
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1541

An Enhanced Distributed System to improve the

Time Complexity of Binary Indexed Trees
Ahmed M. Elhabashy, A. Baes Mohamed and Abou El Nasr Mohamad

Abstract—Distributed Computing Systems are usually considered
the most suitable model for practical solutions of many parallel
algorithms. In this paper an enhanced distributed system is presented
to improve the time complexity of Binary Indexed Trees (BIT).
The proposed system uses multi-uniform processors with identical
architectures and a specially designed distributed memory system.
The analysis of this system has shown that it has reduced the
time complexity of the read query to O(Log(Log(N))), and the
update query to constant complexity, while the naive solution has
a time complexity of O(Log(N)) for both queries. The system was
implemented and simulated using VHDL and Verilog Hardware
Description Languages, with xilinx ISE 10.1, as the development
environment and ModelSim 6.1c, similarly as the simulation tool.
The simulation has shown that the overhead resulting by the wiring
and communication between the system fragments could be fairly ne-
glected, which makes it applicable to practically reach the maximum
speed up offered by the proposed model.

Keywords—Binary Index Tree (BIT), Least Significant Bit (LSB),
Parallel Adder (PA), Very High Speed Integrated Circuits Hardware
Description Language (VHDL), Distributed Parallel Computing Sys-
tem (DPCS).

I. INTRODUCTION

The amount of data associated with many computing sys-

tems has evolved dramatically compared to the evolution of

the computing power. Accordingly, building speedy, efficient

and compressed data structures to hold the increasing data

size, has been the main interest of many researcher. Many

data structures have been introduced in the last few decades to

increase the efficiency of traversing and manipulation of large

set of data. Binary Indexed Tree (BIT) is one of the efficient

data structures which reduced the time cost of some operations

in an effective manner. Being locked to find algorithmic

solutions to enhance the efficiency of some computing sys-

tems, researchers started to think of using parallel computing

systems to perform the required enhancement. Many types

of parallel computing systems have been used as well, each

has some advantages that would fit for specific applications.

One of the parallel computing models that was widely used,

is the Distributed Parallel Computing System (DPCS). This

model is based mainly on partitioning the data into some

separated fragments and use multiple processing unit to access

these fragments. There could be some sort of communication

between the processing units or the memory fragments. The

more this kind of communication is avoided, the more speed

up is perform.

II. METHODS AND MATERIALS

A. Binary Indexed Tree

Binary Indexed Tree (BIT) is a Data structure presented

by Peter M. Fenwick for maintaining the cumulative fre-

quencies which are needed to support dynamic arithmetic

data compression. It is based on the decomposition of the

cumulative frequencies into portions that could be mapped to

the binary representation of the table indices. Traversing this

data structure is based on the binary coding of the indices. The

access time for all operations is proportional to the logarithm

of the table size. BIT is fast, uses more compact data and

simpler code ,which make it one of the most practical data

structures that are suitable for handling large tables of data.[4]

1) Description and Structure: Binary Indexed Tree is a data

structure to which ordinary arrays could be mapped in order

to enhance the time complexity of some queries. Lets define

the following problem: Assuming an array of size N with the

possible queries are:

1) Changing the value at some index i.

2) Summing the values from some index i to some index

j.

The classical solution has a constant time complexity for

the first query and O(N) for the second one. With BIT both

queries could be performed in O(log (N)). The basic concept

behind BIT is that, each integer can be represented as sum

of powers of two. In the same way, cumulative frequency can

be represented as sum of sets of sub frequencies. In our case,

each set contains some successive number of non-overlapping

frequencies. An array of size 16 (1 to 16) could be mapped

to the BIT presented in figure (1), so that tree[IDX] is the

sum of frequencies from index (IDX - 2r + 1) to index IDX,

where IDX is any index in the tree, r is the position(right to

left starting from zero) of the least significant non-zero bit in

the binary representation of IDX.[6], [7]

2) Reading Cumulative Frequency: The process of reading

cumulative frequency from index 1 to some index IDX could

be formulated with these steps (assuming IDX is in its binary

notation).

• Initialize a certain variable (SUM) to zero.

• Add tree[IDX] to SUM.

• Invert the least significant non-zero bit in IDX.

• Repeat the last two steps while IDX is greater than zero.

Figure 2 presents an example of looking for the cumulative

frequency of the first 13 elements. In binary notation, 13 is

equal to 1101. Therefore, the value should be calculated as

c[1101]=tree[1101]+tree[1100]+tree[1000]

Where c[a] is the cumulative frequency from index one to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1542

Fig. 1. Binary Indexed Tree (BIT)

Fig. 2. BIT Read Query

index a, tree[b] is the value of the BIT at index b. Now The

process of reading the cumulative frequency from some index

i to some Index j should be very obvious, just calculating c[j]

- c[i-1].

3) Frequency updating query: The main target of an up-

dating query at some index IDX is to update the tree at all

the indexes which are responsible for the value at index IDX.

In reading cumulative frequency, the least significant non-zero

bit is removed and this process is repeated as long as the zero

index is not yet reached. When changing some frequency in

the tree, the least significant non-zero bit in the index is added

to the index itself and this step is repeated while the index is

Fig. 3. BIT Update Query

less than or equal to the maximum index (the tree size). The

procedure of changing the frequency at some index IDX by

some value VAL consists of the following steps:

• Add VAL to tree[IDX].

• Add the least significant non-zero bit of IDX to IDX.

• Repeat the last two steps while IDX is less than or equal

to the tree size.

Figure 3 illustrates an example of updating the frequency at

the index 5. In binary notation, 5 is equal to 00101. Hence tree

[00101], tree [00110], tree [01000] and tree[10000] should be

all updated.

B. Design Model

Any query in a BIT will reflect on some positions other

than the original index. For example in a BIT of size 16 (1 to

16), updating the tree at index 5 will require updating cells 6,

8 and 16 as well. For a single processor BIT the sequence of

operations which are necessary to perform a certain query at

some position IDX is as follows:

• Perform the operation at position IDX.

• Update IDX to obtain the next position.

These two steps are executed until IDX goes out of bounds.

And according to the structure of BIT these operations will

be executed no more than B times. Where B is the number of

bits in the binary representation of the tree size. So a single

query will reflect on a maximum of B positions. The key term

in converting the sequential procedure to parallel operations

is to calculate the B or less positions concurrently direct from

the original position IDX, instead of calculating one position

after another, each depends on the previous one. The proposed

model uses multiple processors with identical architectures.

Each processor is responsible for calculating one index from

those which are necessary to perform a certain query. Hence,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1543

the number of processors depends on the size of the BIT. This

could be formulated as follows:

Ps = Ceil (Log (N+1))

Where Ps is the number of processors, N is the size of the BIT.

For example, for a BIT of size 1023 (1 to 1023) the model

will use Log (1023+1) processors.

1) Processor Architecture: The main function of a proces-

sor is to deduce one index among those which are necessary

to complete a certain query. Consider a read query at index

27 (11011). The classical method will deduce the necessary

indexes as the following,

Lets try to perform the following operations concurrently on

the base index,

• Convert the least significant bit to ’0’. This will generate

the index (11010).

• Convert the least three significant bits to ’0’, This will

generate the index (11000).

• Convert the least four significant bits to ’0’, This will

generate the index (10000).

Those addresses are exactly the necessary for performing the

read operation. Note that the index that will result from con-

verting the least two significant bits to ’0’ has been bypassed.

This is because the third least significant bit has value ’0’ in

the base index. So the concurrent solution for a read query

will be, assigning one processor to every bit in the base index

then let the processor do the following,

• Check the value of the bit which is assigned to it. Suppose

it is bit number OD.

• If it is ’0’, do nothing.

• Else convert the bits from (OD-1 down to 0) in the base

index to ’0’s and output the result index.

The update query is a little more complex. Consider an

update query at index 4 (00100). The sequential procedure

will generate the necessary indexes in the following order,

The following concurrent operations will generate the same

indexes.

• Reverse the fourth least significant bit and convert the

least three significant bits to ’0”s. This will generate the

index (01000).

• Reverse the fifth least significant bit and convert the least

four significant bits to ’0”s. This will generate the index

(10000).

Note again that the address generated from applying the

previous operations on the third least significant bit has been

bypassed, this is because it has value ’1’. Note also that

although the least and the second least significant bits has

value ’0’, the addresses generated by applying the operation

on those bits have been also bypassed. This is because each

of those bits has no bits with value ’1’ that are less significant

to it.

So the concurrent solution for an update query is also

obvious, Assign one processor to every bit in the base index.

And let the processor do the following,

• Check the value of the bit which is assigned to it. Suppose

it is bit number OD.

• If it is ’1’, do nothing.

• Else if it has no bits with value ’1’ that are less significant

to it, also do nothing.

• Else, reverse bit OD and convert the bits from (OD-1

down to 0) in the base index to ’0’s then output the result

index.

So the overall functionality of the processor is to receive the

index, the kind of operation (Read, Update) and the order

of the bit associated to it, then perform one of the scenarios

illustrated before, according to the type of operation.[2], [9].

Figure (7) shows a flow chart for the functionality of one

processor.

2) Memory Architecture: As mentioned before, The pre-

sented model uses a distributed system disciplines. This re-

quires the system memory to be partitioned into a number

of chunks or fragments. The key term in the partitioning

procedure in any distributed system, is to partion the memory

in a manner that minimize the total communication overhead

between the memory chunks. In this system the memory has

been divided in a way that will completely prevent any need

of communication between the memory fragments.0

let’s look closely to the process of generating the addresses

which are required to complete some query. Note that a certain

processor will be assigned a certain order (the order of the bit

in the index that the processor will check with all the bits that

are less significant to it). Note also that a certain processor

that is assigned a bit order OD (right to left starting from

zero), will certainly generate indexes that have the bit number

OD equal to ’1’ and all the bits that are less significant to it

equal to ’0’s. for example if a processor is assigned an order

of three, this yields to two possibilities, even the processor

will not generate an index, or the processor will genrate an

index with the fourth least significant bit equal to ’1’, and the

least three significant bits equal to ’0’s. This yields us to two

different rules,

1) Any processor with a certain order will never generate an

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1544

Fig. 4. Processor Function

Fig. 5. Address Description

address that could be generated by any other processor

with different order.

2) The number of possible addresses generated by a certain

processor is 2
B−OD−1. Where B is the number of bits

in the binary representation of the tree size and OD is

the bit order assigned to the processor again right to left

starting from zero.

It is now obvious that any address which is generated by

a processor that is assigned an order zero has a maximum of

2
B−1 different possibilities, which is equal to half the tree size

(if the tree exhausts all possible combinations of the address

bits). Similarly there will be 2
B−2 (one quarter of the tree

size) possibilities for the address generated by the next order

processor. Then one eight for the next one, and so on. So the

memory could be partitioned as illustrated in figure (6)

There is still a small pending issue that is necessary to

complete the design of the distributed memory system. The

addresses which are generated by the processors are com-

Fig. 6. Memory System

patible with a single uniform memory. In other words the

addresses are made to access one memory chunk of size N. So

there must be a method to map the addresses generated by the

processors to the actual right addresses in the corresponding

distributed memory fragments. After Recalling the memory

address details illustrated in figure (5), it is clear that in any

address that is generated by a processor with a certain order

OD, bits (0 to OD) are always constant (tied to ’1’ followed by

’0’s to the right). This means that the actual bits responsible for

accessing the local memory fragment of this processor are the

bits which are more significant than OD, hence the mapping

process will be taking these bits as the actual address and

exclude the constant part. This process is equal to shifting the

address right until the constant bits are excluded. [2], [8], [10]

3) Parallel Adder: Far till now, the system consists of a

number of processors, each one connected to its own local

memory. Meanwhile there isn’t any sort of communication

between any two processor, any two memory fragments or

any processor and any memory fragment other than its local

one. If the system ends up in this state, then it will reach the

optimum speed up that was mentioned by Amdahal, as there

will not be any bottle nicks in the system. Unfortunately the

system isn’t yet complete. Recalling the read query process

yields us to a missing part in our system. After calculating

the necessary addresses for a read query and retrieving the

tree values at these addresses, we need to add these values

to get the final result of the read query. Adding these values

sequentially using the naive method will lock the system again

to a bottle nick that will reduce the speed up dramatically

The system uses some sort of parallel adder that works in

Log(S), where S is the number of values to be added. This

adder works in a Binary Balanced Tree manner as illustrated

in figure(7). As long as the complexity of this adder is Log(S).

And as long as there are a maximum of Log(N) values to be

added in a single read query, so the complexity of the adder

could be rephrased to Log(Log(N)). Where N ,again, is the

size of the BIT. [2]

C. Implementation

As mentioned before, the system was implemented and

simulated using VHDL and Verilog Hardware Description

Languages, Under xilinx ISE 10.1. The implementation con-

sists of four main parts, processors, memory system, control

unit and the parallel summer. All are integrating in a single

unit which represents the BIT system.

The processor unit was implemented using VHDL. It has

the following signals as its interface,

• The query type (Read or Wright).

• The address in the tree which the query requires to read

from or write to.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1545

Fig. 7. Parallel Adder

• The order assigned to the processor.

• A clock signal which will trigger the processor to operate.

• The result address which is generated according to the

query type, the input address and the order assigned to

the processor.

The architecture of the processor was implemented in a

behavior structure. In other words, the functionality of the

processor was descried in an algorithmic or data flow form. It

is worth stating that the address mapping process which was

mentioned in the design of the memory system is performed by

the processors as well. This means that the addresses generated

by the processors in the real system are already compatible

with the distributed memory system.

The time and gate costs differ slightly according to the size

of the operation address. But they are still constant if we look

to them in an algorithmic complexity. The variation of these

costs are related to the hardware extention that is necessary

when changing the word size of any system.

The memory system was implemented using Verilog in also

a behavior structure. The memory fragments were mapped to

some block ram units, each one of these units represent a

fragment in the distributed memory system.

The control unit is the part that generates the read or write

signals to the memory according to the state of the query.

Remember that an update query requires reading the values of

the tree at some positions and updating them, then writting

them back in the same positions. This sequence yield us

to the fact that withen any updating query some read and

write operations will be performed in the memory system,

which force the existing of a control unit to synchronize this

procedure.

The implementation of the parallel adder was done using

Verilog as well. This was done by using multiple ordinary

two words adder in the form that was illustrated in figure (7).

These components have been connected together with some

other pre-made components (Multiplexers, adders) in a single

component to compose the complete BIT Parallel system.

The system components operate on the positive edge of the

system clock. The frequency of the system clock must be less

than the minimum of the allowed maximum frequencies of

each component. The time cost of the wiring between the

components must be taken into consideration when choosing

the frequency of the system clock. The timing analysis of

the system and all its components could be performed easily

using the timing analyzer of the xilinx ISE 10.1, taking into

consideration that the system uses multi-cycle structure. In

other words a single query will need more than one clock

cycle to finish. In our system , an update query will consume

four clock cycles to finish. First calculating the necessary

addresses concurrently, then reading the memory fragments at

these addresses, then updating these values, and finally writing

them back to the memory fragments. The read query requires

(2 + Log(Log(N))) clock cycles to finish. First calculating the

necessary addresses, then reading the values of the memory

fragments at these addresses, then it will consume Log(log(N))

clock cycles to add these values concurrently using the parallel

adder. [3], [1]

III. RESULTS

The analysis of the time complexity of the design is

now ready to be illustrated. There are three main parts, the

processors, the memory system and the parallel summer. The

processors work concurrently in a constant time complexity.

The distributed memory fragments work also concurrently in a

constant time complexity. Unfortunately The parallel summer

works in Log(Log(N)).

An Update query requires the following steps,

• The processors calculate the necessary addresses concur-

rently. This is done in a constant time complexity.

• Read the tree values at these addresses from the memory

fragments. This is done also in a constant time complex-

ity.

• Add the update value to all values that have been read in

the previous step. This could be done also in a constant

time complexity using multiple separated adders.

• Write these values again after being updated to the same

addresses in the memory fragments. Again this takes

constant complexity.

Therefore an update query could be done in constant time

complexity.

A Read query is slightly different. The steps of performing

such a query are,

• The processors calculate the necessary addresses concur-

rently. This is done in a constant time complexity.

• Read the tree values at these addresses from the memory

fragments. This is done also in a constant time complex-

ity.

• Sum all these values in O(Log(Log(N))) using the par-

allel summer illustrated before.

Accordingly a read query could be done in O(Log(Log(N))).

So The system ends up with the following,

1) The time complexity of any read query is

O(Log(Log(N))).

2) The time complexity of any update query is constant.

[5], [9]

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1546

Fig. 8. Complete System Diagram

IV. CONCLUSION

A new parallel distributed system has been introduced which

has managed to reduce the time complexity of Binary Indexed

Trees. This was done by efficiently partition the problem space

into small distributed fragments which operate concurrently.

The amount of communication between the system fragments

has been reduced as much as possible in order to obtain a

speed up that is near to the maximum enhancement offered

by the distributed parallel system.

V. FUTURE WORK

The proposed system could be more reliable if it is imple-

mented on a distributed work stations instead of the hardware

implementation proposed in this paper. More researches could

be performed to reduce the time complexity of the read query

to constant as well.

REFERENCES

[1] XST User Guide, Xilinx Inc.

[2] The Algorithm Design Manual. TELOS, The Electronic Library of
Sciences, 1998.

[3] Digital Design: Principles and Practicese (4th Edition). Prentice Hall,
2005.

[4] Peter M. Fenwick. A new data structure for cumulative frequency tables.
SOFTWAREPRACTICE AND EXPERIENCE, 1994.

[5] Ralph C. Hilzer Helen D. Karatza. Performance analysis of parallel job
scheduling in distributed systems. Annual Simulation Symposium, 2003.

[6] TOPCODER Inc. Binary indexed trees
. http://www.topcoder.com/tc?module=Statices, December 2008.

[7] TOPCODER Inc. Range minimum query and lowest common ancestor.
http://www.topcoder.com/tc?module=Staticstor, January 2009.

[8] W. E. Johnston Q. M. Malluhi. Approaches for a reliable high-
performance distributed-parallel storage system. High Performance

Distributed Computing, 1996.

[9] Linda M. Wills Randall S. Janka. Specification and synthesis of real-time
embedded distributed and parallel multiprocessor-based signal process-
ing systems. International Conference on Compilers, Architecture and

Synthesis for Embedded Systems, 2000.

[10] Vijay K. Naik Vinod G. J. Peris, Mark S. Squillante. Analysis of the
impact of memory in distributed parallel processing systems. Joint

International Conference on Measurement and Modeling of Computer

Systems, 1994.

ACKNOWLEDGMENT

The authors would like to thank Professor Dr. Ismail,

Ossama for his infinite support.

Ahmed M. Elhabashy Graduate Teaching Assistant. Arab Academy for
Sciences and Technology. College of Engineering. Computer Engineering
Department. a.elhabashy@hotmail.com.

A. Baes Mohamed Associate professor. Arab Academy for Sciences and
Technology. College of Engineering. Computer Engineering Department.
IEEE senior member (2001). baithmm@hotmail.com

Abou El Nasr Mohamad Associate professor. Head of the Computer Engi-
neering Department. Arab Academy for Sciences and Technology. College of
Engineering. m.abouelnasr@gmail.com

