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Abstract—Electrical resistivity is a fundamental parameter of 

metals or electrical conductors. Since resistivity is a function of 
temperature, in order to completely understand the behavior of 
metals, a temperature dependent theoretical model is needed. A 
model based on physics principles has recently been developed to 
obtain an equation that relates electrical resistivity to temperature. 
This equation is dependent upon a parameter associated with the 
electron travel time before being scattered, and a parameter that 
relates the energy of the atoms and their separation distance. Analysis 
of the energy parameter reveals that the equation is optimized if the 
proportionality term in the equation is not constant but varies over the 
temperature range. Additional analysis reveals that the theoretical 
equation can be used to determine the mean free path of conduction 
electrons, the number of defects in the atomic lattice, and the 
‘equivalent’ charge associated with the metallic bonding of the 
atoms. All of this analysis provides validation for the theoretical 
model and provides insight into the behavior of metals where 
performance is affected by temperatures (e.g., integrated circuits and 
temperature sensors). 
 

Keywords—Callendar–van Dusen, conductivity, mean free path, 
resistance temperature detector, temperature sensor.  

I. INTRODUCTION 
T is understood that the electrical resistivity of metals or 
conductors is a fundamental property and that it is not 

always constant [1]-[2]. Electrical resistivity for conductors is 
a function of temperature and under certain conditions will be 
a function of the size of the material [1]-[2]. As the number of 
circuits and interconnections between circuits on a microchip 
steadily increases, it is important to understand how these 
interconnects or conductors could be adversely affected over a 
certain temperature range (e.g., due to overheating). 
Additionally, resistance temperature detectors (i.e., RTDs) are 
sensors that utilize this resistance-temperature property of 
metals to measure temperatures. Experimental evidence has 
shown that this temperature dependence is linear for metals 
when the resistivity is measured over a specific temperature 
range.  

Until recently, there has not been a straightforward and 
reasonable model that elucidates the mechanisms that cause 
this resistivity-temperature relationship. A two dimensional 
model has been created and this model leads to an equation 
that produces data that is consistent with the aforementioned 
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experimental results [2]. Thus, this theoretical model provides 
incredible insight into the underlying physics of the resistivity-
temperature relationship. 

The resistivity-temperature equation contains variables that 
depend upon the atomic diameter, atomic spacing, electron 
travel time before being scattered, and the proportionality 
constant that relates atomic force and separation distance. 
These variables or parameters can be selected to produce a 
resistivity-temperature response that is linear over a specified 
temperature range. 

The resistivity-temperature relationships for platinum and 
nickel have been well characterized experimentally [3]-[5]. 
The general equation that represents metals is known as the 
Callendar-van Dusen equation and each metal has its own set 
of distinct coefficients for this equation. Parameter values can 
be selected for the theoretical model such that the theoretical 
and experimental equations are in very good agreement [2]. 
Although a very good match was obtained, an identical match 
between the experimental and theoretical was not achieved. It 
is believed that the choice of parameter values is responsible 
for this less than ideal response and that a more detailed 
analysis can be performed to select parameter values that will 
duplicate the experimental response. 

The mean free path for conduction electrons represents the 
average distance that electrons travel before being scattered by 
another object associated with lattice structure of the material. 
The primary scattering mechanism for the conduction 
electrons is due to vibrating atoms, however, lattice defects 
and/or impurities can also contribute (and will significantly 
contribute at low temperatures) [5]. Nevertheless, a model that 
characterizes the resistivity-temperature relationship should 
incorporate the concepts of the mean free path and lattice 
defect scattering if it is going to be completely valid [6]. 

Additionally, electrostatic forces (involving positive ion 
cores and negative electrons) exist in materials to hold atoms 
together. These bonds exist between the atoms in the lattice to 
keep them at an equilibrium distance. If external energy is not 
supplied to the atoms, then this equilibrium distance between 
atoms minimizes the energy of the crystal [7]-[13]. As energy 
is supplied to the crystal, the atoms will move and this is 
demonstrated in the aforementioned theoretical model.  

The bonds for conductors, known as metallic bonds, involve 
interactions between the positive ion cores and the ‘sea of 
electrons’ or the loosely bound conduction electrons [7]-[13]. 
Because the ion cores share these electrons, it is difficult to 
determine the charge distribution or the equivalent charge 
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associated with the ions when they move from their 
equilibrium position. Although the crystal maintains its charge 
neutrality, there must be a redistribution of charge to force or 
move the atoms back to their equilibrium position. It is 
believed that some insight into this charge distribution can be 
obtained from the theoretical model. 

Therefore, the theoretical equation parameters were 
evaluated to determine if (and how) they could be optimized 
to provide an identical match with the experimental equation. 
It was determined that modifications could be made to the 
value of the proportionality constant that relates atomic force 
and separation distance and as a result, the theoretical equation 
becomes identical to the experimental expression. 
Additionally, analysis was performed to demonstrate that the 
theoretical equation can be reduced to a standard equation that 
can be used to determine both the mean free path of 
conduction electrons and the number of defects in the lattice. 
Finally, based on analysis of the theoretical model and the 
energy parameter, it was determined that the ‘equivalent’ 
charge associated with the lattice atoms in this model could 
also be determined. 

II. SUMMARY OF THE THEORETICAL MODEL 
The details of the theoretical model have been given 

elsewhere [2], but a brief summary of this model is provided 
here. A two-dimensional monatomic lattice with a face 
centered cubic (FCC) structure is used as the foundation for 
the theoretical model. The atoms are restricted to move in only 
one direction and conduction electrons are likewise restricted 
to travel in only one direction which is orthogonal to atomic 
motion.  

Gaps exist between the atoms within the lattice and some 
electrons travel in gaps through the material while other 
electrons do not travel in the gaps. Additionally, atoms in the 
lattice are vibrating and in this process a minimum distance 
between the atoms is achieved. As the temperature is 
increased the atoms obtain more energy and thus are able to 
move closer together and reduce the gaps. The force (from 
Coulomb’s Law) and energy associated with the atoms is 

given by ε
β
r

F =  and 
δ

γ
r

U =  where β and γ are assumed to 

be proportionality constants, ε and δ are assumed to be 
integers (ε = 2

 
and δ = ε − 1 = 1) and r is the distance between 

two atoms.  
When the gaps are reduced or decrease in size, this 

increases the impedance of electron flow, and the electrical 
resistivity increases. With this information, an equation 
representing the resistivity-temperature relationship can be 
derived and is given by  
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where a is the atomic radius, b is the size of the opening 
between atoms (when the atoms are stationary), τ1/τ2 is the 
ratio of travel time before scattering when an electron is in the 
gap to when an electron is not in a gap, k is Boltzmann’s 
constant, and T is temperature (in K). 

III. ASSUMPTIONS USED IN THE MODEL 
To create the resistivity-temperature model and obtain a 

straightforward equation as given in (1), several assumptions 
and simplifications were used to make analysis less difficult. 
The assumptions include using a two-dimensional model, 
approximating the atomic radius as a point source, restricting 
electron motion to one direction, as well as restricting atom 
vibration to one direction. Furthermore, it was assumed that 
the only factors contributing to the force and energy terms 
were from forces in the [010] direction within a lattice 
constant of an atom (this led to the assumption that β and γ are 
constant). These assumptions do not resemble a real material, 
nevertheless the results are remarkably precise and produce 
reasonably accurate Callendar-van Dusen equation 
coefficients for platinum and nickel.  

IV. MODIFICATIONS TO THE MODEL 
Although the theoretical model has been simplified to make 

analysis easier, it produces very accurate results. However, to 
obtain results that match the Callendar-van Dusen equation 
exactly, the assumptions have to be modified. Since the force 
on atoms is clearly seen to be an oversimplification, it will be 
re-examined. 

Fig. 1 shows atom A with forces acting on it due to 
repulsion from other atoms (atoms1, 2, and 3). Again, the 

original model only included the force ε
β
r

F =1  which leads 

to an energy term δ
γ
r

U =1 . However, by including the forces 

from atoms 2 and 3 (along with the force from atom 1) the 
result is seen to be 321 FFFF ++=  or equivalently 
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Again, by assuming that the atoms will only vibrate or 

move in the [010] direction (i.e., the y-direction), the 
magnitude of the x-component for F2 and F3 must be equal. 
Thus, it is assumed that r2 and r3 are equal and that θ2 and θ3 
are equal. As a result, (2) becomes  
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Fig. 1 Two dimensional model showing the forces on an atom 

In the original model, only force F1 was included, butthe modified 
model also includes forces F2 and F3. 

 

 
Fig. 2 Distances associated with the atoms in the theoretical model 

The dotted circles represent the original location of the atoms and the 
solid circles closest to the dotted circles represent the current location 

of those atoms. 
 
Now, Fig. 2 can be used to reduce (3). Using trigonometry 

and basic analysis, it is seen that vur 21 −=  and 
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The energy is found by taking the integral of the force (i.e., 

∫−= FdxU ). From an integral table, it is found that 
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which has an additional term (compared to the original 

expression 
1r

U γ
= ) due to forces F2 and F3. This equation can 

be rewritten to have the form  
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which can be written in the form 
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Now, based on the form of expressions (5) or (6), it would 

be difficult to obtain a resistivity-temperature equation that is 
as compact and straightforward as the expression given in (1).  
Nevertheless, r1 represents the distance between atom A and 
atom 1 and it varies with temperature T. Therefore, the term in 
the brackets in (6) will vary with temperature and thus the 

energy can be written as ( )[ ]Tf
r

U 1
1

γ
=  where f1(T) is a 

function that varies with temperature T [and represents the 
term in brackets in (6)]. Since γ is a constant γ[f1(T)] can be 
written as f(T) and thus, the energy is  
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          (7) 

 

Therefore, since the energy was originally
1r

U γ
= , as long 

as γ has a temperature dependency, the model will be more 
accurate.  

Data generated from the theoretical model should match the 
Callendar-van Dusen equation since this equation provides 
experimentally verifiable data for the resistivity-temperature 
relationship. The Callendar-van Dusen equation has the 
general form [ ]2

0 1 BTAT ++= ρρ  (T is in oC) where each 
material has a different set of values for A and B. Platinum has 
values A = 3.91*10-3 and B = -5.78*10-7 for temperatures 
between 0oC to 650oC [3]-[5] and nickel has values A = 
5.49*10-3 and B = 6.65*10-6 for temperatures ranging from 
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0oC to 250oC [3]-[5].  

V. RESULTS AND DISCUSSIONS 

A. Energy Coefficient 
A computer program was written to evaluate (1) and 

determine values for τ1/τ2 as well as temperature dependent γ 
that would provide an exact match for the Callendar-van 
Dusen equation coefficients. Upon substituting platinum 
parameters a=1x10-12m and b=3.92x10-10m into (1), it is found 
that a multitude of values for τ1/τ2 and γ exists that will 
produce the Callendar-van Dusen coefficients for platinum. 
Fig. 3 shows a plot of γ varying with temperature for platinum 
with several values of τ1/τ2. The equations that represent these 
three curves are given by 

3033237 10*17.110*97.110*23.1 −−− ++= TTγ  for τ1/τ2 = 5, 
3033238 10*932.010*38.210*67.5 −−− ++= TTγ  for τ1/τ2 = 

10, and 3033239 10*775.010*65.210*47.9 −−− ++= TTγ  for 
τ1/τ2 = 50. The correlation coefficient for all of these curves is 
R2 = 1. 

Likewise, substituting nickel coefficients a=1x10-12m and 
b=3.52x10-10m into (1) leads to a set of values for τ1/τ2 and γ 
that will produce the Callendar-van Dusen coefficients for 
nickel. Fig. 4 displays a graph of γ varying with temperature 
for nickel with several values of τ1/τ2. The equations that 
represent these three curves are given by 

3033237 10*959.010*04.110*21.8 −−− ++= TTγ  for τ1/τ2 = 5, 
3033237 10*796.010*80.110*86.3 −−− ++= TTγ  for τ1/τ2 = 

10, and 3033238 10*687.010*31.210*94.6 −−− ++= TTγ  for 
τ1/τ2 = 50. As was the case for platinum, the correlation 
coefficient for each of the curves for nickel is R2 = 1. 

 

 

Fig. 3 Response of the energy coefficient γ as a function of 
temperature for platinum 

 

Fig. 4 Response of the energy coefficient γ as a function of 
temperature for nickel 

 
It is well known from experimental evidence that 

conductors (such as platinum and nickel) have temperature 
regions where the electrical resistivity is linear. For platinum, 
this region is between 0oC and 650oC, and for nickel, this 
region is between 0oC and 250oC [3]-[5]. Based on the 
operation of this theoretical model, as the temperature 
becomes higher, the gap becomes smaller, and thus the 
resistivity becomes larger. Consequently, it is reasoned that at 
the upper end of the linear temperature region, the electrical 
resistivity becomes non-linear because the gap has vanished. 
Therefore, by examining the size of the gap, the value of γ can 
be selected to ensure that the gap becomes zero. This occurs 
for γ = 2.5*10-30 Jm for platinum and 1.27*10-30 Jm for nickel 
and thus the curves in Figs. 3 and 4 converge to these values, 
respectively. 

By examining the energy parameter of the theoretical model 
and then deriving a new expression for this parameter, this 
term is more accurate and thus the resistivity-temperature 
equation that is derived from the model is more accurate. The 
proportionality term for the force (and energy) was originally 
kept constant and thus could not sufficiently represent all of 
the forces on an atom that is in motion. Thus, this modification 
leads to an accurate atomic force and because of its general 
nature, it represents the true and total two-dimensional force 
on an atom. In other words, the force on an atom is not only 
composed of three terms as given in (2) [which was reduced to 
two terms and then to one term as given in (7)], but it is 
represented by a series of additional terms which can 
ultimately be represented by one term with a temperature 
dependent proportionality constant. As a result, the energy 
term is optimized, the theoretical model is enhanced and the 
output from the model provides an exact match for the 
Callendar-van Dusen equation. 

B. Mean Free Path 
By demonstrating an exact match of the Callendar-van 

Dusen coefficients, it has been shown that the theoretical 
model is very robust and provides tremendous insight into 
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experimental results. Additional validation for this theoretical 
model can be seen through the analysis of the mean free path 
for conduction electrons. To determine the electron mean free 
path, the general expression for electrical resistivity is 
typically used as a starting point [14], [15]. This is expression 
is given by  

 

avgne
m
τ

ρ 2=

 

          (8) 

 
where τavg is the average travel time by a conduction electron 
before it is scattered. 

It is noted that this same expression given in (8) is obtained 
at the upper temperature when the resistivity ceases to be 
linear (i.e., when T = 650oC or γ = 2.5*10-30 Jm for platinum 
and when T = 250oC or γ = 1.27*10-30 Jm for nickel). In (1) 
the term bkT −δ γ2 , which is equal to the gap, becomes 

zero (after the appropriate selection of γ) and as a result (1) 

reduces to 
2

20 τ
ρρ

ne
m

==  where τ2 is the scatter time when 

an electron is not in a gap (which is the case for all conduction 
electrons at the aforementioned temperatures). Thus, this 
resistivity equation is equivalent to (8). 

For platinum, at T = 0oC, the resistivity is calculated to be 
9.83*10-8 Ωm and thus τavg is found to be 5.4*10-15 s. 
Similarly, for nickel at T = 0oC, the resistivity is 6.31*10-8 Ωm 
and τavg is found to be 6.1*10-15 s. Quantum mechanical 
analysis has shown that conduction electrons exists at the 
Fermi surface and travel with the Fermi velocity. The Fermi 

velocity is calculated from ( ) 3123 n
m

vF π⎟
⎠
⎞

⎜
⎝
⎛=  [16], [17] and 

for platinum is found to be 1.44*106 m/s and for nickel is 
found to be 1.61*106 m/s. Thus the mean free path l (= 
vF*τavg) for conduction electrons at T = 0oC for platinum is 
7.78*10-9 m and for nickel is 9.82*10-8 m. Likewise, at T = 
650oC, platinum has a resistivity of 34.76*10-8 Ωm and τ2 is 
found to be 1.527*10-15 s while at T = 250oC nickel has a 
resistivity of 14.99*10-8 Ωm and τ2 is found to be 2.57*10-15 s. 
Therefore, the mean free path for conduction electrons at T = 
650oC for platinum is l = 2.2*10-9 m and at T = 250oC for 
nickel is l = 4.14*10-9 m. These mean free paths values are 
provided in Table I. These values are reasonable and 
comparable to those recorded in the literature [18]-[20]. 

 
TABLE I 

MEAN FREE PATHS OF CONDUCTION ELECTRONS FOR PLATINUM AND NICKEL 
AT SPECIFIED TEMPERATURES 

 T=0oC T=250oC T=650oC 
Platinum 7.78*10-9 m --- 2.20*10-9 m 
Nickel 9.82*10-9 m 4.14*10-9 m --- 

C. Lattice Defects 
The resistance or resistivity of a material is dependent not 

only upon electron interactions with phonons (in a temperature 
dependent manner), but also upon impurities, lattice 

imperfections and/or boundary misalignments [21]. Although 
resistivity is dominated by electron-phonon interaction at 
elevated temperatures, when the temperature is approximately 
equal to –273oC or 0K, the resistivity of the material will only 
depend upon the latter items because electron scattering due to 
temperature dependent lattice vibrations will be non-existent.  

If a lattice were perfect and contained no defects, then at (or 
near) 0K the material would have zero electrical resistance and 
be able to sustain an electric current indefinitely. Thus 
measurements of a material’s electrical resistance or resistivity 
at these very low temperatures will provide a direct indication 
of how pure the material is. In other words, the electrical 
resistivity will be proportional to the number of defects or it 
will give an indication of how often (on average) defects occur 
in the lattice (i.e., the lower the resistance is, the fewer 
impurities, misalignments, etc. there will be in the material). 
Thus, if the theoretical model is accurate, it should support or 
confirm these facts. 

Again, it is understood that the mean travel time before a 
conduction electron is scattered is τavg and that the electrical 
resistivity of the material is inversely proportional to this time 
as given by (8). It is further understood that the atoms in the 
lattice or material will be practically stationary when the 
temperature is near 0K. Therefore, the gap between atoms will 

be bag += 2 and thus γ in the term bkT −δ γ2  in (1) [again 
this term is equal to the gap] must be selected such that the 
gap equals ba +2 . When this happens, (1) reduces to 

1
2τ

ρ
ne

m
=  where τ1 is the scatter time when an electron is in 

a gap (which will be the case for all conduction electrons 
when KT 0≈ ). Thus, this electrical resistivity equation 
(containing τ1 as the scatter time) is equivalent to (8) for 

KT 0≈ . 
So for an ideal or perfect metal, at or near T=0K, the 

electrical resistivity value will be 0 and thus the electron 
scatter time and mean free path will be ∞=1τ

 
and ∞=l , 

respectively. And thus an electron can travel a distance of 
∞=l

 
before it encounters a defect (or equivalently there are 

no defects in the material). Now, as an example, consider the 
conductor with an electrical resistivity of 10-15 Ωm. Again, the 
Fermi velocity for platinum is 1.44*106 m/s and for nickel is 
1.61*106 m/s and therefore, the electron scatter time and mean 
free path will be τ1 = 5.31*10-7 s and l = 0.765 m, respectively 
for platinum, and τ1 = 3.85*10-7 s and l = 0.62 m, respectively 
for nickel. This shows that an electron will travel 0.765 m in 
platinum before it is scattered or equivalently a defect occurs 
every 0.765m in the platinum sample (or there are 1.31 defects 
per meter); likewise, an electron will travel 0.62m in nickel 
before it is scattered or equivalently a defect occurs every 
0.62m in the nickel sample (or there are 1.61 defects per 
meter).  

It is noted that if the electrical resistivity of a sample of 
platinum or nickel is measured at KT 0≈ , then the number of 
defects in the sample will be known and the value of τ1 can be 
determined. After this scattering time has been determined, the 
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value of the ratio τ1/τ2 will be known, and the energy 
coefficient γ can be found for a given temperature. 
Additionally, the size of the gap can be calculated as well as 
the average scatter time for the conduction electrons [2]. 

D. Equivalent Charge 
Again atoms in the conductor will vibrate or oscillate and 

move from their equilibrium position because of thermal 
energy. Based upon specific aspects of the theoretical 
framework, this model can be used to determine the charge 
associated with the metal atoms to restore them to their 
original position. Fig. 1 shows that in general an atom will 
experience a force due to several of its nearest neighbor atoms. 
However, when the spacing or gap (as shown in Figs 1 and 2) 
between atom A and atoms 2 and 3 disappears, forces F2 and 
F3 will have no significant y-component and thus only act in 
the x-direction. Since forces F2 and F3 will have equal and 
opposite components in the x direction, these two forces will 
not contribute to the overall force on atom A when the atoms 
are in the position as shown in Fig. 5.  

 

 
Fig. 5 Theoretical model showing the force on atom A when the 

‘gap’ vanishes 
In this state, only atom 1 contributes to the force. Forces from atoms 

2 and 3 are negligible in the y-direction and thus make no 
contribution to the force on atom A. 

 
As a result of the aforementioned analysis (2) can be 

reduced to  
 

2
1

1 r
F β

=

 

           (9) 

 
where 1r  is the distance between atom A and atom 1 and β is 
the proportionality term. It is also known that Coulomb’s Law 
provides a relationship between charges, distance, and the 
force on those charges. This relationship is given by  

 

2
21

r
qq
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          (10) 

 
where q1 and q2 are the charges, r is the distance between the 
charges, and k is the proportionality constant and has a value 

of 9*109 Nm2/C2. Since the two forces in (8) and (9) are the 
same, they can be set equal to each other, and the result is 

21qkq=β . It is assumed that the charge associated with each 
atom (i.e., atom 1 and atom A) is equal, so q1 and q2 will be 
equal. Also, because the force is equal to the negative gradient 
of the energy or equivalently because the energy is the 
negative integral of the force (i.e., UF −∇=  or ∫−= FdyU ), 

it is seen that the value of force and energy proportionality 
terms will equal (i.e., β = γ). Therefore, using the maximum 
values of γ as shown in Figs. 3 and 4, the equivalent charge for 
both platinum atoms and nickel atoms can be calculated. This 
equivalent charge is 1.67*10-20 C for platinum atoms and 
1.19*10-20 C for nickel atoms. These results are given in Table 
II.

  
TABLE II 

EQUIVALENT CHARGE FOR THE METALLIC BONDS ASSOCIATED WITH 
PLATINUM AND NICKEL ATOMS 

 β = γmax q (= q1 = q2) 
Platinum 2.50*10-30 Nm2 1.67*10-20 C 
Nickel 1.27*10-30 Nm2 1.19*10-20 C 

 
It is understood that metal atoms are surrounded by a ‘sea 

of electrons’ that are loosely bound conduction electrons 
shared by all of the atoms. The positively charged atoms (also 
known as the ion cores) share these negatively charged 
electrons and form a charge neutral material. Although as a 
whole, the metal is neutral in charge, at any particular instant 
in time, various alignments of ion cores can result in ‘regions’ 
where positive and negative charges exist. 

As the ion cores move closer together (or farther apart), the 
atoms will undergo an ‘equivalent redistribution’ of charge. 
This charge will provide the force that moves the atoms back 
to their equilibrium position. Nevertheless, since the charge is 
only a ‘redistribution’, the overall charge neutrality remains 
intact. Thus, based on the previous analysis, when an atom 
moves into the position as shown by atom A in Fig. 5, atom 1 
and atom A will acquire a net charge that will apply a force on 
the atoms and ultimately cause them to move back to their 
original positions. 

It is seen that the two metals, platinum and nickel, have 
different equivalent charges associated with the atoms. 
Because the spacing between atoms is different (3.92nm for 
platinum and 3.52nm for nickel), the bonding strengths or 
forces are different, the maximum temperature for which the 
materials exhibit linear resistivity is different, it is reasonable 
that these two materials have different equivalent charges.  

VI. CONCLUSION 
A two dimensional theoretical model that produces an 

equation relating the electrical resistivity to temperature has 
been evaluated and optimized so that it conforms to 
experimental data. By varying the proportionality constant of 
the energy parameter as a function of temperature, the energy 
(and force) associated with the atoms simulates the actual 
energy (and force) and as a result provides an exact match for 
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atom 2 

atom 1 

atom 3 
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of atom A 

F1 

original 
position 
of atom 1 
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the Callendar-van Dusen coefficients. To further validate this 
theoretical model, analysis was performed on the resistivity-
temperature equation (that resulted from the theoretical model) 
which showed that the theoretical equation can be reduced to a 
well recognized or accepted equation that can then be used to 
determine the mean free path of conduction electrons. The 
mean free path values provide a good match to reported 
values. Similarly, the theoretical equation can be reduced to an 
equation that can be examined to provide the number of lattice 
defects in a material. Finally, this theoretical model has also 
been used to determine the electric charge associated with 
metallic bonds. This charge is coupled with the atoms when 
they oscillate or vibrate and serves to move the atoms back to 
their equilibrium positions in the lattice. As a result of this 
examination of the theoretical model, it is evident that the 
resulting equation is valid and provides significant insight into 
the mechanisms behind the temperature dependence of 
electrical resistivity for conductors.  
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