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Abstract—In this paper, a backward semi-Lagrangian scheme
combined with the second-order backward difference formula
is designed to calculate the numerical solutions of nonlinear
advection-diffusion equations. The primary aims of this paper are
to remove any iteration process and to get an efficient algorithm
with the convergence order of accuracy 2 in time. In order to achieve
these objects, we use the second-order central finite difference and the
B-spline approximations of degree 2 and 3 in order to approximate
the diffusion term and the spatial discretization, respectively. For the
temporal discretization, the second order backward difference formula
is applied. To calculate the numerical solution of the starting point
of the characteristic curves, we use the error correction methodology
developed by the authors recently. The proposed algorithm turns out
to be completely iteration free, which resolves the main weakness
of the conventional backward semi-Lagrangian method. Also, the
adaptability of the proposed method is indicated by numerical
simulations for Burgers’ equations. Throughout these numerical
simulations, it is shown that the numerical results is in good
agreement with the analytic solution and the present scheme offer
better accuracy in comparison with other existing numerical schemes.

Nonlinear advection-diffusion equation.

I. INTRODUCTION

THE governing equation to be considered in this paper

is the one-dimensional nonlinear advection-diffusion

equation described by

ut+f(u)ux = νuxx (ν > 0), x ∈ [xL, xR], t ∈ [0, T ], (1)

together with boundary and initial data imposed as follows{
u(t, xL) = g1(t), u(t, xR) = g2(t), t > 0,

u(0, x) = u0(x), x ∈ [xL, xR].
(2)

Among many numerical techniques, the backward

semi-Lagrangian method (BSLM) is one of popular strategies

to solve the above problem. It consists of two essential

processes as follows. Defining the characteristic curves

π(t, x) given by the differential equation

dπ(t)

dt
= f(u(t, π(t))), (3)

(1) can be changed in the form

d

dt
u(t, π(t)) =

∂u

∂t
(t, π(t)) +

∂u

∂x
(t, π(t))

dπ

dt
(t)

= ut(t, π(t)) + f(u(t, π(t)))ux(t, π(t))

= νuxx(t, π(t)).

(4)

The first process is to evolve the solution along the

characteristic curve, which is described by a linear simple

diffusion equation along the characteristic curve with the total

time derivative and the diffusion term as described by (4).

The other is to find the departure points of particles moving

along the characteristic curves, whose solution is described by

a self-consistence nonlinear initial value problem given by (3).

Traditionally, there are two main strategies to solve the

highly nonlinear initial value problems (3) and to find the

departure points. One is an implicit approach [7]. The other

is a substepping method of an explicit type [7]. These

methods are both second-order, but it is well known that

the implicit method achieves a little bit accurate result. The

small difference causes a sensitive effects in the accuracy.

Furthermore, the bigger the Reynolds number is, the larger

the gap of the effects is between these two methods. In

addition, the explicit method may work ineffectively in

some special cases and the implicit scheme is much better

when the velocity changes in particular (see [5]). However,

the conventional second-order backward integration schemes

require an iteration process such as fixed point or Newton

iteration. At each time and for every spatial point, this iteration

process requires an interpolation scheme of the solution at the

departure points of the particles, which yields considerable

computational cost.

The primary aim of this paper is to develop a BSLM

that does not require such iteration steps for solving the

nonlinear equation of the characteristic curves, but have such

good properties that the conventional BSLMs have. These

objects can be obtained by evolving the solution along the

characteristic curve with the second order central difference

scheme for the diffusion term and the second-order backward

difference formula (BDF2) for the total time derivative. In

particular, we apply the error correction techniques, which are

originated in our recent development (see [3], [4]), to solve the

highly nonlinear initial value problem of finding the departure

points. We introduce a modified Euler’s polygon to derive

the error correction scheme and use the A-stable midpoint

rule as the time integration for the initial value problem. The

proposed algorithm turns out to be completely iteration free,

which resolves the main weakness of the conventional BSLM

in time integration.

is devoted to describe the error correction method for solving
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This paper is organized as following. In Section II, the

backward semi-Lagrangian methods are described. Section III

(3). Several test problems are performed in Section IõV. Finally,

we provide some comments and conclusion in Section V.
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II. BACKWARD SEMI-LAGRANGIAN FINITE DIFFERENCE

SCHEME

This section aims to describe the backward semi-Lagrangian

finite difference formula for (1). Hereafter, we define un :=
[u(tn, x0), u(tn, x1), · · · , u(tn, xM )]T for each time tn,

where xj are given grid points, and assume that the

approximation vectors Uk := [Uk
0 , U

k
1 , · · · , Uk

M ]T , (k ≤
n) for the solution vector uk are already calculated and

given. Since the departure positions of the particles arriving

at Eulerian grid points do not typically coincide with the

grid points, the solution at the departure positions must be

interpolated. Hence, the interpolation procedure is one of the

key ingredients in the implementation of BSLM. Among many

techniques of interpolations, we use the B-spline interpolation

in this paper. We assume that the weights of the B-splines

Pun(x) and PUn(x) are calculated (see [1], [2]).
Let πj(t) be a characteristic curve satisfying (3) arriving

at the position xj at time tn+1. Applying the BDF2 and

the second order central difference for temporal and spatial

derivatives, respectively, (4) leads to

−μu(tn+1, xj−1) + (1 + 2μ)u(tn+1, xj)− μu(tn+1, xj+1)

=
4

3
u(tn, πj(tn))− 1

3
u(tn−1, πj(tn−1))

+O(h3 + hΔx2), j = 1, 2, · · · ,M − 1,
(5)

where μ := 2νh
3Δx2 . For the calculation of πj(tn), we will use

the information of πj(tn−1) as follows. Applying the Taylor’s

expansion of πj(t) about tn−1 and using the known value

πj(tn+1) = xj , one may get the following expansion of πj(t).

πj(t) = πj(tn−1) + (t− tn−1)f(u(tn−1, πj(tn−1)))

+
(t− tn−1)

2

4h2

(
xj − πj(tn−1)− 2hf(u(tn−1, πj(tn−1))

)
+O(h3).

(6)

Hence, evaluating (6) at time tn and using the B-spline

interpolation P , one may get an approximate value of πj(tn)
given by

πn
j ≈ 1

4

(
xj +3πj(tn−1)+2hPf(U(tn−1, πj(tn−1)))

)
. (7)

The approximation scheme of πj(tn−1) will be discussed in

the next section.
Now, substituting (7) into (5) and dropping the

unknown truncation term in (6), we obtain the following

full-discretization

AUn+1 = dn+1, (8)

where (M − 1) × (M − 1) tridiagonal matrix A :=
(
aij

)
whose (i, j)th entries are defined by

aij :=

⎧⎪⎨
⎪⎩
1 + 2μ, i = j,

−μ, |i− j| = 1,

0, otherwise

(9)

and

dn+1 := [dn+1
1 +μu(tn+1, x0), d

n+1
2 , dn+1

3 , · · · ,
dn+1
M−2, d

n+1
M−1 + μu(tn+1, xM )]T .

Here,

dn+1
j :=

4

3
PUn(πn

j )−
1

3
PUn−1(πn−1

j )

with an appropriate approximation πn−1
j for πj(tn−1).

III. ERROR CORRECTION METHOD

This section focuses on finding approximation values of the

characteristic curves πj(t) at tn−1 such that⎧⎨
⎩

dπj(t)

dt
= f(u(t, πj(t))), t < tn+1

πj(tn+1) = xj ,
(10)

which is a highly nonlinear equation and self-consistent due

to the unknown slope function f(u).
We begin this section with the construction of a modified

Euler’s polygon recently developed by the authors. Also, we

consider the family of all the characteristic curves πj(t) and

we regard the function πj(t) as a two variable function defined

by π(xj , t) := πj(t). Further, we assume that π(t, x) is

sufficiently smooth with respect to both variables t and x. For

the characteristic curve πj(t) satisfying (10), let us consider

its Taylor’s expansion at tn+1 and the Taylor’s expansion of

u(t, πj(t)) at tn, which is given by

πj(t) = xj + (t− tn+1)f(u(tn+1, πj(tn+1)) +O(h2)

= xj + (t− tn+1)f(u(tn, πj(tn))) +O(h2).
(11)

To replace the unknown value πj(tn) in the second equation of

(11), we further apply the Taylor’s expansion of π(t, xj) about

(tn, xj−1). Then, one may approximate πj(tn) as follows.

πj(tn) ≈ pnj :=

{
x0 if j = 0

yj−1(tn) otherwise,
(12)

where yj(t) is a modified Euler’s polygon defined by

yj(t) := xj + (t− tn+1)Pf(Un(pnj )). (13)

Let ψj(t) be the difference between the analytic solution

πj(t) of (10) and modified Euler polygon yj(t) defined by

ψj(t) := πj(t)− yj(t). (14)

By (14) and (13), one may see that ψj(t) satisfies a first-order

ODE given by

ψ
′
j(t) ≈ f(uπ(tn, yj(tn)))ψj(t)+f(u(t, yj(t)))−Pf(Un(pnj )),

(15)

where uπ(t, πj(t)) denotes the Jacobian of u. The equation

(15) can be obtained by using the Taylor’s expansion of

u(t, πj(t)) at (t, yj(t)). By integrating both sides of equation

(15) over the interval [tn−1, tn+1] and applying the mid-point

integrating rule, one may get an asymptotic formula given by

−ψ(tn−1) = 2hψ′(tn)

= 2h
(
f(uπ(tn, yj(tn)))ψj(tn) + f(u(tn, yj(tn)))

− Pf(Un(pnj ))
)
+O(h3).

(16)
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Further, we use the fact ψj(tn) =
1
2 (ψj(tn+1)+ψj(tn−1))+

O(h2), which can be proved by the Taylor’s theorem. Then,

one may approximate (16) as follows.

(1 + hf(uπ(tn, yj(tn)))ψj(tn−1)

≈ −2h
(
f(u(tn, yj(tn))− Pf(Un(pnj )))

)
.

(17)

f(u(tn, yj(tn))) ≈ Pf(Un(yj(tn))),

f(uπ(tn, yj(tn))) ≈ Jn =
1

h

(
Pf(Un(yj(tn)))

− Pf(Un(yj(tn)− h))
)
.

(18)

Combining (17) with (18) leads to

ψn−1
j ≈ −2h

(Pf(Un(yj(tn)))− Pf(Un(pnj ))
)

(1 + hJn)
. (19)

Thus, one may get the approximation πn−1
j of the value

πj(tn−1) by

πn−1
j := yj(tn−1) + ψn−1

j . (20)

IV. NUMERICAL EXPERIMENTS

We consider the numerical solutions of Burgers’ equation

described by⎧⎪⎨
⎪⎩

ut(t, x) + u(t, x)ux(t, x)− νuxx(t, x) = 0, ν > 0,

u(0, x) = u0(x), [xmin, xmax]

u(t, xmin) = g1(t), u(t, xmax) = g2(t), t ≥ 0.

To investigate the convergence of the proposed scheme, the

discrete L2 norm error, Err2(t) is measured and which is

defined by

Err2(t) =
( 1

n

n∑
i=0

(
Ui(t)− u(t, xi)

)2) 1
2

,

where Ui(t), u(t, xi) are numerical and analytical solution,

respectively.

The proposed scheme is compared with the

semi-Lagrangian schemes combining with BDF2 [7].

For the comparisons, we use two traditional schemes for

solving the highly nonlinear initial value problems (3). One

is an implicit approach [7] given by

πn−1
j = xj − 2α, α = hf(u(tn, xj − α)),

πn
j = xj − αj ,

αj = h
(3
2
f(u(tn, xj − αj/2))− 1

2
f(u(tn−1, xj − αj/2))

)
.

(21)

The other is a substepping method of an explicit type [7] given

by

πn−1
j = xj − 2hf(u(tn, xj − hf(u(tn−1, xj)))),

πn
j = xj − h

(3
2
f
(
u(tn, xj − h

2
f(u(tn, xj)))

)
− 1

2
f
(
u(tn−1, xj − h

2
f(u(tn, xj)))

))
.

(22)

For simplicity, we will use the following notations.

• ECM2: proposed scheme.

• BDF2+Fixed: Using (5), (21) with using fixed point

iteration to solve (21).

• BDF2+Explicit: Using (5), (22).

For implicit scheme, the tolerance and maximum number of

iteration for the iteration process are taken by tol = 1.0 ×
10−6, maxiter = 100.

Example 1. In the first example, we consider ν = 1 and use

the exact solution

u(t, x) =
2 sin(x)

cos(x) + exp(t)
, (t, x) ∈ [0, 1]× [0, 1].

The initial and boundary conditions are obtained from the

exact solution.

We test the example with a viscosity ν = 1.0 and compare

the numerical results with those of [6]. In Table I, we use

a set of parameter, ν = 1.0, Δx = 1
1000 and varying time

step size h from 1
20 to 1

640 . Also, we use the cubic B-spline

interpolation. It can be seen that the proposed method has

numerically second order accuracy in time and has much better

performances than the results of [6].

TABLE I
COMPARISONS OF THE PROPOSED SCHEME WITH J. WANG ET AL. [6] FOR

SOLVING EXAMPLE 1., WHEN FIXED Δx = 1
1000

.

h
ECM2 [6]

Err2(1) Rates Err2(1) Rates
1
20

2.46e-6 - 2.00e-5 -
1
40

3.83e-7 2.68 4.14e-6 2.27
1
80

1.03e-7 1.98 1.06e-5 -1.36
1

160
2.82e-8 1.88 3.16e-5 -1.58

1
320

6.65e-9 2.08 6.91e-5 -1.13
1

640
1.64e-9 2.02 1.42e-4 -1.04

Example 2. Consider the Burgers’ equation with analytic

solution

u(t, x) =
x/t

1 + (t/ν0)
1
2 exp

(
x2

4νt

) , x ∈ [0, 1], t ≥ 1,

where ν0 = exp
(

1
8ν

)
. The initial and boundary conditions are

computed from the above analytic solution.

We first examine the temporal order of convergence for the

present method with the viscosity value ν = 5.0 × 10−3 and

the fixed spatial grid size Δx = 1
1000 by varying time step size

h from 1
10 to 1

160 . In this numerical test, we use the quadratic

B-spline interpolation. The numerical results are listed in

Table II. The result shows the present method and compared

methods have numerically second order convergence in time.

The proposed scheme is more accurate than the substepping

method of an explicit type, while having similar time cost.

In addition, the proposed scheme requires less time cost to
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Fig. 1. Numerical solutions at different time stages with dx = 1
1000

, h =
1

160
, when ν = 5.0× 10−3.

have similar results for the implicit scheme with using fixed

iteration to find the departure points.

Finally, we simulate solutions at some time stages for Δx =
1

1000 , h = 1
160 with different ν = 5.0 × 10−k, (k = 3, 4),

which are plotted in Figure 1 and 2. Here, we use the cubic

B-spline interpolation. The gradient of numerical solution is

steep as the viscosity ν becomes small. It is seen that the

numerical results agree with exact solutions.

TABLE II
COMPARISONS OF THE PROPOSED SCHEME FOR SOLVING EXAMPLE 2.,

WHEN Δx = 1
1000

, ν = 5.0× 10−3

h
BDF-Fixed BDF-Explicit

Err2(2.4) Rates cpu Err2(2.4) Rates cpu
1
10

4.66e-4 - 1 2.81e-2 - 0.39
1
20

1.23e-4 1.92 1.7 1.12e-2 1.33 0.77
1
40

3.18e-5 1.95 3.1 3.42e-3 1.69 1.5
1
80

8.71e-6 1.87 5.9 9.41e-4 1.88 3.1
1

160
3.41e-6 1.35 11 2.44e-4 1.95 6.2

h
ECM2

Err2(2.4) Rates cpu
1
10

4.69e-4 - 0.57
1
20

1.22e-4 1.94 1.1
1
40

3.14e-5 1.96 2.2
1
80

8.39e-6 1.91 4.4
1

160
2.69e-6 1.64 8.8

V. CONCLUSION

An iteration free backward semi-Lagrangian scheme for

nonlinear advection-diffusion equations is developed. Unlike

the traditional way to calculate departure points of particles,

we suggest a new methodology that is iteration free and keeps

good properties of the conventional second-order implicit

method. Throughout several numerical results, it is shown
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x
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t,x
)

Exact
t=1.0
t=1.7
t=2.4
t=3.1

Fig. 2. Numerical solutions at different time stages with dx = 1
1000

, h =
1

160
, when ν = 5.0× 10−4.

that the proposed method obtains outstanding numerical

results compared with existing methods and are in very good

agreement with the exact solutions.
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