIONS 

Definition 2: A generalized incomplete gamma function 
corresponding to the S-function investigated here is defined by  

),(
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,0 xz
pqbbpaaaxS

dt
t
zbbaaaR

ptKtp

qpqp

x

);;,...,;,...,,(

)(2

1

0

1
2/1

2

                                         (15) 
where, 0)Re(,0,, pz ,

,.....2,1,0.0;0)||Re(

,0)||Re(

min
2 ca

a

i
pi

and

.0z  When p = 2 and q = 1, the (15) reduces to one 
involving Dotsenko function defined by (5) as: 
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Furthermore, a complement of the incomplete S-function is 
defined analogously by  
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which  for p = 2 and q = 1 gives
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where ,,, oz Re(a)>0, Re(b)>0, Re(p)>0,  
,...2,1,0,1)Re( c x>0, and 0z

Then clearly, from (7), (15), and (17) we find that 
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Remark 1:  If in (16), we set 2/1,1p , replace z
by z/a, replace   by 2/1b and take the limit as a tends to 
infinity, we obtain the following incomplete functions 
introduced by [27]   
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where, ),(1,;,
1, xzC bcb     and ),(1,;,

1, xzD bcb are the 

incomplete functions discussed by [3] and z   and z
are the incomplete functions  studied by [27].  
As 0z   in (19), and (20), we arrive at the following 
interesting results: 

),(1,2/1,2/1;,
1,0 xocbxC  = ),(

0
)exp(1 xdt

x
tt        

and

),(1,2/1,2/1;,
1, xocb

xD = ),()exp(1 xdt
x

tt

where ),( x  and ),( x  denote the  well-known 
incomplete gamma function and its complement respectively. 
It is interesting to note that the incomplete functions 
considered by [4], [5] follow as special cases of (19) and (20) 
by giving suitable values to the parameters. 

Derivatives of the Incomplete S-Functions: 
We have  
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When p = 2 and q = 1, (21) gives 
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where the incomplete function  (.)0
xC  is defined in (16). 

Next, we have 
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which for p = 2 and q = 1 yields  
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IV. A CLASS OF PROBABILITY DENSITY 

FUNCTIONS 
In this section, we will discuss a generalized inverse 

Gaussian distribution and employ for  the function 
1

,,;,...,;,...,,

,
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where p and z denote the scalar parameters, whereas ,
represent the shape parameters. 

Definition 3:  A unified form of the inverse Gaussian 
distribution is defined by 
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that f (x) remains positive for x>0.
It readily follows that 
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Special cases of the generalized inverse Gaussian 
distribution: For p = 2 and q = 1, the probability density 
model (22) reduces to one studied by [25]
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If ,2/1 the density defined by (23) reduces to the 
Gaussian density function associated with Dotsenko function 
(5) in the interesting form 
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Replacing z by z/a in the above expression and taking the limit 
as a , we arrive at the density function recently studied 
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  = 0, elsewhere                                                  (24) 
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If we take in (24) it  reduces to the inverse Gaussian 
density discussed by [2] in the form 
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 We note that the notation given on the right of the above 
equation is due to [2]. 
For 1pbc in (25), we obtain 
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where )(xZ  is the Krätzel function defined by (1). 

 For ,1 p = 2, q = 1, (22) becomes  
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If we further take 2/1  and replace z by z/a and take the 
limit as  a , then (26) gives the following density 
function  
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where  )(zK  is the modified Bessel function of the third 
kind or Macdonald function. The density represented by (28) 
is the inverse Gaussian density studied by [11]. 

V. A SET OF STATISTICAL FUNCTIONS 
For the statistical density defined by (22), the following 

statistical functions are derived. 

 The thk -moment:                                                                                       

The thk moment '
k  about the origin of a continuous real 

random variable x with density function  f (x) is defined by 
[21] 

.)(' dxxfkxk

Theorem 2:  For the density function f (x) defined by (22), 

the k th moment is given by  

'
k =

)(
,,;,...,1;,...,2,

,

)(
,,;,...,1;,...,2,

,

z
pqbbpaaa

S

z
pk

qbbpaaa
S

          (29)                   

which for p = 2 and q = 1 reduces to the following result given 
by [24] 

'
k =

)(
,,;;,

,

)(
,,;;,

,

z
pcba

S

z
pkcba

S

On taking p = 2, q = 1 and 2/1  in  (29) , replacing  z by 
z/a  and taking the limit as a tends to infinity, we obtain the 
following result obtained by [3] as:  

'
k =

)(
,,2;,

,

)(
,,2;,

,

z
pcb

S

z
p

k
cb

S

=

)2(
,;,

/,

)2(
,;,

/,

z
pcb

B

z
pkcb

B
        

If we further take  and replace z by ,4/2* zz then 
it gives the following result in the notation obtained in [2]: 
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'
k

);;;(*

);;;(*

pcbz

pkcbz

Theorem -2 easily follows from the definition (29) on using 
the special cases of the S-function discussed in the preceding 
section of the paper. 

 Expected Value: Let )(x  be a function of a continuous 
real random variable x with density f (x), then the expected 
value of  )(x  is defined as [21]  

0
)()()( dxxfxE

The existence of the expected value  )(E  depends upon the 
behavior of f (x) and ).(x  It is interesting to observe that for 
a positive real random variable x with density f (x), where f (x)

= 0 for x<0, the expected value of  1sx  is the Mellin 
transform of f (x).

Remark 2: It may be mentioned here that  for k=1,the result  

(59) yields the result for the mean  
0

,)( dxxfxEx and

for k = s-1 , it yields the result for  the expected value of 
1sx and  the density function f (x) with x>0 ,defined by  (22).  

 The hazard rate function (failure rate) is defined as 

)(
)()( (*) xS

xfxh

where S (*) (x)  is the survivor function of x

0)(1)((*) xFxS  for  x>0
and F(x) being the cumulative density function (c.d.f) namely 

x
duufxF

0
)()(            

This function )((*) xS has its origin in reliability theory.  
Theorem 3: For the density function defined by (22), we 

have: 

)(
,,;,...,1,,...,2,

,

),(
,,;,...,1;,...,2,

,
0

)(

z
pqbbpaaa

S

xz
pqbbpaaa

xS

xF

)(
,,;,...,1,,...,2,

,

),(
,,;,...,1;,...,2,

,
)((*)

z
pqbbpaaa

S

xz
pqbbpaaa

x
S

xS
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),(

);;,...,;,...,,(

)(2

)(
,,;,...,;,...,,

,

12

1
2/1

12

xzS

t
zbbaaaR

ptKtp

th
pbbaaa

x

qpqp

qp

where the incomplete S-functions  (.)0
xS and xS are defined 

in  (15) and  (17) respectively.   
Proof:  The Theorem -3 follows from the following 

equations: 

)(

);;,...,;,...,,(

)(2

)(
.,;,..,;,...,,

/,

12

0

12
1

`12

zS

dt
t
zbbaaaR
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S(x) =1– F(x) = 
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The Mean Residue Life Function: The mean residue life 
function is defined as  

x
dttfxt

xS
xK .)()(

)(*
1)(

Separating the variables, we obtain                                                               

dt
x

ttf )(
x

qpqp dttzbbaaaR
ptKt

)/;;,...,;,...,,(

)(

12

           

                                                                      (30) 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:7, 2009

461

)(

),(

.,;,...,;,...,,

/,

.,1;,...,;,...,,

/,

12

12

zS

xzS

pbbaaa

pbbaaa

x

qp

qp

             (31) 

As,
x

xdttf
xS

x )(
)(*  so that from (30) and (31), we 

have

K (x) = x
zS

xzS

pbbaaa

pcbbaaa

x

qp

qp
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The Moment Generating Function:
The moment generating function of a continuous and random 
variable x, denoted by ),(txM  is defined by  

0
)()()( dxxftxetxMtxeE

with certain restrictions on the parameters in the density  
function f (x). It can be easily seen that for the density defined 
by (27), namely 

f (x)= )/;;;()exp( 11
1

6 xzcbRpxx
the moment generating function can be derived in a simplified 

form

)(

)(
)(

2
1,

2
1;,

1,

2
1,

2
1;,

1,

zS

zS
eE

pcb

tpcb

tx as given in the paper by [2].  

VI. CONCLUSION 
For various suitable choices of the parameters involved in 

our results in the preceding sections, we can easily deduce 
several special cases which were considered in some of the 
earlier works cited in the abstract .The details involved in 
these specializations are being left as an exercise for the 
interested reader. 

In conclusion, it is expected that the research workers in the 
fields of applied statistics, generalized special functions and 
reliability theory may find this work useful in their 
applications.  
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