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Abstract—In this paper, an improved method for estimating 

fundamental matrix is proposed. The method is applied effectively to 
monocular camera based moving object detection. The method 
consists of corner points detection, moving object’s motion estimation 
and fundamental matrix calculation. The corner points are obtained by 
using Harris corner detector, motions of moving objects is calculated 
from pyramidal Lucas-Kanade optical flow algorithm. Through 
epipolar geometry analysis using RANSAC, the fundamental matrix is 
calculated. In this method, we have improved the performances of 
moving object detection by using two threshold values that determine 
inlier or outlier. Through the simulations, we compare the 
performances with varying the two threshold values. 
 

Keywords—Corner detection, optical flow, epipolar geometry, 
RANSAC. 

I. INTRODUCTION 

ECENTLY, vehicles equipped with ADAS (Advanced 
Driver Assistance Systems) are on the market. ADAS is 

now considered essential because it provides not only 
convenience but also safety to drivers. It is regarded as an 
intermediate stage for fully-operated autonomous vehicles. 
Assistance systems and autonomous vehicles are not separate 
concepts. The level of ADAS will ultimately evolve into 
autonomous technology. On a typical road, drivers and 
pedestrians are always exposed to unexpected accident. In 
particular, collisions with pedestrians or other vehicles are very 
dangerous. In order to prevent these accidents, many 
researchers have studied on moving object detection. 
Yamaguchi proposed a method for moving object detection [1]. 
It analyzes epipolar geometry between consecutive two images 
in monocular camera. Next, corner points are detected by 
Harris corner detector [2], essential matrix is estimated by 
using 8-point algorithm [3] and RANSAC [4]. In this paper, we 
estimate fundamental matrix including camera intrinsic 
parameter, and propose to use two threshold values. One is 
value to form maximum consensus in RANSAC, another one is 
used for determining if feature points are inlier or outlier. 

In the simulations, we test evaluation on video data recorded 
by front and rear camera mounted at a vehicle. For performance 
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evaluation, we use recall, precision, and F-measure 
representing the result of integrating both measures. 

This paper is organized as follows: In the next section, we 
explain the related works. In Section Ⅲ, we present the method 
which uses two threshold values. In Section Ⅳ, the 
performances of simulated result are described. Finally, we 
conclude the paper in Section Ⅴ. 

II. RELATED WORKS 

To analyze the epipolar geometry from consecutive two 
images, the feature points are detected. These features need to 
be robust enough to match the same points in two images, such 
as corner points. At any ݐ and ݐ െ 1, corner feature points are 
detected by Harris corner detector and matched. And then, 
optical flows are estimated by pyramidal Lucas-Kanade 
algorithm. Optical flows describe not only motions, but also the 
corresponding points of feature points. These corresponding 
points at time t would almost match feature points at time t െ 1. 
The fundamental matrix can be computed by using an 8-point 
algorithm between two images with matching feature points. 
However, any feature point may be point of moving object. 
This optical flow would be a vector of summation of the two 
flows generated by the camera’s motion and its own motion. 
Therefore, existing research estimates parameters using 
RANSAC [1]. 

A. Harris Corner Detection 

Harris et al. [2] proposed the following method that detects 
traceable feature points. When a point ݌ሺݔ,  ,ܹ ሻ, local windowݕ
and the shift vector ሺ∆ݔ,  ሻ are indicated, the sum of squaredݕ∆
differences ܵ between these 2 local window is given by: 

 

ܵሺݔ, ሻݕ ൌ ∑ ሾܫሺݔ,൅∆ݔ, ݕ ൅ ሻ	ݕ∆ െ ,ݔሺܫ ሻሿଶௐݕ          (1) 
 
Equation (1) is rewritten as (2) by a first-order taylor series 

approximation. 
 

ܵሺݔ, ሻݕ ൌ ሾ∆ݔ ܯሿݕ∆ ൤
ݔ∆
 ൨                       (2)ݕ∆

 
When two eigenvalues of ܯ are ߣଵ,  ଶ, the flat, edge, andߣ

corner are determined according to the scale and difference of 
the two eigenvalues. The result is given as: 

 
ܴ ൌ detሺܯሻ െ ݇ ∗  ሻଶ                      (3)ܯሺ݁ܿܽݎݐ

 
where, the value ݇  ሺ0.04 ൑ ݇ ൑ 0.06ሻ  is determined as the 
experienced knowledge of the parameter. (|ܴ| ൌ ,(݈݈ܽ݉ݏ ሺR ൏
0ሻ, ሺR ൐ 0ሻ means flat, edge, and corner respectively.  
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B. Pyramidal Lucas-Kanade Algorithm 

Pyramidal Lucas-Kanade is a sparse optical flow and can 
find large motion by constructing pyramid by size from upper 
layer to lower layer of original image. 

C. Epipolar Geometry and Fundamental Matrix 

Essential matrix is a relative geometry represented 
algebraically in two normalized camera coordinates. Let p and 
p′  be respectively the normalized camera coordinates with 
z-coordinate value 1 in image at time ݐ െ 1 and [5] ݐ, then, 

 
pᇱ୘Ep ൌ 0                                        (4) 

 
where, E  is 3 ൈ 3  matrix including camera’s rotation and 
translation. In fact, there exists difference between the camera’s 
image plane and normalized camera coordinates because of 
lens distortion and focal length. If the transformation between 
the two planes is the camera intrinsic parameter K, (4) can be 
rewritten as 
 

݉ᇱ்K୘EK݉ ൌ 0                                (5) 
 

where, ݉, ݉′ are homogeneous image coordinates. Through (5) 
fundamental matrix is given as: 

 
݉ᇱ்F݉ ൌ 0	ሺF ൌ K୘EKሻ                         (6) 

 
where, F is 3 ൈ 3 matrix, which contains intrinsic parameter K 
in essential matrix E. Finally, (6) is rewritten in (7) by all N 
feature points m and corresponding points m′. 

 

A݂ ൌ ൮

′ଵݔଵݔ ′ଵݔଵݕ ′ଵݔ ′ଵݕଵݔ ′ଵݕଵݕ ′ଵݕ ଵݔ ଵݕ 1
′ଶݔଶݔ ′ଶݔଶݕ ′ଶݔ ′ଶݕଶݔ ′ଶݕଶݕ ′ଶݕ ଶݔ ଶݕ 1

⋮
′ேݔேݔ ′ேݔேݕ ′ேݔ ′ேݕேݔ ′ேݕேݕ ′ேݕ ேݔ ேݕ 1
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(7) 

 
Fundamental parameter ݂  is estimated by SVD (Singular 

Value Decomposition) [5]. RANSAC allows the matrix A to 
contain the feature points of the background except for the 
foreground, and the fundamental matrix is estimated more 
accurately than from all features. 

III. PROPOSED METHOD 

Fig. 1 shows system flowchart for moving object detection. 
Fig.. 2 shows feature points using Harris corner detector. As 
shown this figure, it is seen that only the corners of traceable 
feature are detected. 

The first threshold value used in fundamental matrix 
estimation is smaller than the second for searching outlier 
points. In order to reduce the residual of the calculated 
fundamental matrix, it is important to select stationary features 
without movement and variation such as structure’s. For 
example, wavering leaves and objects with a change in 
brightness would affect calculation of fundamental matrix.  

 

Fig. 1 Main flow chart of proposed system 
 

 

(a) Original image 
 

 

(b) Corner points 

Fig. 2 An example of corner detection 
 

If using smaller threshold value in RANSAC, the matrix A in 
(7) which consists of feature points is made up of stationary 
features with a high probability. It is because small inlier range 
does not permit objects with low noise value as well. And the 
larger threshold value for outlier search allows background 
points containing some noise. 

To cluster the points, we considered Euclidean distance 
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between points, optical flow’s magnitude and direction. Fig. 3 
illustrates detected moving object’s points and a result of 
clustering. 

 

 

(a) Moving object’s points 
 

 

(b) A result of clustering 

Fig. 3 An example of moving object detection 
 

Fig. 4 shows result images in various environments. Fig. 4 (a) 
describes that a moving person is detected in a complex indoor 
environment, Figs. 4 (b) and (c) explain moving object 
detection from the front/rear camera mounted at vehicle, Fig. 4 
(d) illustrates detection of 2 objects. In order to measure the 
similarity of each point in clustering, we considered 3 features. 
Therefore, as shown in Fig. 4 (d), the 2 objects could be 
detected separately. 

IV. EXPERIMENTAL RESULTS 

For the evaluation, we test the method by varying the first 
threshold value thrଵ in various environments when the second 
thrଶ  is fixed as 1. The experimental environment of videos 
consists of indoor and outdoor. The case of outdoor is recorded 
by cameras mounted at front/rear. The input image resolution 
was 640 ൈ 480 pixels. 

 

 

(a) 
 

 

(b) 
 

 

(c) 
 

 

(d) 

Fig. 4 Result images in various environments (a) one moving object 
indoor, (b) and (c) using front and rear camera outdoor, (d) two objects 

outdoor case 
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The performances are shown in Table I. the method is 
evaluated by recall, precision, and F-measure. As shown this 
table, it has better performances that the smaller first threshold 
value is applied at the step of fundamental matrix estimation 
and moving objects are determined as the larger second 
threshold value. 

 
TABLE I 

THE PERFORMANCES OF THE PROPOSED METHOD 

 thrଵ thrଶ Recall Precision F-measure 

Indoor 

0.2 1 0.39 0.46 0.43 

0.4 1 0.4 0.48 0.44 

0.6 1 0.35 0.4 0.37 

0.8 1 0.31 0.36 0.33 

1 1 0.32 0.37 0.34 

Outdoor (front) 

0.2 1 0.36 0.63 0.46 

0.4 1 0.31 0.59 0.41 

0.6 1 0.3 0.54 0.39 

0.8 1 0.29 0.52 0.37 

1 1 0.25 0.41 0.36 

Outdoor (rear) 

0.2 1 0.41 0.58 0.48 

0.4 1 0.36 0.54 0.44 

0.6 1 0.34 0.51 0.41 

0.8 1 0.34 0.49 0.4 

1 1 0.24 0.3 0.27 

V. CONCLUSION 

In this paper, we present a method using two inlier range for 
moving object detection in dynamic scene. The performance of 
the method shows higher than using one inlier range. However, 
as shown table I, our method still has low detection rate. 
Therefore, we will research the way of improvement using 
tracking algorithm. 
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