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Abstract—Clustering in high dimensional space is a difficult 

problem which is recurrent in many fields of science and 
engineering, e.g., bioinformatics, image processing, pattern 
reorganization and data mining. In high dimensional space some of 
the dimensions are likely to be irrelevant, thus hiding the possible 
clustering. In very high dimensions it is common for all the objects in 
a dataset to be nearly equidistant from each other, completely 
masking the clusters. Hence, performance of the clustering algorithm 
decreases. 

In this paper, we propose an algorithmic framework which 
combines the (reduct) concept of rough set theory with the k-means 
algorithm to remove the irrelevant dimensions in a high dimensional 
space and obtain appropriate clusters. Our experiment on test data 
shows that this framework increases efficiency of the clustering 
process and accuracy of the results.  

  
     Keywords—High dimensional clustering, sub-space, k-means, 
rough set, discernibility matrix. 

I. INTRODUCTION 

LUSTERING is an effort to classify similar objects in the 
same groups. The obtained clusters are good when the 

members of a cluster have high degree of similarity with each 
other (internal homogeneity) and have high degree of 
dissimilarity with members of other clusters (external 
homogeneity) [1], [2]. The similarity between objects is often 
determined using a distance measure, e.g., Euclidean distance, 
over the various dimensions in the dataset [13]. The rapid 
development of data collection technology has resulted in 
many high dimensional and large scale datasets in different 
areas such as biology, geographic, finance and 
telecommunication [17]. An increase in dimension brings in a 
lot of difficulties to traditional clustering methods. Most 
clustering methods encounter difficulties when the 
dimensionality of the dataset grows high. This is because in 
high dimensional datasets, only a small number of dimensions 
are usually relevant to clusters and data in the irrelevant 
dimensions often produce much noise and mask the real 
clusters from being discovered. Moreover, an increase in 
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dimensionality brings in curse of dimensionality which makes 
clustering more challenging in high dimensional spaces [4]. 

As the dimensionality increases the points tend to get 
scattered away from the center towards the boundaries of the 
enclosing hyper sphere. Furthermore, as dimensionality 
increases distance measure becomes increasingly meaningless; 
there may not be much difference between the closest and 
farthest neighbor for a given point. This curse of 
dimensionality is illustrated in Fig. 1 which shows how 
additional dimensions spread out the points in a sample 
dataset. The sample dataset contain 20 points randomly placed 
between 0 and 2 in each of three dimensions. Figure 1(a) 
shows the data projected onto one axis. The points are very 
close together with approximately half of them in a one unit 
sized bin. Figure 1(b) shows the same dataset stretched into 
two dimensions. The addition of another dimension spread the 
points out along another axis, pulling them further apart. Now 
only about a quarter of the points fall into a unit sized bin. In 
Fig. 1(c) addition of third dimension spreads the data further 
apart. A one unit sized bin now holds only about one eighth of 
the points. If we continue to add dimensions, the points will 
continue to spread out until they are all almost equally far 
apart and distance is no longer very meaningful.  

 
 
 
 
 

 
 
 
 

      Dimension a              Dimension a             Dimension a 
a) 11 Objects in One Unit Bin (b) 6 Objects in One Unit Bin (c) 4 
Objects in One Unit Bin 
 
Fig. 1 The curse of dimensionality. Data in only one dimension is 
relatively tightly packed. Adding a dimension stretches the points 
across that dimension, pushing them further apart. Additional 
dimensions spread the data even further making high dimensional 
data extremely sparse [13]. 
 

Feature selection attempts to discover the attributes of a 
dataset that are most relevant to the data mining task at hand. 
It is a commonly used and powerful technique for reducing 
the dimensionality of a problem to more manageable levels. 
Feature selection involves searching through various feature 
subsets and evaluating each of these subsets using some 
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criterion [3], [19]. Subspace clustering is an extension of 
feature selection that attempts to find clusters in different 
subspaces of the same dataset. Just as with feature selection, 
subspace clustering requires a search method and evaluation 
criteria. In addition, subspace clustering must somehow limit 
the scope of the evaluation criteria so as to consider different 
subspaces for each different cluster [4], [20].  

There are several issues while determining a subspace 
cluster. The first concerns the determination of the proper 
subspace, that is, the set of dimensions that yields a good 
cluster in terms of the quality or semantic meaning. The 
second issue deals with the shape of the cluster. We may 
assume that the cluster is generated from a multivariate 
uniform or normal distribution, which yield a hyper rectangle 
or hyper-ellipsoid shape, respectively. The third issue is 
whether we assume the dimensions are independent or not. If 
we assume independence, then the clusters will be axis-
aligned. Many recently proposed subspace clustering methods 
suffer from following two problems. First, the algorithms 
typically scale exponentially with the data dimensionality or 
the subspace dimensionality of clusters. Second, the clustering 
results are often sensitive to input parameters [4]. 

In this paper, we propose an algorithmic framework which 
combines the (reduct) concept of rough set theory with the k-
means algorithm to remove the irrelevant dimensions in a high 
dimensional space and obtain appropriate clusters. Rest of the 
paper is organized as follows. Section II summarizes the 
previous relevant work whereas preliminaries of k-means 
algorithm and rough set theory are described in Section III. A 
and III. B respectively. Afterwards the proposed methodology 
is presented in Section III. C. We analyze performance of the 
proposed algorithm and compare the results with standard k-
means algorithm in Section IV. Finally, Section V summarizes 
the conclusion and further scope of the work. 

II. LITERATURE REVIEW 
Clustering has been widely studied by the researchers. It is 

evident from the various survey papers available in the 
literatures e.g., Berkhin [11], Jain [15], Jain and Dubes [5], 
Jain et al. [1], and Zait and Messatfa [6]. Recent data mining 
texts, e.g., [2], [7], [8], and [9] include chapter on clustering. 
Though subspace clustering also finds its space in the 
literature, e.g., [10], [12], and [13] but there is a little work 
which deals with the subspace clustering in a comprehensive 
and comparative manner. Jahirabadkar and Kulkarni [19] 
proposed an approach ISC (Intelligent Subspace Clustering) 
which uses the density based clustering to find Subspace 
Clusters embedded in higher dimensional clusters. 
Domeniconi et al. [3] propose an algorithm which discovers 
clusters in subspaces spanned by different combinations of 
dimensions via local weightings of features. Niu et al. [4] 
discuss the problem of automatic subspace clustering. The 
proposed solution, SCA, has been designed to find clusters 
embedded in subspaces of high dimensional datasets. It 
employs a relation function to evaluate the relevance of every 
two attributes. Kriegel et al. [20] propose a new filter 
refinement subspace clustering algorithm FIRES, which 
efficiently computes maximum dimensional cluster 

approximation from ID clusters which can be refined to obtain 
the true clusters.  

III. PROPOSED SOLUTION 
Our proposed technique is a combination of the concept of 

rough set theory (reduct and core) and K-Means algorithm. 
Initially it uses rough set theory to find the reducts and core of 
high dimensional data sets by removing the irrelevant 
attributes and then applies the K-Means algorithm on the 
reducts for determining the optimum clusters. Hence, we 
describe the basic approach of the K-Means algorithm below 
followed by the basic concepts of rough set theory, before 
proposing hybrid algorithm.  

A. K-Means Algorithm  
Let X = {xi | i = 1,..., n} be the set of n d-dimensional points 

to be clustered into a set of K clusters, C = {ck, k = 1,..., K}. 
K-Means algorithm [21] finds the partitions such that the 
squared error between the empirical mean of a cluster and the 
points in the cluster is minimized. Let μk be the mean of 
cluster ck. The squared error J(ck) between μk and the points in 
cluster ck is defined as 

                                                
                         J(ck) = ∑ || xi − μk ||2  
                                 xi Є ck  
 

The goal of K-Means is to minimize the sum of the squared 
error J(C), which is defined below, over all K clusters.  

           K 
                         J(C) = ∑ ∑ || xi − μ k || 2  
                                 k =1 xi Є ck  
 

Minimizing this objective function is an NP-hard problem 
even for K = 2 [15], [16]. Thus K-Means, which is a greedy 
algorithm, can only converge to a local minimum. However, a 
recent study [18] has shown that with a large probability K-
Means could converge to the global optimum when clusters 
are well separated. The K-Means starts with an initial partition 
with K clusters and assign patterns to clusters so as to reduce 
the squared error. Since the squared error always decreases 
with an increase in the number of clusters K (J(C) = 0 when K 
= n), it can be minimized only for a fixed number of clusters. 
The main steps of K-Means algorithm are as follows: 
 

1. Select an initial partition with K clusters; repeat steps 
2 and 3 until cluster membership stabilizes. 

2. Generate a new partition by assigning each pattern to 
its closest cluster centres. 

3. Compute new cluster centres. 
 

There are numerous applications of the K-mean clustering, 
e.g., unsupervised learning of neural network, pattern 
recognitions, classification analysis, artificial intelligence, 
image processing, machine vision. In principle, this algorithm 
may be applied when there are several objects and each object 
has several attributes and it is required to classify the objects 
based on the attributes. The figure 2 shows an illustration of 
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K-Means algorithm on a two-dimensional dataset with three 
clusters.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Illustration of K-Means algorithm. (a) Two-dimensional input 
data with three clusters; (b) three seed points selected as cluster 
centers and initial assignment of the points to clusters; (c) & (d) 
intermediate iterations updating cluster labels and their centers; (e) 
final clustering obtained by K-Means algorithm at convergence [15] 

 

B. Rough Set Theory 
Rough set theory is able to process uncertain and incomplete 

information by effectively dealing with imprecise, uncertain 
and vague knowledge which is usually the case in real-world 
data sets. In the Rough set theory membership is not the 
primary concept. It represents a different mathematical 
approach to vagueness and uncertainty [14]. Rough set theory 
works on Information system IS = (U, A) and Va. Here, U is 
the universe (a finite set of objects, U = {xi | i = 1, 2,..., n}), A 
is the set of attributes (features, variables) and Va is a set of 
values which is domain of attribute a. The rough set theory is 
explained below with an example. Consider a data set 
containing the results of three measurements performed on 
five objects as shown in table I. 

 
TABLE I  

EXAMPLE DATA SET 

 
Here, U = (X1, X2, X3, X4, X5),  A = (a1, a2, a3) and the 

domains of attributes are V1 = (1, 2, 3), V2 = (1, 2), V3 = (1, 2, 
3, 4). If the set of attributes are dependent, one can be 
interested in finding all possible minimal subsets of attributes. 
The concepts of reducts and core are two fundamental 
concepts of the rough set theory. To compute reducts and 
core, the discernibility matrix is used. The discernibility 
matrix has the dimension N x N. Here N is the number of 
elementary sets and its elements are defined as the set of all 
attributes which discern elementary sets Xi and Xj. If they 
have different values for same attribute then that attribute will 
be the member of discernibility matrix. For example to 
compute the value of (row, column) = (Set2, Set1) in the 

discernibility matrix table, we compare each attribute of X1 to 
the corresponding attribute of X2. As the values of attribute a1, 
a2, and a3 all are different for X1 and X2 the attributes a1, a2, 
and a3 are the member of discernibility matrix as shown in 
table II. 

 
TABLE II 

DISCERNIBILITY MATRIX 

 
 

The discernibility matrix   is used to compute the 
discernibility function. Initially discernibility function is the 
equation of product of sum of all the elements of the 
discernibility matrix. Then, it is converted in the form of sum 
of products. Accordingly, the discernibility function F(A) of 
the discernibility matrix shown in table II is (a1+a2+a3) a2 
(a1+a3) (a1+a3) (a1+a3) (a1+a2+a3) (a1+a2+a3) (a1+a2+a3) 
(a1+a2+a3) a3. Finally, on solving we obtain F(A) = a2a3. 
Hence, the reduct of the example dataset is a set of attribute a2 
and a3, i.e., reduct = {a2, a3}. It indicates that the attribute a1 is 
redundant and only attribute a2 and a3 are sufficient for 
computations. 
 

C. Propose Methodology 
Our proposed solution is a combination of concepts of rough 

set theory (reduct & core) and basic K-Means algorithm. It 
works as follows: 
 
1. Create discernibility matrix of n x n from given n x d data 

sets. (Here n denotes the number of objects and d   is 
denotes the dimensions). 

2. Calculate discernibility function and find out the reduct. 
3. Select K initial partitions randomly from the reduct data set. 
4. Generate new partition by assigning each object to its 

closest cluster centres. 
5. Compute new cluster centres. 
6. Repeat step 4 and 5 until cluster membership     stabilizes. 

First two steps in the algorithm uses rough set theoretic 
approach as attribute subset selection method and removes the 
irrelevant attributes. Further in step 3-6, it uses standard k-
means algorithm to obtain appropriate clusters with minimal 
set of relevant attributes. 

IV. EXPERIMENTAL RESULT 
We used the standard dataset available at the Cologne 

University, Germany [22]. It contains the ingredients of 
mammal's milk of 25 animals. The ingredients of mammal's 
milk are water, protein, fat, lactose and ash. Every animal has 
different percentage of ingredients in their milk as shown in 
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table III. Here, all the ingredients of mammal's milk are 
considered as the dimensions (feature or attribute) and 
mammals are considered as the objects of the data set. First, 
we obtain the results using standard K-means algorithm. As 
we wish to obtain four clusters we choose K = 4 and start with 
first four mammals of the dataset, i.e., Horse, Orangutan, 
Monkey, and Donkey as the initial centroids of the clusters. 

TABLE III 
TEST DATA SET 

 
 

It takes 12 iterations for stabilization. The final results 
(clusters) are shown in table IV. The centroids of the four 
clusters are as follows:  C1 = (81.88, 7.42, 6.9, 4.01, and 0.93), 
C2 = (68.33, 9.55, 17.41, 2.91, and 1.47), C3 = (45.65, 10.15, 
38.45, 0.45, and 0.69), and C4 = (88.50, 2.57, 2.8, 5.68, and 
0.48). The objects contained in these clusters are (O8, O9, O10, 
O11, O14, O16, O17), (O18, O19, O20, O21, O22, O23), (O24, O25), 
and (O1, O2, O3, O4, O5, O6, O7, O12, O13, O15) respectively, 
where Oi denotes the serial number of the object in the data 
set, e.g., O9 represents Guinea Pig. 

 

 
Fig. 3 Clustering of k-means algorithm (thick line) and propose 
algorithm (thin line) 

TABLE IV  
CLUSTERS OF DATA SET BY USING K-MEANS 

ALGORITHM

 
Afterwards, we solve the problem using the proposed 

method. Here, we denote the attributes Water, Protein, Fat, 
Lactose and Ash by a1, a2, a3, a4 and a5 respectively for 
simplicity and ease of use. First, we compute the discernibility 
matrix which yields following discernibility function: 

F(A) = (a1+a2+a3+a4+a5) (a1+a2+a3+a4) (a2+a4) (a2+a3+a4) 
(a1+a3+a4+a5) (a1+a2+a3) (a1+a3+a4) (a2+a4+a5) 
(a1+a2+a3+a5) (a1+a2+a5) (a1+a3) (a3+a4) (a1+a2+a4) 
(a1+a2+a4+a5) (a2+a3) (a2+a4) (a3+a5) (a2) (a3). 

Solving this discernibility function we obtain F(A) = a2a3, 
i.e., the minimal subset of discernibility function is the 
attributes a2a3 (protein, fat). It renders that water, lactose and 
ash are irrelevant attributes which are not useful in the 
clustering of mammal's milk. Hence, only two attributes - 
protein and fat - are applied in the next steps of the method. 
Now, it takes six iterations for convergence. The final results 
(clusters) are shown in table V. The centroids of the four 
clusters are as follows:  C1 = (8.16, 8.22), C2 = (3.8, 3.27), C3 
= (9.35, 25.95), and C4 = (1.75, 2.48). The objects contained 
in these clusters are (O8, O9, O10, O11, O14, O16, O17, O19, O20), 
(O6, O7, O12, O15), (O18, O21, O22, O23, O24, O25), and (O1, O2, 
O3, O4, O5, O13) respectively. As it is difficult to visualize the 
obtained results in tabular form, the clusters have been 
depicted in pictorial form in Fig. 3. Here, thick lines indicate 
the clusters obtained by K-means algorithm and thin lines 
show the clusters obtained using the proposed method. Our 
proposed method increases the efficiency of the clustering 
process by removing the irrelevant attributes from the high 
dimensional data set and in turn, reducing the number of 
iterations in the following K-means algorithm. 
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TABLE V  
CLUSTERS OF DATA SET USING PROPOSED 

ALGORITHM

 
 

However, it is not possible to determine the quality of 
results obtained by both the methods; hence, we use the 
following quality measures: 
 
Dunn index [23]: It defines the ratio between the minimal 
intracluster distances to maximal intercluster distance. 
The index is given by:                           

                                     
 

Here dmin denotes the smallest distance between two objects 
from different clusters, and dmax denotes the largest distance of 
two objects from the same cluster. The Dunn index is limited 
to the interval [0, 1] and should be maximized. 
 
Davies-Bouldin index [24]: It is defined as: 
 
                      

 
Here, n is the number of clusters, σi is the average distance 

of all patterns in cluster i to their cluster center ci, σj  is the 
average distance of all patterns in cluster j to their cluster 
center cj, and d(ci, cj) is the distance of cluster centers ci and cj 
. Small values of DB correspond to clusters that are compact, 
and whose centers are far away from each other. 
Consequently, the number of clusters that minimizes DB is 
taken as the optimal number of clusters. 
 
Jagota index [25]:  It measures the tightness or homogeneity 
of the objects within the cluster and is defined as: 

 
 
 
 
Here, |Ci | is the number of data points in cluster i, k is 

number of clusters, µi is the centroied of ith cluster, x is a point 
in the cluster and d(x, µi) is the distance between point x and 
the cluster centroied. Q will be small if (on average) the data 
points in each cluster are close. 

 
TABLE VI  

QUALITATIVE ANALYSIS OF RESULTS 
 

Methods Dunn 
index 

Davies-
Bouldin index 

Jagota 
index 

K-Means 
 

0.55 0.225 13.87 

Proposed 
Method 

0.50 0.355 14.16 

 
It is evident from table VI that the quality of clusters by 

both the methods is same as there is no statistical difference in 
the measure values. The difference in fractional values may be 
attributed to the computation error in division. 

 

V. CONCLUSION AND FUTURE WORK 
In high dimensional data, the general performance of the 

traditional clustering algorithms decreases. This is partly 
because the similarity criterion used by these algorithms 
becomes inadequate in high dimensional space. Another 
reason is that some dimensions are likely to be irrelevant or 
contain noisy data, thus hiding a possible clustering. In this 
paper, we propose a generic framework for efficient clustering 
of high dimensional data, which is the combination of the 
concept of rough set theory (reduct) and k-means algorithm. 
Initially, it finds the low dimensional space in the high 
dimensional data set by removing the redundant attributes 
using (reduct) concept of rough set theory. Then k-means 
algorithm is applied on this low dimensional data (reduct) to 
find the appropriate clusters. Our experiment on test data set 
shown that, this framework increases efficiency of clustering 
process and accuracy of the resultant clustering.    

Our future work is to find out the suitable method for 
determining the initial centroids and the optimum value of k to 
obtain global optimum clusters in the high- dimensional data 
set.  
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