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Abstract—Cognitive radios have been recognized as one of the
most promising technologies dealing with the scarcity of the radio
spectrum. In cognitive radio systems, secondary users are allowed to
utilize the frequency bands of primary users when the bands are idle.
Hence, how to accurately detect the idle frequency bands has
attracted many researchers’ interest. Detection performance is
sensitive toward noise power and gain fluctuation. Since signal to
noise ratio (SNR) between primary user and secondary users are not
the same and change over the time, SNR and noise power estimation
is essential. In this paper, we present a cooperative spectrum sensing
algorithm using SNR estimation to improve detection performance in
the real situation.
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[. INTRODUCTION

ITH the rapid growth of wireless communication

technology and the emergence of new wireless
applications, the wireless frequency spectrum has become a
scarce resource. However, a large portion of the assigned
spectrum is not yet utilized efficiently. Studies from the
Federal Communication Commission (FCC) show that the
utilization of licensed spectrum only ranges from 15% to 85%
[1]. In order to reduce the spectrum scarcity, cognitive radio is
identified as a technique which can improve spectrum
underutilization [2]. This term “cognitive radio” was first
coined by Joseph Mitola in his PhD thesis [3], [4]. Spectrum
sensing is one of the most important cognitive radio’s
majorities which determine whether primary (licensed) user is
present or not. It is often considered as a detection problem in
which the aim is to detect the weak signal from a primary
transmitter through the local observations of secondary users
(SU). To improve the sensing accuracy, three different
detection methods are investigated in [5], namely matched
filter detection, energy detection and feature detection.

The energy detection approach is mostly used in the
spectrum sensing since it has low computational and
implementation complexities and prior knowledge of the
primary users’ (PU’s) signal is not needed. However, a single
SU cannot exactly detect the existence of PU due to the effects
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of hidden nodes, shadowing, and fading channels. In order to
combat these effects, cooperative spectrum sensing has been
proposed. Cooperative spectrum sensing (CSS), in which
information from multiple SUs are incorporated for the
detection of the PU, can improve the spectrum sensing
performance [6]. There are various cooperative schemes to
combine the sensing information from SUs. These schemes can
be broadly categorized into decision based fusion [7] and data
based fusion [8].

For decision based fusion schemes, each SU has to make a
decision on the presence of PUs based on its sensing data and
then sends its decision to a fusion center which will determine
the final decision. For data based fusion schemes, SUs do not
make any decision, instead, they send data, which are usually
the test statistics of their sensing data, to the fusion center for it
to make the final decision. This paper focuses on the decision
based fusion scheme because it has low communication
overhead.

A lot of work on spectrum sensing has been done nowadays
but most of them assume the noise power is specified, while in
practical sensing it is not a true assumption. Noise uncertainty
and SNR fluctuations due to multipath effects complicate the
spectrum sensing operation [9]. In this paper, we present an
algorithm using SNR estimator in a desired manner to achieve
acceptable performance of detection in the real situation. We
assume that SNR between primary and SUs can vary from one
sensing interval to another interval.

The rest of the paper is organized as follows. System model
is described in Section II. In Section III, we describe SNR and
noise power estimation. In Section IV, we present a CSS
scheme using SNR estimation. Simulation results and analysis
are given in Section V. Finally, we conclude the paper in
Section VI.

11.SYSTEM MODEL

Cognitive radios (CRs) utilize unused channel of PU’s signal
and spectrum sensing mechanism allows them to determine the
presence of a PU. In energy detection method, the locations of
the primary receivers are not known to the CRs, as there is no
signaling between the PU and the CRs. To detect the PU
signal, we have used the following hypothesis for the received
signal [10]:

r(n) ={ w(n), H, (D
h.s(n) +w(n), H,
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where r(n) shows the signal received by CR user. The
transmitted signal of the PU, denoted s(n), is a complex signal
and w(n) = w,.(n) + jw;(n) is additive white Gaussian noise
with zero mean and variance 202. Further w,(n),w;(n)are
real-valued Gaussian random variables with mean zero and
variance o;2. Here h denotes the quasi-static Rayleigh flat-
fading channel gain between the PU and the CR user. Note that
the channel is assumed to remain constant over the duration of
the N observed samples. H, is the null hypothesis, which
indicates the absence of PU, and H; isthe alternative
hypothesis, which indicates that PU is present.

For the detection of unknown deterministic signals corrupted
by the additive white Gaussian noise, an energy detector (ED)
is derived in [11], which is called conventional ED. This is an
easily implemented detector for the detection of unknown
signals in spectrum sensing. It collects the test statistic and
compares it with a threshold (1) to decide whether the
PUsignal is present or absent. The test statistic is given by [10]:

Y = i\r(n)\z 2

where N is the number of samples which is equal to 2u =
2TW, and Y denotes the energy of the received input signal,
which is compared with threshold to make the final decision.

According to energy detection theory [11], energy observed
(Y) by the cognitive user has the following distribution:

v ~{{i H, G)
ZZu (ZU]/) Hl

2 2
where y =|hi% denotes the instantaneous SNR, yZ, and

x2,(2uy) are central and non-central chi-square distribution
respectively, each with 2u degrees of freedom and a non-
centrality parameter of 2uy for the latter one.

Threshold value is set to meet the target probability of false
alarm Py according to the noise power. The probabilityof
detection P; can be also identified. If only additive white
Gaussian noise (AWGN) is considered, the expression for Py
and P; for AWGN channel can be defined according to (3)
[12]:

A
F[U,FJ
P, =B(Y > 4| Hy)=———) S

Pd=R<Y>zHI>=Qu[\W,ﬂ] ®)
O-W

where T'(n,x) = fxw t"le7tdt is the incomplete gamma

. N-1 -x?+a? .
function and QN(a,b):fb x(g) e 2 Iy_q(ax)dt is the
generalized Marcum-Q function. If the signal amplitude
follows a Rayleigh distribution, then the SNR follows an
exponential PDF given by [13]:

t)=Ltexp-D),  y20, ©)
V4 V4

In this case, the average probability of detection may be
derived by averaging (5) over fading statistics [13]:

T i —\u!
= RS ) 1+uy
Pray =€ 7> — +
ey gi!(za;] ( uy j

2 s _ i
200(1407) _ o 20 l AUy
X[e ¢ gi!{za;(nuy)”

where ¥ is the average SNR. On the other hand, detection and
false alarm probabilities over AWGN channel can be derived
approximately by using the central limit theorem (CLT). The
CLT suggests that the sum of N i.i.d random variables with
finite mean and variance approaches a Normal distribution
when N is large enough. Using this theorem, the distribution
of the test statistic can be accurately approximated with a
Normal distribution for a sufficiently large number of samples
as [12]:

0

{N(N(erv%)(l +Y),NQRo2*(1+2y)) ; H,
Y~ (8)
N(N(263),N(202)2); Hy

so we have:

Py =Y > 2|, - A=) ©)
N(22)

=P > 2] H) =0 A-N(202X1+7) (10)
¢ ‘ IN+29)(202)

where Q(.) denotes Gaussian probability Q-function.

In order to achieve the desired sensing performance, two
approaches, the constant detection rate (CDR) and the constant
false-alarm rate (CFAR), have been considered [10]. The use
of a CDR detector minimizes the false alarm probability when
the detection probability is fixed at a desired level. On the
other hand, the use of a CFAR detector maximizes the
detection probability while guaranteeing that the false alarm
probability remains at a desired level. As there is no
information about the PU’s signal (actually, we even do not
know whether the signal of PU exists), the use of a CFAR
detector is usually considered [10].

III. SNR ESTIMATION

A good SNR estimation is critical in many digital
communication systems as it is a key parameter in many
receiver application such as decoding, spectrum sensing and
power control in multiple-access systems [14]. Hence, various
algorithms were proposed to compute an accurate estimation of
this parameter. In general, these algorithms can be divided into
two main categories: data-aided (DA) and non-data aided
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(NDA) estimation. A DA estimator, such as Maximum
Likelihood (ML) and Squared Signal-to-Noise Variance
(SNV), would require the transmitted data to be perfectly
known to the receiver, or at least the first few samples [14]. As
for the NDA estimators, such as second and fourth moment
(M2M4) and Signal-to-Variation Ratio (SVR), they assume the
transmitted signal to be unknown to the receiver. Even though
the DA estimation would give a better and more accurate
estimation, the advantage of the NDA is that it does not need
the transmitted data to be previously known at the receiver;
hence, it is more bandwidth efficient than DA [15]. Since there
is not any signaling between primary and SU, we need an NDA
estimator in this paper. We choose sixth order statistics-based
estimator from [16], because it can be employed and tuned for
non-constant modulus constellation in order to extend the
usable range of SNR values in quasi-static flat-fading channel.
The SNR estimation of the received signal can be expressed:

h*.252
oM a

From sixth order statistics-based SNR estimation method,
found [16], we have:

5 VIV E
y=-2_  geo_ | DM, (12)
1-2 a2 + fp
where
D=M,-2(3-b)M;-bM,M,, (13)
a=c,-9c,+12 , B=09-b)c,-2), (14)

Mp and C, are the sample moment and constellation moment
that can be expressed, respectively, as:

M, =%g\r(n)\p (15)
c, :E{Mp}. (16)

Either 2™ = 0 or 1 can be used as starting point and the
choice of the free parameter b should be tailored to the
particular constellation [16]. From received energy of PU
signal, we know:

P.=|h[".P, +P, (17)

where P, = 202, B, = 202. So after SNR estimation from (12),
using (11) and (17) noise power can be expressed as:

p =t (18)
y+1

IV. PRESENTED CSS ALGORITHM

In energy detection method, we compare received energy
with a specified threshold. Threshold specification is one of
the most important ED’s task on characterizing detection
performance so that appropriate threshold selection can
increase probability of detection and reduce false alarm
probability that is our purpose. From (9), for given target false
alarm probability (pf), the threshold A can be determined as:

2=[Q'®)+/NNN2? (19)

So for threshold determining, noise power estimation is
inevitable. As mentioned before, most researches assume
noise power is known, while it is not a correct assumption in
practical systems. So, we intend to use SNR estimator in order
to specify noise power. It is notable that when PU is absent,
SNR estimation would be invalid because there is not any
signal sample basically and ideally it must be equal to zero. So
when PU is not present or does not detect yet, we compare
received energy with a fixed threshold (A..). The defined
threshold is (19) with:

a1
Pn = E (Pn,max + Pn,min) (20)

whereP, .y Pnminare the maximum and minimum noise

power experienced respectively.

When licensed user come back to the band and detector
does not decide PU presence yet, we perform fixed threshold
comparison which lead to detection latency because fix
threshold has low performance. So, in the presented method
for this stage, we perform SNR estimation every L sensing
interval to mitigate problem of detection latency. This
operation improves detection performance while sensing
duration will increase. So, there is a tradeoff between
performance and sensing time.

The proposed CSS method has shown in Fig. 1 and it has
three steps as follow:

1) When we decide PU is absent, each radio measure
receives energy and compares it with fixed predetermined
threshold. In addition, SNR estimation process is
performed every L sensing interval and therefore received
energy will compare with dynamic threshold that
calculated from estimated noise power in this interval. We
perform estimation in this phase because we want to
detect PU’s signal quickly when it comes back to the
band. Then SU’s get a local binary decision and relay it to
the fusion center. Fusion center use K-out-of-N rule [17]
(where N is the total number of reported local decisions,
while K is the number of local decisions that identify the
spectrum as used) to get global decision and relay result
to SU.

2) When PU is detected, SNR estimation process is
performed in all sensing interval and threshold is
calculated using estimated noise power. In this phase,
SNR estimation is reliable. So, after making decision,
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each SU transmit estimated SNR and local binary
decision to the fusion center. Fusion center chooses most

reliable user’s decision as a global decision (user with
maximum SNR).
3) IfPU does not detect, we return to step one.

Primary user not detected

®

[T

Computational Complexity

Sensing interval Data transmission

Primary user detected

SNR estimation and compare received
energy with dynamic threshold.

Primary user not detected

LR

Step3

10,

Energy measurement and
compare with fixe threshold.

Fig. 1 Operation of the proposed CSS method: L is equal to 3

As our sensing procedure when PU is present, is different
from when it is absent, we evaluate false alarm and detection
probabilities for every interval separately. According to Fig. 1,
(9), (10) and (20) when we are in intervals like (a):

2J’Cte -N (Pn,max + Pn,min) (21)
N(P, e + Py )

n,max

P, =Q

for intervals like (b) we have:

p —q| Zom ~NFes (22)
NPHZ,ESl

where P, g is the estimated noise power. Cooperative false
alarm probability Qf at fusion center in these intervals (a), (b)
is:

M

weftriar o

K=l

and when we are in intervals like (c):

Qd _ Pd _ Q ﬂ“Dyn - NPn,maxsnr(l + }/max) (24)
N1+ 2P, acsnr

where 4p,,, is obtained from (19) by substituting noise power

estimation and P, 4y snr 1S the estimated noise power of SU

with maximum SNR.

V.SIMULATION RESULT

In this section, we present simulation results to demonstrate
the performance of the presented detection method. We
assume that the cognitive area has only one licensed user, and

M SUs that participate in CSS. There is also only one data
fusion center in the cognitive area and does not participate in
sensing. All of the simulation results are obtained by
averaging 10000 experiments. We assume that the transmitted
PU signal is QPSK over Rayleigh fading channel. Channel is
assumed to remain constant over the duration of the N
observed samples. SNR estimation and received energy
measurements are obtained by using a total of 500 and 50
samples, respectively and P(H,) = P(H,) = 0.5.
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Fig. 2 ROC curves of proposed algorithm for different L and
comparison with conventional method

Fig. 2 depicts the receiver operating characteristic (ROC)
curve of the presented scheme for different L. We assume that
received SNR between SU’s and PU vary uniformly between
—10dB and 0dB, depending on the distance from PU. As
shown in this figure, when L increase, detection performance
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will improve. So, we select a reasonable L in order to satisfy
our desired sensing time and accuracy.

In Fig. 3, we show detection performance for different
average SNR for M = 4,6,8 SUs. It can be seen that increasing
SUs is gainful when average SNR is in the middle range.

As mentioned before, when we are in stage two, fusion
center selects decision of user with maximum SNR as final
decision.

If we assign a weight to each SU according to SNR (w; =
T Zﬂi,Z?’ilwi = M[18]), instead of choosing most reliable
decision as final decision, results has been in Fig. 4. So it can
be concluded that in this scenario choosing most reliable

decision as final decision is more reasonable.
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Fig. 3 Probability of detection versus SNR at P¢ = 0.1 for different
numbers of SUs, L=3
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Fig. 4 Comparison between proposed and weighted method, L=3

VI. CONCLUSION

In this paper, a CSS algorithm in CR networks has been
presented. We describe a practical scenario which noise power
is unknown and should be estimated. SNR estimation is a time
and processing-intensive procedure so we employ estimator in
some interval to establish a tradeoff between performance,
time cost and complexity. Simulation result shows
performance of the proposed method and reveals that
estimation in specific interval when PU is absent can mitigate
detection latency.
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