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Abstract—The mitigation of crop loss due to damaging freezes 

requires accurate air temperature prediction models. An improved 
model for temperature prediction in Georgia was developed by 
including information on seasonality and modifying parameters of an 
existing artificial neural network model. Alternative models were 
compared by instantiating and training multiple networks for each 
model. The inclusion of up to 24 hours of prior weather information 
and inputs reflecting the day of year were among improvements that 
reduced average four-hour prediction error by 0.18°C compared to 
the prior model. Results strongly suggest model developers should 
instantiate and train multiple networks with different initial weights 
to establish appropriate model parameters. 
 

Keywords—Time-series forecasting, weather modeling.  

I. INTRODUCTION 
ROST damage is a significant concern for fruit growers in 
Georgia and other southeastern states, where bud 

formation and flowering at the start of the growing season 
includes the late-winter and early-spring months. 
Unseasonably cold temperatures during early 1996 and 2002 
killed flowers and were responsible for reduced fruit harvests 
[1], [2]. Growers can take steps to mitigate the effects of frost 
by using orchard heaters or irrigation to protect their fields 
from the worst damage, but these methods require local 
monitoring of weather conditions and advance warning of a 
freeze. Following a January 1997 freeze that resulted in losses 
of $300 million for Florida growers, the Florida Automated 
Weather Network was created [3]. 

The University of Georgia’s Automated Environmental 
Monitoring Network (AEMN), created in 1991, currently 
consists of over 60 automated weather stations throughout the 
state of Georgia, covering the breadth of the state’s 
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geographic diversity, from the coastal plains in the southeast, 
through the Piedmont, and into the Blue Ridge Mountains in 
the north [4]. The solar-powered stations are primarily 
situated in rural areas where the National Weather Service 
does not provide detailed local observations. Every second 
they collect air temperature, relative humidity, wind speed, 
wind direction, solar radiation, rainfall, and other weather 
data. Since March 1996 these observations have been 
aggregated into 15-minute averages, totals, and extremes, 
depending on the nature of the series. Previous observations 
were aggregated hourly. 

Among the online decision support tools made available by 
the AEMN are short-term air temperature predictions. These 
predictions, ranging from one to 12 hours ahead, are available 
on the AEMN website, www.georgiaweather.net, during the 
winter and early spring. Predictions available on the AEMN 
website are generated by artificial neural network (ANN) 
models developed in [5], [6]. To predict temperature for a 
location, these networks make use of up to six hours of lagged 
observations from the site as inputs. The models incorporate 
the time of day, as well as measurements of air temperature, 
humidity, wind speed, and solar radiation, and were developed 
for use from January through April. Additional classification 
models using ANNs were developed to predict freeze events. 
For this classification problem, the addition of recent rainfall 
observations as input variables was found to improve 
performance. ANN models have also been used to predict 
inputs to a separate frost deposition model in order to more 
accurately predict frost and ice on roads and bridges [7]. 

The networks created in [5], [6] faced software constraints 
limiting the number of observations used in model 
development to 32,000. The study also relied on preliminary 
experiments that trained and evaluated a single network to 
determine the effects of altering model inputs or parameters. 
The goal of this research was to improve these temperature 
prediction models using more advanced and flexible neural 
network technologies. Specifically, the research explored four 
methods of improving forecast accuracy: (1) increasing the 
number of training patterns, (2) including input variables 
encoding seasonal, or time-of-year, information,  (3) 
extending the duration of the lagged data used as inputs, and 
(4) varying the number of nodes in the hidden layer.  
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II. METHODOLOGY 

A. Data Sets 
Previous temperature prediction work in the AEMN domain 

was carried out by Jain, who trained networks using a 
development set in which sites were selected so as to 
encompass a broad range of conditions [6]. Model evaluation 
was undertaken with a data set composed of sites collectively 
representative of the southern and central growing regions of 
Georgia. The same sites and years were used in this work, as 
illustrated in Fig. 1, allowing for a comparison of these new 
results with the previous study. The model development sites 
included Alma, Arlington, Attapulgus, Blairsville, Fort 
Valley, Griffin, Midville, Plains, and Savannah, which 
generally have long histories of weather data. For these nine 
stations the data up to and including the year 2000 were 
included in the development set. Model evaluation data were 
more recent, from 2001-2004, and included observations from 
the Brunswick, Byron, Cairo, Camilla, Cordele, Dearing, 
Dixie, Dublin, Homerville, Nahunta, Newton, Valdosta, and 
Vidalia sites. Jain used the same locations for the years 2001-
2003 for evaluation [6]. The development and evaluation sets 
were restricted to observations from the first 100 days of the 
year, through April 9 or 10 for leap and non-leap years 
respectively. This range included both a large set of winter 
observations and the early growing season. The data sets were 
restricted to “low-temperature” observations with current 
temperature measurements below 20°C. Temperatures above 
20°C were found not to be associated with freeze events 
within a 12-hour prediction horizon, the longest such horizon 
considered in this research. 

Fig. 1 Locations of AEMN weather stations 
 
Model inputs included five weather variables: temperature, 

relative humidity, wind speed, solar radiation, and rainfall. 
While [6] determined rainfall did not improve temperature 
prediction accuracy, [8] found that rainfall was useful for 

predicting freeze events. In addition to the “current” values for 
each observation on record, lagged variables, spaced at one 
hour intervals, were also included in each observation pattern. 
Additionally, first-difference terms for the weather variables 
and their lags were derived and included. Note that the 
information contained in the first-difference variables is 
implicit in the current and lagged data. Though a model could, 
in principle, establish a set of weights to represent these first 
differences, making this information explicit has been found 
to improve model performance over this domain.  

Each observation pattern contained two sets of cyclic 
variables associated with the time and the date of the 
observation. Because time is modular in an arithmetic sense, 
simply representing it with a single variable failed to capture 
all information inherent in a measurement. To overcome this 
limitation, cyclic variables were constructed using fuzzy logic 
membership functions. Fig. 2 shows four such functions with 
a range of 0 to 1 for the time variable with domain 0000 to 
2400. Note that one of the variables, corresponding to the 
concept midnight, “wraps around” the domain’s upper and 
lower bounds. An analogous approach was taken to convert 
the day-of-year for each observation to four seasonal 
variables. 

 
Fig. 2 Four fuzzy logic membership functions ranging over the time 

of day 

B. Model Development 
Software constraints restricted previous AEMN temperature 

prediction models to 32,000 development observations. To 
overcome this limitation, a neural network suite was written in 
the Java programming language. This suite placed no limits on 
the size of the sets used in the training or evaluation process.  

Throughout this paper, the term model is to be understood 
as an ANN architecture and a set of associated parameters. A 
model is instantiated as a network by using a random seed to 
assign initial weight values and a training set order and 
subsequently training the network. That is, a model is a 
description of a class of potential networks. All networks were 
trained via the well-known error backpropagation (EBP) 
algorithm [9]. EBP training was successfully applied in 
previous ANN research in the AEMN domain. 

All models explored in this research were based on the 
Ward-style network architecture used in [5], [6]. The Ward 
network is an ANN with multiple node types that implement 
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multiple activation functions. The models used a linear input 
layer, three equally-sized, parallel “slabs” in the hidden layer, 
and a single, logistic output node, interpreted as the 
temperature at some prediction horizon (Fig. 3). The linear 
transformation carried out by the input layer was determined 
over the entire model development set. Each data series used 
as an input was transformed to the range 0.1 to 0.9. As the 
transformation made use of the maximum and minimum 
values of each series in the development set, this range may 
not hold when an evaluation pattern is presented. The hidden 
layer contained slabs implementing the Gaussian, Gaussian 
complement, and hyperbolic tangent activation functions [10]. 
Fully connected, biased weight matrixes connect the input 
layer to the hidden layer and the hidden layer to the output 
node.  

 
Fig. 3 A Ward-style neural network with three “slabs,” each with a 

distinct activation function 
 
Instantiating a Ward-style architecture requires specifying a 

number of network parameters including the learning rate and 
momentum, initial weight range, size of the training and test 
sets, number of hidden nodes in each slab, and the included 
input series. Variations to the learning rate, momentum, and 
the initial weight range were considered in preliminary 
studies, but these parameters were found to play only a small 
role in model accuracy. For all models considered in this 
research a learning rate of 0.1 and an initial weight range of -
0.1 to 0.1 were used. A momentum term was not included 

Models are typically evaluated by instantiating a single 
ANN and measuring the resulting performance of the trained 
network over an evaluation set. Such an evaluation scheme 
assumes that the performance of a single network is an 
accurate measure of any network that may instantiate the 
model. But, due to the random nature of the initial weights 
and training pattern ordering, there is no guarantee that two 
networks instantiating the same model will converge to the 

same final state [11]. This suggests that another method of 
model evaluation, involving multiple networks, is warranted. 

The temperature prediction models developed in [5], [6] 
relied on single-network evaluation. During the course of the 
current research, multiple-network evaluation was applied to 
these aspects of the model, often with different results. A 
group of networks, differing only in random seeding, were 
instantiated for each model. Each network was trained on a 
training set independently constructed from all available 
development patterns via random selection without 
replacement and trained for four million learning events prior 
to evaluation. Preliminary work in the AEMN domain showed 
the use of a testing set to stop training was not helpful. Test 
set performances mirrored those of the training sets and it was 
rare for an instantiated network’s performance to degrade in 
any reasonable amount of time. Training was stopped after 
four million events because preliminary work showed that 
epoch-by-epoch improvements were generally inconsequential 
by this time. After training, the mean absolute error (MAE) 
associated with each network’s temperature prediction was 
calculated over the entire evaluation set. Because the goal of 
the research was to develop a single, highly accurate ANN, 
the minimum MAE of this group was selected as the 
appropriate performance measure for a model.  

C. Experiments 
To explore the effects of increased training set sizes on 

model performance, six models, differing only in the number 
of training observations used, were instantiated by five 
networks each. Training set sizes of 10K, 25K, 50K, 100K, 
200K, and 400K observations were considered. All weather 
variables and related first-difference series, as well as the four 
diurnal variables, were used as inputs. A lag length of six 
hours was used. 

Next, to determine the effect of adding time-of-year 
information to the input vector, these models were compared 
to a second group, modified to include the four seasonal 
variables. All other inputs were the same, including the six 
hours of lagged data used. 

A third experiment explored the effect of variations in the 
lag length of the environmental inputs by instantiating 
multiple models with seasonal variables for lag lengths of six, 
eight, 10, 12, 18, 24, 36, and 48 hours to determine if 
increasing lag length beyond six hours improved prediction 
accuracy.  

Finally, an experiment was conducted comparing the model 
accuracy of models with seasonal inputs and hidden layers of 
15, 30, 75, and 225 nodes to determine a preferred hidden 
layer size. To allow a single parameter to represent the 
number of nodes, the three slabs were constrained to be of 
equal size, so that the four sizes considered corresponded to 5, 
10, 25, and 75 nodes per slab.  

III. RESULTS 
The results discussed here are for experiments with four-

hour prediction models. The results for other horizons were 
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qualitatively similar. Overfitting did not occur in any runs. 
Instead, the rare occurrences of increasing error over the 
testing set during training corresponded to periods of 
increasing error over the training set as well. 

Fig. 4 presents the MAEs associated with thirty trained 
networks instantiating six different models, corresponding to 
training set sizes between 10K and 400K unique observations. 
The most accurate network was trained over all 400K 
observations and had an MAE of 1.55°C. But the minimum 
MAEs associated with the most successful models of 10K, 
100K, and 400K training observations differed by less than 
0.005°C. The minimum MAE curve showed no clear 
relationship between error and training set size. Smaller, 
intermediate, and larger training set sizes were capable of 
yielding similar performance over five network instantiations. 
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Fig. 4 A comparison of the single-network and multiple-network 
evaluation methods for models distinguished by training set size; 
each point corresponds to the evaluation MAE of an instantiated 

network  
 
These results can be contrasted with single-network 

evaluation by considering the relative performance of the first 
network instantiated for each of the six models. This curve, 
also presented in Fig. 4, appears to show that increased 
training set sizes were associated with increased evaluation 
errors. The ANN with the smallest development set had the 
lowest MAE over the evaluation set (1.56°C), while the ANN 
trained over all available observations gave the highest 
(1.69°C). The use of a single-network evaluation scheme in 
this case would clearly lead to inaccurate conclusions 
regarding relative model performance. Such erroneous results 
will not always occur, however. In this case the first 
instantiations of the small-set models were relatively accurate 
while the first instantiations of the larger networks were 
relatively inaccurate, with the 400K-observation model 
leading to the least accurate network. The result was a 
deceptively suggestive curve. 

The second experiment evaluated six additional models 

with seasonal input terms, corresponding to the six distinct 
training set sizes. As shown in Fig. 5, these models 
outperformed the models without seasonal inputs over all 
training set sizes. The most accurate model with seasonal 
inputs had an evaluation MAE of 1.50°C, an improvement of 
more than 0.05°C compared to best model without them. 
Again there was no convincing evidence for a relationship 
between training set size and performance. The difference 
between the most and least accurate model MAE was less than 
0.02°C and did not trend with the number of training 
observations.  As a result, subsequent experimental results are 
not presented in terms of training set size. 
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Fig. 5 A comparison of models with and without seasonal input terms 
using minimum-error, multiple-network evaluation; each point 
corresponds to the minimum MAE obtained over five networks 

instantiating the model 
 
Six hours was the preferred lag length for forecast horizons 

of four hours or more in prior AEMN work [6]. The current 
study compared various models with seasonal terms that 
differed only in the hours of lagged data included as inputs. 
Fig. 6 presents the results of the experiment, which indicate 
that a lag length of six hours is clearly suboptimal for this 
forecast horizon. In fact, with an MAE of 1.50°C, the six-hour 
model was associated with the highest average error of any 
model considered here. A lag length of 24 hours resulted in an 
MAE of 1.41°C, the lowest observed in the experiment. The 
success of the 24-hour model makes intuitive sense as such a 
history is capable of generalizing over trends associated with 
the familiar daily cycle. Models with more than 24 hourly lags 
led to less accurate network instantiations. Presumably the 
information gained by the additional input terms was not 
sufficient to overcome the increased complexity of the search 
space of possible weights.  

The decision in [6] to use six hours was likely due to the 
work’s reliance on increasing the lag length by short 
increments until evaluation errors began to increase. Because 
it relied on single-network evaluation and found that a 
network with an eight-hour lag length was outperformed by a 
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simpler six-hour network, the work reached an inaccurate 
conclusion. The results of this research suggest that the use of 
multiple-network evaluation can avoid such errors. 

Duration of lagged data (hours)
0 10 20 30 40 50

M
od

el
 E

va
lu

at
io

n 
M

A
E 

(°
C

)

1.40

1.42

1.44

1.46

1.48

1.50

1.52

 
 

Fig. 6 A comparison of models distinguished by lag length using 
minimum-error, multiple-network evaluation; each point corresponds 
to the minimum MAE obtained over five networks instantiating the 

model 
 
The final experiment instantiated networks for models with 

seasonal inputs which differed in hidden layer size showed 
that the preliminary study used in [6] to settle on a layer of 75 
nodes (25 per slab) was similarly flawed. Multiple-network, 
minimum-error evaluation revealed that for models with six 
and with 24 hours of lagged data, a relatively small network 
with 30 hidden nodes (10 per slab) gave the smallest MAE. 
Improvements over the larger networks were slight.  With six 
hours of lagged data the larger models had errors only 0.01°C 
higher than the 30-node model. Allowing for repeated 
instantiations, increasing the number of hidden nodes beyond 
thirty increased computational complexity but did not lead to 
more accurate models. 

To establish a direct comparison between the models 
developed here and those obtained in [6], 15 new networks 
were instantiated for prediction horizons of one, four, eight 
and 12 hours. For each horizon the network with the lowest 
MAE over the development set was selected for comparison.  
The selected network was evaluated over the same sites and 
years used in [6] and its MAE calculated. 

Table I compares the prediction accuracies of these ANN 
models to those obtained in [6]. This model, which made use 

of seasonal input terms, 24 hours of lagged observations, and 
30 hidden nodes led to an improvement in model MAE over 
all horizons. For example, the four-hour prediction improved 
by 0.18°C, or 11%. As horizon length increased, the 
improvement as a percentage of original error decreased. The 
new networks were also evaluated over a data set consisting of 
the same sites with observations from 2004. Over this set the 
networks were slightly more accurate than over the 2001-2003 
period. 

IV. CONCLUSIONS 
The research presented in this paper considered the effects 

of changes to the ANN models used to predict temperature 
over Georgia AEMN data, including larger training set sizes, 
seasonal input terms, increased lag lengths, and varying the 
size of the network. Increasing the size of the training set did 
not reduce forecast errors. However, the inclusion of seasonal 
variables corresponding to membership in the fuzzy sets 
winter, spring, summer, and fall did improve model 
performance. Similar improvements resulted from extending 
the duration of historical data in the input vector from six to 
24 hours. Models with a hidden layer size of 30 nodes were 
more accurate than larger models over repeated instantiations. 

The introduction of seasonal terms may provide a means of 
implementing an accurate year-round forecast model. Future 
work may compare the accuracy of such models to season-
specific models such as those created in this research. The 
decreases in model performance associated with lag lengths 
greater than 24 hours and hidden layers larger than 30 nodes 
suggest that training temperature-predicting ANNs via error 
backpropagation is a process sensitive to increases in the 
number of weights. Feature extraction methods may be able to 
reduce the size of the input vector, reducing network degrees 
of freedom and improving performance. Additionally, 
different algorithms for determining weights may be less 
sensitive to network size. 

Finally, when applied to data-rich environments, a clear 
distinction should be maintained between abstract neural 
network models and actual instances of these models. The 
performance of a single instantiated network is not likely to be 
an accurate measure of model performance. In this study, 
model evaluation over multiple instantiations led to better 
parameter selection by presenting more accurate comparisons 
of distinct models than those afforded by single-network 
evaluation. When large data sets are involved, model 
performance measures should make use of multiple 
instantiations. 
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