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 
Abstract—In this paper, Economic Order Quantity (EOQ) based 

model for non-instantaneous Weibull distribution deteriorating items 
with power demand pattern is presented. In this model, the holding 
cost per unit of the item per unit time is assumed to be an increasing 
linear function of time spent in storage. Here the retailer is allowed a 
trade-credit offer by the supplier to buy more items. Also in this 
model, shortages are allowed and partially backlogged. The 
backlogging rate is dependent on the waiting time for the next 
replenishment. This model aids in minimizing the total inventory cost 
by finding the optimal time interval and finding the optimal order 
quantity. The optimal solution of the model is illustrated with the 
help of numerical examples. Finally sensitivity analysis and graphical 
representations are given to demonstrate the model.  
 

Keywords—Power demand pattern, Partial backlogging, Time 
dependent holding cost, Trade credit, Weibull deterioration. 

I. INTRODUCTION 

ETERIORATION plays a significant role in many 
inventory systems. Deterioration is defined as decay, 

damage, spoilage, evaporation, obsolescence, pilferage, loss of 
utility or loss of marginal value of a commodity that results in 
decreased usefulness. Most physical goods undergo decay or 
deterioration over time, examples being medicines, volatile 
liquids, blood banks, and so on. So decay or deterioration of 
physical goods in stock is a very realistic factor and there is a 
big need to consider this in inventory modeling. The first 
attempt to describe the optimal ordering policies for such 
items was made by Ghare and Schrader [8]. Philip [27] 
developed an inventory model with a three parameter Weibull 
distribution rate without considering shortages. Deb [5] 
derived inventory model with time-dependent deterioration 
rate. A detailed review of deteriorating inventory literatures is 
given by Goyal [11]. Many researchers assume that the 
deterioration of the items in inventory starts from the instant 
of their arrival in stock. In fact, most goods would have a span 
of maintaining quality or original condition (e.g. vegetables, 
fruit, fish, meat and so on), namely, during that period, there is 
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no deterioration occurring. Wu et al. [40] defined the 
phenomenon as ‘‘non-instantaneous deterioration’’. In the real 
world, this type of phenomenon exists commonly such as 
firsthand vegetables and fruits have a short span of 
maintaining fresh quality, in which there is almost no spoilage. 
Afterwards, some of the items will start to decay. For this kind 
of items, the assumption that the deterioration starts from the 
instant of arrival in stock may cause retailers to make 
inappropriate replenishment policies due to overvalue the total 
annual relevant inventory cost. Therefore, in the field of 
inventory management, it is necessary to consider the 
inventory problems for non-instantaneous deteriorating items. 
In this direction Ouyang [23] developed an inventory model 
for non-instantaneous deteriorating items with permissible 
delay in payments. Liao [15] studied an EOQ model with non 
instantaneous receipt and exponential deteriorating item under 
two level trade credits. Uthayakumar [37] formulated a 
replenishment policy for non-instantaneous deteriorating 
inventory system with partial backlogging. Economic design 
of an inventory policy for non-instantaneous deteriorating 
items under permissible delay in payment is developed by 
Geetha [7]. Joint control of inventory and its pricing for non-
instantaneous deteriorating items under permissible delay in 
payments and partial backlogging is developed by Maihami 
[17]. Dye [6] investigated the effect of preservation 
technology investment on a non-instantaneous deteriorating 
inventory model. Palanivel [24] developed the finite horizon 
EOQ model for non-instantaneous deteriorating items with 
price and advertisement dependent demand and partial 
backlogging under inflation. 

In real life situations the demand of an item towards the 
beginning of a period, e.g., a week or a month, can be greater 
or smaller than the demand at the end of the period. Jalbar et 
al. [12] investigated a two-echelon inventory/ distribution 
system with power demand pattern and backorders. Datta and 
Pal [4] investigated an inventory system with power demand 
pattern for items with variable rate of deterioration. An 
Economic Order Quantity model for Weibull deteriorating 
items with power demand and partial backlogging have been 
studied by Tripathy and Pradhan [36]. 

In most of the inventory model, mentioned above, holding 
cost has been considered as a constant function. But, in real-
life situations, when the deteriorating and perishable items 
such as food products are kept in storage, the more 
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complicated the storage facilities and services needed, and 
therefore, the higher the holding cost. Therefore, the holding 
cost is always not a constant function. It’s varying according 
to time. In generalization of EOQ models, various functions 
describing holding cost were considered by several researchers 
like Naddor [22], Veen [38], Muhlemann [20], and Goh [9]. 
Alfares [2] proposed an inventory model with stock-level 
dependent demand rate and variable holding cost. Roy [29] 
developed an inventory model for deteriorating items with 
time varying holding cost and demand is price dependent. 
Mishra [19] developed a deteriorating inventory model for 
time dependent demand and holding cost with partial 
backlogging. Shah [32] studied an optimizing inventory and 
marketing policy for non-instantaneous deteriorating items 
with generalized type deterioration and holding cost rates. 
Pando [26] developed the maximizing profits in an inventory 
model with both demand rate and holding cost per unit time 
dependent on the stock level. Pando [25] gave an economic 
lot-size model with non-linear holding cost hinging on time 
and quantity. 

The suppliers offer delay in payment to the retailers to buy 
more items and the retailers can sell the item before the 
closing of the delay time. As a result, the retailers sell the 
items and earn interests. Usually, there is no interest charge if 
the outstanding amount is paid within the permissible delay 
period. This provides opportunities to the retailers to 
accumulate revenue and earn interest by selling their items 
during the delay period. This permissible delay in payment 
provides benefit to the supplier by attracting new customers 
who consider it to be a type of price reduction and reduction in 
sells outstanding as some customers make payments on time 
in order to take advantage of permissible delay more 
frequently. In this direction, Goyal [10] extended the EOQ 
model under the conditions of permissible delay in payments. 
Liao [14] developed an inventory model for initial-stock-
dependent consumption rate when a delay in payment is 
permissible. Teng [35] developed another approach on the 
EOQ model under conditions of permissible delay in 
payments. Khanra [13] developed an EOQ model for 
deteriorating items with time dependent quadratic demand 
under permissible delay in payment. Recently, Musa and Sani 
[21] studied an inventory ordering policies of delayed 
deteriorating items under permissible delay in payments. 
Rezaei and Salimi [28] developed an economic order quantity 
and purchasing price model for items with imperfect quality 
when inspection shifts from buyer to supplier. Lin [16] 
developed a joint optimal ordering and delivery policy for an 
integrated supplier–retailer inventory model with trade credit 
and defective items. 

When the shortage occurs, some customers are willing to 
wait for back order and others would turn to buy from other 
sellers. Inventory model of deteriorating items with time 
proportional backlogging rate have been developed by Chang 
[3]. Wang [39] studied shortages and partial backlogging of 
items. Min [18] derived a perishable inventory model under 
stock-dependent selling rate and shortage-dependent partial 
backlogging with capacity constraint. Sarkar [31] studied an 

optimal inventory replenishment policy for a deteriorating 
item with time-quadratic demand and time-dependent partial 
backlogging with shortages in all cycles. Ahmed [1] 
considered an inventory model with ramp type demand rate, 
partial backlogging and general deterioration rate. Sarkar [30] 
developed an improved inventory model with partial 
backlogging, time varying deterioration and stock-dependent 
demand. Taleizadeh [33] provided an economic order quantity 
model with a known price increase and partial backordering. 
Tan [34] developed the discrete-in-time deteriorating 
inventory model with time-varying demand, variable 
deterioration rate and waiting-time-dependent partial 
backlogging. 

In the present work, a deterministic inventory model for 
non-instantaneous deteriorating items with power demand 
pattern and permissible delay in payments are proposed in 
which the deterioration is a Weibull two parameter 
distribution, and holding cost is expressed as linearly 
increasing functions of time. Shortages are allowed and 
partially backlogged in this model. We have shown the 
suitable numerical examples to illustrate the model. Sensitivity 
analysis of the optimal solution with respect to major 
parameters of the system is carried out. To the author’s best of 
knowledge, such type of model has not yet been discussed in 
the inventory literature. 

The rest of the paper is organized as follows: In Section II, 
the notations and assumptions, which are used throughout this 
article, are described. In Section III, the mathematical model 
to minimize the total annual inventory cost is established. 
Section IV presents solution procedure to find the optimal 
time length and optimal order quantity. Numerical examples 
are provided in Section V to illustrate the theory and the 
solution procedure. This is followed by sensitivity analysis 
and conclusion. 

II. NOTATIONS AND ASSUMPTIONS  

To develop the mathematical model, the following 
assumptions are being made: 

A. Notations 

The following notations are used throughout this paper: 

A   The ordering cost per order. 

2C    The deterioration cost per unit per year. 

3C    The shortage cost for backlogged items per unit per 

year. 

4C    The unit cost of lost sales per unit. 

p    The purchasing cost per unit. 

s    The selling price per unit, with .ps   

eI   The interest earned per dollar per year. 

cI    The interest charged in stock by the supplier. 

M   Trade credit period. 
   The life time of the items per cycle. 

1t    Length of time in which the inventory has no shortage,
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1t . 

T   The length of the order cycle. 
S    The initial inventory level. 

Q    The order size per cycle. 

)(tq   The inventory level at any time 0  t t,  . 

TC   The total cost of the system. 

B. Assumptions 

To develop the mathematical model, the following 
assumptions are being made: 

1. A single item is considered over the fixed periodT which 
is subject to Weibull deterioration rate. 

2. Deterioration takes place after the life time of items. 
3. There is no replenishment or repair of deteriorated items 

takes place in a given cycle. 

4. 1)(   tt  is the Weibull two parameter 

deterioration, where  0  1,    0    are called scale 

and shape parameter respectively. 
5. The replenishment takes place at an infinite rate. 
6. The lead time is zero. 

7. 0,0,)(1  babtatC  is the holding cost 

excluding interest charges, which is linear function of 
time.  

8. )(tD  is the demand rate at any time t such that 

n

n

n

nT

dt
tD

1

1

)(



 where d is a positive constant, n may be any 

positive number, T  is the planning horizon. 
9. During the trade credit period, M, the account is not 

settled; generated sales revenue is deposited in an interest 
bearing account. At the end of the period, the retailer pays 
off all units bought, and starts to pay the capital 
opportunity cost for the items in stock. 

10. Shortages are allowed and during stock out period, the 
backlogging rate is variable and is dependent on the 
length of the waiting time for next replenishment. So that 
the backlogging rate for negative inventory is,

,
)(1

1
)(

tT
tB




  
  is backlogging parameter 10    

and )( tT   is waiting time )( 1 Ttt  . And the 

remaining fraction )(1 tB  is lost. 

III. FORMULATION AND SOLUTION OF THE MODEL 

The inventory system is developed as follows: Q units of 

items arrive at the inventory system at the beginning of each 

cycle. During the time interval ],0[  , the inventory level is 

decreasing only due to demand rate. The inventory level is 
dropping to zero owing to demand and deterioration during the 

time interval ],[ 1t . Finally, a shortage occurs due to 

demand and partial backlogging during the time interval 

],[ 1 Tt . The behaviour of the inventory model is 

demonstrated in Fig. 1. 
 

 

Fig. 1 Graphical representation of the inventory system 
 

Based on the above description, during the time interval 

],0[  , the differential equation representing the inventory 

status is given by 
 

),(
)(

tD
dt

tdq
                 t0                      (1) 

 

With the condition S,  q(0)  the solution of (1) is 
 

n

n

T

dt
Stq

1

1

)(                 t0                    (2) 

 

In the second interval ],[ 1t , the inventory level 

decreases due to demand and deterioration. Thus, the 
differential equation below represents the inventory status: 
 

),()()(
)(

tDtqt
dt

tdq
    1tt                      (3) 

 
With the condition 0  )q(t1  , taking the first two terms of 

the exponential series and disregarding the terms containing 
2  and then integrating we get the solution of (3) is 

 

,
1

)(
)1)(()(

)/1()/1(
1/1/1

11 



















n

tt
ttt

T

d
tq

nn
nn

n

1tt   (4) 

 

Put t  in (2) and (4) we find the value of S  as 
 

n

n

T

d
S

1

1


 




 )1)(( /1/1

11
 nn

n

t

T

d











 

n

t nn

1

)( )/1()/1(
1  (5) 
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Substituting (5) in (2) we get 
 

(1/ ) (1/ )
1/ 1/ 1/ 1/ 1

11

( )
( ) ( )(1 )

1

n n
n n n n

n

td
q t t t

n
T

 
    



          
 

 

              t0                    (6)

 
 

During the third interval ],[ 1 Tt , shortage occurred and the 

demand is partially backlogged. That is, the inventory level at 
time t  is governed by the following differential equation: 
 

,
)(1

)()(

tT

tD

dt

tdq







                Ttt 1        (7) 

 

With the condition 0  )q(t1  , the solution of (7) is 
 

,
1

)(
)1)(()(

1)/1(1)/1(
1/1/1

11 







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
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

n
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T

d
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n



 
Ttt 1                (8) 

 

The maximum backordered inventory BI  is obtained at 
Tt  , then from (8) 
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Thus the order size during total time interval ],0[ T  is, 
 

BISQ  . 
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The holding cost HC during the period ],0[ T  is  
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The deteriorating cost DC during the period ],0[ T  is  
 

dttqtCDC
t

)()(
1

2 


  

 

Ignoring the terms containing 
2 or higher degree of it since 

 1,    0   we get 
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Total shortage cost SC  during the period ],0[ T  is given by 
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The lost sales cost LC during the period ],0[ T  is 
 

1
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1/1
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The total average cost of the system per unit time is given by 
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where TC1, TC2, and TC3 are discussed as follows. 

Case 1:  M0  

 

Fig. 2 Inventory level as a function of time for case 1 )0(  M  
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In this case the length of delay in payment )(M  is 

absolutely less than the length with no deterioration )( . 

Since the interest is payable during the time )( 1 Mt  , the 

interest payable in any cycle ],0[ T  is 
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During the permissible delay period when the account is not 

settled, the retailer sells the goods and continues to accumulate 
sales revenue and earns the interest with rate Ie. Therefore, the 

interest earned in the cycle period ],0[ T  is 
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Total average cost per cycle = replenishment cost + 

inventory holding cost + deterioration cost + shortage cost + 
lost sales cost + interest payable during the permissible delay 
period – interest earned during the cycle. 

So, the total variable cost per unit time is 
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Case 2: 1tM   

 

Fig. 3 Inventory level as a function of time for case )( 1tM   
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Interest earned in the cycle period ],0[ T  is 
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Total average cost per cycle = replenishment cost + 

inventory holding cost + deterioration cost + shortage cost + 
lost sales cost + interest payable during the permissible delay 
period – interest earned during the cycle. 
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So, the total variable cost per unit time is 
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Case 3:  1tM   

 

Fig.  4. Inventory level as a function of time for case 3 )( 1tM   

 
In this case, the period of delay in payment )(M is more 
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Total average cost per cycle = replenishment cost + 
inventory holding cost + deterioration cost + shortage cost + 
lost sales cost  – interest earned during the cycle. 

So, the total variable cost per unit time is 
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While ,M  the result of 1TC  is equal to 2TC . 

Similarly while ,1tM   the result of 2TC  is equal to .3TC  

IV. SOLUTION PROCEDURE 

In order to find the optimal solution t1
* and to minimize the 

annual total relevant cost, we take the first and second order 

derivatives of )( 1tTCi  with respect to t1, where }3,2,1{i . 

In other words, the necessary and sufficient conditions for 

minimization of )( 1tTCi  are respectively 0
)(

1

1 
dt

tdTCi  and 

0
)(

2
1

1
2


dt

tTCd i  where }3,2,1{i . 

Case 1:  M0 . 

The necessary and sufficient conditions to minimize 

)( 11 tTC  are respectively 0
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1

11 
dt

tdTC  and 0
)(

2
1

11
2


dt

tTCd . 

Now 0
)(

1

11 
dt

tdTC  gives the following non – linear equations 

in 1t . 
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Since 1  and 1  then 0
)(

2
1

11
2


dt

tTCd  when 1
1


n
. 

By solving (26) the optimal value of *
11 tt   can be 

obtained and then from (5), (10) and (21), the optimal value of 

,*SS   
*QQ   and 

*
2TCTC  can be found out 

respectively. 
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Case 3: 1tM   
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Since 1  and 1  then 0
)(

2
1

11
2


dt

tTCd  when 1
1


n
. 

By solving (28) the optimal value of *
11 tt   can be 

obtained and then from (5), (10) and (23), the optimal value of 

,*SS   
*QQ   and 

*
3TCTC  can be found out 

respectively. 

V. NUMERICAL EXAMPLES 

The numerical examples given below cover all the three 
cases that arise in the model. 

Example 1  

Consider an inventory system with the following data: α = 
0.1; β = 2; δ = 0.2; n = 4; d = 60; T = 1; A = 200; C2 = 10; C3 = 
4; C4 = 8; a = 0.4; b = 0.6; M = 0.2; μ = 0.4; Ie = 0.10; Ic = 
0.15; p = 15; s = 18 in appropriate units.  

Then we get the optimal values as *
1t = 0.8143595, 

*S = 

57.1841, *Q = 60.1295, 
*

1TC = 3849.5908 in appropriate 

units. Fig. 5 shows that the function 1TC  is convex with 

respect to t1. 
 

 

Fig. 5 The total cost (Example 1) with respect to t1. 

Example 2  

Consider an inventory system with the following data: α = 
0.1; β = 2; δ = 0.2; n = 4; d = 60; T = 1; A = 200; C2 = 10; C3 = 
4; C4 = 8; a = 0.4; b = 0.6; M = 0.6; μ = 0.4; Ie = 0.10; Ic = 
0.15; p = 15; s = 18 in appropriate units.  

Then we get the optimal values as *
1t = 0.9224980, 

*S = 

59.0958, *Q = 60.2844, 
*

2TC = 3839.8712 in appropriate 

units. The graph (Fig. 6) shows that the function 2TC  is 

convex with respect to t1. 
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Fig. 6 The total cost (Example 2) with respect to t1. 

Example 3  

Consider an inventory system with the following data: α = 
0.1; β = 2; δ = 0.2; n = 4; d = 60; T = 1; A = 200; C2 = 10; C3 = 
4; C4 = 8; a = 0.4; b = 0.6; M = 0.8; μ = 0.4; Ie = 0.10; Ic = 
0.15; p = 15; s = 18 in appropriate units.  

Then we get the optimal values as *
1t = 0.5053002, 

*S = 

50.5997, *Q = 59.5077, 
*

3TC = 3828.0160 in appropriate 

units. The graph (Fig. 7) shows that the function 3TC  is 

convex with respect to t1. 
 

 

Fig. 7 The total cost (Example 3) with respect to t1. 
 

Moreover, if μ = 0, this model becomes the instantaneous 
deteriorating item case, and the optimal total cost for the cases 
2 & 3 can be found as TC2* = 3842.5002 and TC3* = 
3829.3129 respectively. It can be seen that there is a decrease 
in total cost from the non-instantaneous deteriorating item 
model. This implies that if the retailer can convert the 
instantaneously deteriorating items to non-instantaneous 
deteriorating items by improving stock control, then the total 
cost per unit time will decrease. Also, when the supplier does 
not provide a credit period, the optimal retailer total cost can 
be found as TC* = 3856.4692. It can be seen that optimal total 

cost increases. So, retailers should try to get credit periods for 
their payments and if they wish to decrease their total cost. 

VI. SENSITIVITY ANALYSIS 

We now study the effects of changes in the values of the 
system parameters α, β, δ, μ, a, b and M on the optimal length 

of time in which there is no inventory shortage *
1t , the optimal 

initial inventory level ,*S  the optimal order quantity per cycle 
*Q  and the optimal total average cost .*TC  The sensitivity 

analysis is performed by changing each of the parameters by -
60%, -40%, -20%, +20%, +40%, +60%, taking one parameter 
at a time and keeping the remaining parameters unchanged. 
The analysis is based on the Example 2 and the results are 
shown in Table I.  

 
TABLE I 

SENSITIVITY ANALYSIS FOR VARIOUS INVENTORY PARAMETERS 
Parame

ter 
% 

change 
*
1t  

*S  
*Q  

*TC  

α 

-60 
-40 
-20 
+20 
+40 
+60 

0.9793 
0.9585 
0.9397 
0.9066 
0.8920 
0.8784 

59.8311 
59.5693 
59.3249 
58.8801 
58.6763 
58.4832 

60.1432 
60.1983 
60.2448 
60.3182 
60.3472 
60.3720 

3837.8289 
3838.5578 
3839.2365 
3840.4670 
3841.0280 
3841.5578 

β 

-60 
-40 
-20 
+20 
+40 
+60 

0.9550 
0.9380 
0.9280 
0.9194 
0.9187 
0.9188 

59.5715 
59.3397 
59.1900 
59.0388 
59.0065 
59.9905 

60.2550 
60.2855 
60.2913 
60.2710 
60.2545 
60.2371 

3839.1679 
3839.6702 
3839.8617 
3839.7763 
3839.6247 
3839.4457 

δ 

-60 
-40 
-20 
+20 
+40 
+60 

0.9136 
0.9168 
0.9197 
0.9250 
0.9274 
0.9297 

58.9444 
58.9986 
59.0489 
59.1396 
59.1805 
59.2189 

60.2704 
60.2810 
60.2827 
60.2861 
60.2878 
60.2895 

3839.8223 
3839.8398 
3839.8560 
3839.8853 
3839.8985 
3839.9109 

μ 

-60 
-40 
-20 
+20 
+40 
+60 

0.9072 
0.9108 
0.9159 
0.9305 
0.9399 
0.9509 

59.0292 
59.0335 
59.0542 
59.1613 
59.2528 
59.3720 

60.4584 
60.4052 
60.3457 
60.2244 
60.1685 
60.1186 

3841.8624 
3841.2689 
3840.5894 
3839.1523 
3838.4642 
3837.8339 

a 

-60 
-40 
-20 
+20 
+40 
+60 

0.9490 
0.9400 
0.9312 
0.9139 
0.9054 
0.8971 

59.5451 
59.3938 
59.2440 
58.9492 
58.8040 
58.6604 

60.3198 
60.3079 
60.2961 
60.2728 
60.2612 
60.2498 

3837.1766 
3838.0858 
3838.9840 
3840.7477 
3841.6137 
3842.4694 

b 

-60 
-40 
-20 
+20 
+40 
+60 

0.9409 
0.9346 
0.9284 
0.9166 
0.9109 
0.9053 

59.4079 
59.3017 
59.1977 
58.9559 
58.8978 
58.8016 

60.3090 
60.3006 
60.2924 
60.2765 
60.2687 
60.2610 

3838.8277 
3839.1808 
3839.5286 
3840.2087 
3840.5415 
3840.8695 

M 

-60 
-40 
-20 
+20 
+40 
+60 

0.8251 
0.8581 
0.8906 
0.9537 
0.9842 
1.0140 

57.3811 
57.9757 
58.5470 
59.6228 
60.1284 
60.6132 

60.1458 
60.1946 
60.2407 
60.3259 
60.3653 
60.4029 

3848.1546 
3844.5339 
3841.8404 
3838.4987 
3837.6338 
3837.2096 

 
From the above table we can conclude the following: 

1. *
1t and 

*S decreases while *Q and 
*TC  increases with 

increase in the value of the parameter α. 
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2. *
1t ,

*S , *Q and
*TC changes variably with increase in the 

value of the parameter β. 

3. *
1t ,

*S , *Q and 
*TC  increases with increase in the value 

of the parameter δ.  

4. *
1t and 

*S  increases while *Q and 
*TC  decreases with 

increase in the value of the parameter μ. 

5. *
1t ,

*S and *Q decreases while
*TC  increases with 

increase in the value of the parameter a. 

6. *
1t ,

*S and *Q decreases while
*TC  increases with 

increase in the value of the parameter b. 

7. *
1t ,

*S and *Q increases while
*TC  decreases with 

increase in the value of the parameter M. 

VII. CONCLUSION 

In this paper, a model for determining the optimal length of 
time in which there is no inventory shortage and the optimal 
order quantity for non – instantaneous deteriorating items are 
developed where delay in payment is allowed. Power pattern 
demand, Weibull two parameter deterioration rate and holding 
cost is expressed as linearly increasing functions of time are 
considered in this model. This type of power pattern demand 
requires a different policy than the conventional policy based 
on general Weibull pattern. In cases where large portion of 
demand occurs at the beginning of the period we use 1n
and when it is large at the end we use, 10  n . Similarly 

1n  and n  corresponds to constant demand and 
instantaneous demand respectively. The model is very 
practical for the industries in which the holding cost is 
depending upon the time. Also, shortage is allowed and can be 
partially backlogged, where the backlogging rate is dependent 
on the time of waiting for the next replenishment. The results 
show that there is decrease in total cost from the non-
instantaneously deteriorating items compared with 
instantaneously deteriorating items. Also, when a delay in 
payments is allowed, the total cost for the retailer also 
decrease. Finally, numerical examples and sensitivity analysis 
are provided to illustrate the model and the solution procedure. 

The proposed model incorporates some realistic features 
that are likely to be associated with some kinds of inventory. 
Furthermore, this model can be adopted in the inventory 
control of retail business such as food industries, seasonable 
cloths, domestic goods, etc. 

This paper can be extended in several ways, for instance, 
we may extend the model by considering the non – zero lead 
time. Also, we may consider inflation and time value of 
money in the model. Finally, we can extend the model by 
considering demand function as stochastic. 
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