
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1492

Abstract—In this paper, a novel multi join algorithm to join
multiple relations will be introduced. The novel algorithm is based
on a hashed-based join algorithm of two relations to produce a
double index. This is done by scanning the two relations once. But
instead of moving the records into buckets, a double index will be
built. This will eliminate the collision that can happen from a
complete hash algorithm. The double index will be divided into join
buckets of similar categories from the two relations. The algorithm
then joins buckets with similar keys to produce joined buckets. This
will lead at the end to a complete join index of the two relations.
without actually joining the actual relations. The time complexity
required to build the join index of two categories is Om log m where
m is the size of each category. Totaling time complexity to O n log m
for all buckets. The join index will be used to materialize the joined
relation if required. Otherwise, it will be used along with other join
indices of other relations to build a lattice to be used in multi-join
operations with minimal I/O requirements. The lattice of the join
indices can be fitted into the main memory to reduce time complexity
of the multi join algorithm.

Keywords—Multi join, Relation, Lattice, Join indices.

I. INTRODUCTION

HE performance of several DBMS and DSMS queries is
dominated by the cost of Join Queries. Join queries are

always expensive in terms of time complexity and specifically
on number of I/O blocks required to be fetched. Also, Sorting
is an integral component of most database management
systems (DBMSs). Sorting can be both computation-intensive
as well as memory intensive [1], [2], [3]. The performance of
several DBMS join queries is often dominated by the cost of
the sorting algorithm. Most DBMS queries will require sorting
with stable results. A stable sort is a sorting algorithm which
when applied two records will retain their order when sorted
according to a key, even when the two keys are equal [5], [6].
Thus those two records come out in the same relative order
that they were in before sorting, although their positions
relative to other records may change. Stability of a sorting
algorithm is a property of the sorting algorithm, not the
comparison mechanism. For instance, quick Sorting algorithm
is not stable while Merge Sort algorithm is stable [7], [8].

Manuscript received June 24, 2008
Hanan A. M. Abd Alla is with the Department of Information Technology,

College of Computer & Information Science, King Saud University, Riyadh,
Saudi Arabia (e-mail: hanan.hosni@yahoo.com).

L. A. Al-Safadi, is with the Department of Information Technology,
College of Computer & Information Science, King Saud University, Riyadh,
Saudi Arabia (e-mail: lsafadi@ksu.edu.sa).

External memory sorting performance is often limited by
I/O performance. Disk I/O bandwidth is significantly lower
than main memory bandwidth. Therefore, it is important to
minimize the amount of data written to and read from disks.
Large files will not fit in RAM so we must sort the data in at
least two passes but two passes are enough to sort huge files
[9], [10], [11]. Each pass reads and writes to the disk. CPU-
based sorting algorithms incur significant cache misses on
data sets that do not fit in the L1, L2 or L3 data caches [12],
[13], [14]. Therefore, it is not efficient to sort partitions
comparable to the size of main memory. This results in a
tradeoff between disk I/O performance and CPU computation
time spent in sorting the partitions. For example, in merge-
based external sorting algorithms, the time spent in Phase 1
can be reduced by choosing run sizes comparable to the CPU
cache sizes. However, this choice increases the time spent in
Phase 2 to merge a large number of small runs.

Therefore in this paper, a new join algorithm is introduced
that is not going to sort relations before joining them. The new
algorithm is used in a novel multi-join algorithm.

The proposed algorithms have been tested in performance
studies. The benchmarks used in the performance studies are
databases consisting of up to 10000 values, and up to 8
relations to be multi joined.

 In the following sections, the proposed algorithm, and the
computational requirement analysis will be presented in
details. The proposed algorithm with the proof of stability will
be presented in section II. Analysis of the time complexity
will be carried in section III. Experimental results are
presented in section IV. Conclusions and references will
follow.

II. THE PROPOSED JOIN ALGORITHM

In this paper, we present a novel algorithm to build a join
index based on stable categorization algorithm. The algorithm
scans each of the unsorted input relations and using a hashing
function it insert an appropriate entry in the double index.
Resulting into m unsorted segments Sj based on the join
key K, All elements in a segment Sj have keys of the same
category and this category precedes chronologically the
category of all elements in segment Sj+1, with no order
imposed in the segment itself. This scan requires linear time
complexity. The proposed join algorithm then joins the
unsorted segments of the double index to produce the join
index. The stability of the keys is kept enacted, which is a
requirement in database operations.

An Efficient Multi Join Algorithm Utilizing a
Lattice of Double Indices

Hanan A. M. Abd Alla, and Lilac A. E. Al-Safadi

T

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 558 © 2008 WASET.ORG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1493

The main idea of the proposed algorithm is to divide the
elements of each of the input relations into some disjoint
segments S0, S1, . . . , Sm, of equal lengths L, where L is
equal to n/m, such that all elements in a segment Sj is not
sorted according to any order. The main condition is that all
elements in a segment Sj precedes all elements in segment
Sj+1. But instead of actually dividing the relation into
segments which is physically expensive, we build an index
using hashing function to populate it indexing the elements of
the disjoint segments Si.

The New Proposed Algorithm: Build Double Index DI for
two n-tuple relations R1 and R2 is presented below.

Algorithm Build Double Index BDI(DI1,2 , R1,R2)
Begin

1. Scan R1 and R2 to determine the number of elements
of the categories S0, S1, . . . , Sm of R1 and categories C0,
C1, . . . , Cm of R2.

2. Build an empty double index with 2n entries, n entries
for R1 and n1 entries for R2, designate the start and end
of the categories of R1 and of R2.

3. Determine a hash function H(key), where it will
determine the category of tuple t according to its key
which is the join attribute.

4. For each tuple t in R1
a. Find category Sj of t by applying the hash
function H.
b. Add an entry of the two fields which are the key
and tuple number in the double index in an empty
place designated to category Sj.

5. For each tuple p in R2
a. Find category Cj of p by applying the hash
function H.
b. Add an entry of the two fields which are the key
and tuple number in the double index in an empty
place designated to category Cj.

End

There are some issues that have to be considered to
guarantee stability. First, the input relation has to be scanned
in sequential order from first element to last element.

Example
Assume the following two relations R1 and R2 as shown in

figure 1, their double index is build according to algorithm
BDI(R1,R2) using the join attribute A1. The resultant index
is shown in Fig. 1.b.

R1
A1 A2 A3
41 - -
32 - -
43
21
20
35
34

R2
A1 b2 b3
42 - -
53 - -
41
45
22
26
20

Fig. 1.a. Relation R1 and R2

For R1 there are 4 categories S0, S1, S2 and S3. S0 contains
tuples whose category is “2” and it contains two elements. S1

contains three elements of category 3. S2 contains two
elements of category 4. S3 is empty.

For R2 there are 4 categories C0, C1, C2 and C3 . C0 contains
tuples whose category is “2” and it contains three elements. C2

contains three element of category “4”. C3 contains one
element of category “5”.

DI1,2(R1,R2)
A1 of
R1

Tuple#
in R1

A1 of
R2

Tuple#
in R2

21 4 22 5
20 5 26 6
32 2 20 7
35 6 42 1
34 7 41 3
41 1 45 4
43 3 53 2

Fig. 1.b The double index DI1,2(R1,R2)

After building the double index, the corresponding
categories in the DI will be joined to form the join index JI.
The following algorithm will detail this technique of joining
corresponding categories to form the join index.

Algorithm BJI(JI1,2, DI1,2)
Begin
1. Scan the first corresponding categories (have similar

value of the join attribute) and form the join index
between them either by sorting each of the category or
by using nested join.

2. Repeat the previous step for all corresponding
categories who share the same join attribute.

End

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 559 © 2008 WASET.ORG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1494

Fig. 2 shows the steps of building the join index JI(DI)
S0 and C0

A1 of
R1

Tuple#
in R1

A1
of
R2

Tuple#
in R2

21 4 22 5
20 5 26 6
 20 7

S1 and C1

A1 of
R1

Tuple#
in R1

A1
of
R2

Tuple#
in R2

32 2
35 6
34 7

S2 and C2

A1 of
R1

Tuple#
in R1

A1
of
R2

Tuple#
in R2

41 1 42 1
43 3 41 3
 45 4

S3 and C3

A1 of
R1

Tuple
in
R1

A1 of
R2

Tuple
in
R2

 53 2

Fig. 2.a the categories of the double index DI1,2

JI(DI1,2)
Att1: (A1 of
R1=A1 of
R2)

Att2:
(Tuple# in
R1)

Att3: (Tuple#
in R2)

20 5 7
41 1 3

Fig. 2.b. JI1,2: join index of R1 and R2

Materializing the resultant joined relation R from the
joining of two relations R1 and R2 is presented below. The
following technique is going to be used to build the real joined
relation in an optimized way in terms of I/O requirements.
This algorithm is an attempt to minimize the number of blocks
required to materialize the join operations. It should be
considered that the join index is small enough to fit in main
memory.

Algorithm Materialize(R, JI1,2)
Begin
1. Use a hash function to hash the join index JI1,2 on the

attribute Att2.

2. Use the results from the hash to bring tuples of R1 that
are in the same block in one I/O operation. Populate
the part of relation R designated for R1.

3. Repeat step 2 for the rest of tuples of R1.
4. Repeat step 1 using Att3.
5. Repeat step 2 and 3 using the relation R2.
End

To facilitate multi join between n relations R1 ,R2 ,…Rn,
double indices DIj,j+1 between two relations Ri and Rj+1 -
where j is an odd number- should be built. For n relations, n/2
DIs should be formed. A lattice between the DIs should be
used to form the multi join index -MJI- between m different
relations. Materializing the resultant relation R should be done
at the last step using the MJI. The following example is a
clarification of forming the MJI.

Example:
Assume we have 20 relations R1, R2, ….R20, then 10 DIs

will be built DI1,2 , DI3,4, DI5,6 ……., DI19,20 . To join the
relations R1, R3, R5, R9. The lattice between the indices is
shown in Fig. 3.

DI1,2 DI3,4 DI5,6 …… DI9,10

 D1,3 D5,9

 JI1,2 JI5,9

 MJI1,2,5,9

Fig. 3 The formation of MJI1,2,5,9

If the join algorithm is such that it keeps the indices of a
sequence of equal values from a given list in sorted order, i.e.
they are kept in the same order as they were before the join,
the algorithm is said to produce stable output. Otherwise, the
algorithm is said to be unstable. Stability is defined such that
values from relation are always given preference whenever a
tie occurs between values in relation A and in relation B, and
that the indices of equal set of values are kept in sorted order
at the end of the join operation. The proposed multi join
algorithm preserve stability, which is required from join
algorithms.

III. TIME COMPLEXITY AND I/O REQUIREMENTS

In this subsection we are going to compute the time
complexity and number of I/O operations required to built a
join index between two relations R1 and R2.

Scanning the elements of two relations Ri, Rj of n elements
each to form DJi,j is done in linear time.

TDJ O n (1)

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 560 © 2008 WASET.ORG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1495

Where TDJ is the time complexity to build a Double index
between two relation each has n tuples and k blocks.

BDJ = 2*k (2)

Where BDJ is the number of blocks required to be
transferred from secondary storage to main memory to build a
Double index between two relations each has m blocks. The
physical storage for the two relations can be of great help in
reducing the number of I/O required to build the DJ.

TJI O n (3)
BJJ = 0 (4)

Combining equation 1 and 3 will lead to equation 5 that
will compute total time complexity (T) to build a join index.
Also, equation 6 will combine equations 2 and 4 to present the
total I/O operations (B) required to build the join index of two
relations.

T O n (5)
B = 2*k (6)

Time complexity TR1,R2 to materialize the join of two
relations R1 and R2 according to the algorithm Materialize(R,
JI1,2) is computed in equation 7.

TR1,R2 O n+n log m (7)

Since n log m > n then equation 7 will be reduced to
equation 8.

 TR1,R2 O n log m (8)

Where m is the average size of each category, assuming
there are n/m categories.

Time complexity (TMJI) and I/O requirements (BMJI) to
build a multi join index between g relations is depicted in
equations 9 and 10.

 TMJI O n (9)
BMJI = g/2*k (10)

Time complexity Tmulti to materialize the join of g
relations using multi join index is computed in equation 11.
The I/O requirements (Bmulti) is depicted in equation 12.

Tmulti O n log m (11)
Bmulti = g/2*k (12)

IV. PERFORMANCE STUDY

Performance study is being carried on and it comprises two
folds. First fold studies the performance of the proposed
algorithm to build join index between two relation R1 and R2.

The second fold studies the performance of building MJI
between several relations. The materialization of the join and
multi join will be studies in different situations to present
experimental studies showing time complexity and I/O
requirements.

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000

Number of keys in each relation

Ex
ec

ut
io

n
tim

e
in

m

ill
ise

co
nd

s

Mergsort-based join algorithm
Materialize relation algorithm

(a)

1
2

3

4
5

6
7

8

9
10

11

12
13

1000 2 000 3000 4000 5000 6000 70 00 8000

number of keys

ex
ec

ut
io

n
tim

e
in

 m
ill

is
ec

on
ds merge sort based multi

join of 4 relations
proposed algorithm with
MJI

(b)

4

6

8

10

12

14

16

1000 2000 3000 4000 5000 6000 7000 8000

number of keys

ex
ec

ut
io

n
tim

e
in

m

ill
ise

co
nd

s

merge sort based join of 8 relations

proposed algorithm

(c)
Fig. 4 Performance of the proposed algorithm against merge sort

join algorithm

The performance improvement obtained by using our
proposed algorithm against merge sort join based algorithm is
observed as a factor of two times speedup over optimized
CPU implementations. We performed the experiments on a
3.4 GHz Pentium IV.

V. CONCLUSION

In this paper, a novel multi join algorithm to join multiple
relations will be introduced. The novel algorithm is based on
a hashed-based join algorithm of two relations to produce a
double index. This is done by scanning the two relations once.
But instead of moving the records into buckets, a double index

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 561 © 2008 WASET.ORG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1496

will be built. This will eliminate the collision that can happen
from a complete hash algorithm. The double index will be
divided into join buckets of similar categories from the two
relations. The algorithm then joins buckets with similar keys
to produce joined buckets. This will lead at the end to a
complete join index of the two relations without actually
joining the actual relations. The time complexity required to
build the join index of two categories is Om log m where m is
the size of each category. Totaling time complexity to O n
log m for all buckets. The join index will be used to
materialize the joined relation if required. Otherwise, it will be
used along with other join indices of other relations to build a
lattice to be used in multi-join operations with minimal I/O
requirements. The lattice of the join indices can be fitted into
the main memory to reduce time complexity of the multi join
algorithm. Time complexity to join multi relations is in the
order of n log m.

REFERENCES

[1] D. Knuth, The Art of Computer Programming: Volume 3 / Sorting and
Searching, Addison-Wesley Publishing Company, 1973.

[2] Y. Azar, A. Broder, A. Karlin, and E. Upfal, “Balanced allocations,” in
Proceedings of 26th ACM Symposium on the Theory of Computing,
1994, pp.593-602.

[3] Jan Van Lunteren, “Searching very large routing tables in wide
embedded memory,” in Proceedings of IEEE Globecom, November
2001.

[4] R. Anantha Krishna, A. Das, J. Gehrke, F. Korn, S. Muthukrishnan, and
D. Shrivastava, “Efficient approximation of correlated sums on data
streams,” TKDE, 2003.

[5] A. Arasu and G. S. Manku, “Approximate counts and quantiles over
sliding windows,” PODS, 2004.

[6] N. Bandi, C. Sun, D. Agrawal, and A. El Abbadi, “Hardware
acceleration in commercial databases: A case study of spatial
operations,” VLDB, 2004.

[7] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten, “Database
architecture optimized for the new bottleneck: Memory access,” in
Proceedings of the Twenty-fifth International Conference on Very Large
Databases, 1999, pp. 54–65.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

[9] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald,
“Approximate join processing over data streams,” in Proceedings of the
2003 ACM SIGMOD international conference on Management of data,
ACM Press, 2003, pp.40-51.

[10] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten, “What
happens during a join? Dissecting CPU and memory optimization
effects,” in Proceedings of 26th International Conference on Very Large
Data Bases, 2000, pp. 339–350.

[11] A. Andersson, T. Hagerup, J. H°astad, and O. Petersson, “Tight bounds
for searching a sorted array of strings,” SIAM Journal on Computing,
30(5):1552–1578, 2001.

[12] L. Arge, P. Ferragina, R. Grossi, and J.S. Vitter, “On sorting strings in
external memory,” ACM STOC ’97, 1997, pp.540–548.

[13] M.A. Bender, E.D. Demaine, andM. Farach-Colton, “Cache-oblivious B-
trees,” IEEE FOCS ’00, 2000, pp.399–409.

[14] J.L. Bentley and R. Sedgewick, “Fast algorithms for sorting and
searching strings,” ACM-SIAM SODA ’97, 1997, pp.360–369.

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 562 © 2008 WASET.ORG

