
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2147

Abstract—When faced with stochastic networks with an uncertain

duration for their activities, the securing of network completion time
becomes problematical, not only because of the non-identical pdf of
duration for each node, but also because of the interdependence of
network paths. As evidenced by Adlakha & Kulkarni [1], many
methods and algorithms have been put forward in attempt to resolve
this issue, but most have encountered this same large-size network
problem. Therefore, in this research, we focus on network reduction
through a Series/Parallel combined mechanism. Our suggested
algorithm, named the Activity Network Reduction Algorithm
(ANRA), can efficiently transfer a large-size network into an S/P
Irreducible Network (SPIN). SPIN can enhance stochastic network
analysis, as well as serve as the judgment of symmetry for the Graph
Theory.

Keywords—Series/Parallel network, Stochastic network, Network
reduction, Interdictive Graph, Complexity Index.

I. INTRODUCTION
LMOST all of the issues of stochastic networks are more
difficult to deal with than those of deterministic networks

due to the probability characteristics of activity duration. The
approximation of completion time, for example, has been
acknowledged as a very difficult problem. Adlakha & Kulkarni
[1] has classified the methodology into three types: Exact
analysis methods, Approximation & Bounding methods and
Monte Carlo Simulation methods (MCS). Let alone their
performance, most of these methods have encountered the
network size problem which has affected their practical
application in the real world and, thus, underlined the need to
deal with it before dealing with stochastic network problems.
As is well known, MCS has been used to solve the pdf of
network completion time, first by [18] using the “Crude
Simulation.” Martin[13], Hartley and Wortham[9], Ringer[14],
Burt & Garman[3] and Robillard & Trahan [15] continued this
research, with all concentrating on network reduction first and
letting the network transfer into an S/P Irreducible Network
(SPIN) to lessen activity numbers which can enhance the
efficiency of simulation. Fisher, Saisi & Goldstein [8], Dodin

Author is with the Department of Electronic Commerce Hsing Kuo

University of Management, Tainan, Taiwan of R.O.C. (corresponding author to
provide phone: 886-6-2873613; e-mail: chuwengming@gmail.com).

This research is sponsored by National Science Council, the project index
number is NSC 97-2221-E-432 -002.

[5] and Dodin [6] also focused on network reduction before
their approximation of network completion time, as did
Kleinderfer [11], Kleinderfer [12] and Splede [17] for
bounding the completion time of the network. The structure of
SPIN can not be further reduced through the Series or Parallel
combined operation on activities in the network, and the
remaining activities in the network are in the end composed of
various types of Interdictive Graph (IG). Therefore, SPIN can
be seen as a network which is pieced together with structures of
IG. IG is synonymous to “Wheatstone Bridge” or “Double
Wheatstone Bridge” as depicted in Hartley & Wortham [9] and
Ringer [14], respectively, who analyzed these specified
structures to an approximation of the completion time of a
stochastic network. In Bein et al. [2], SPIN was also used to
help with the algorithm for finding Dominated Tree (DT),
Reverse Dominated Tree (RDT) and, then, the Complexity
Graph (CG). The “Complexity Index” must be generated from
the CG, and this important concept is required for further
applications of the stochastic network [10].
As noted above, network reduction is necessary for and

essential to stochastic network research, but most of the
literature is lacking in details as to the algorithm itself and
instead gives only a simple network example as an explanation.
Obviously, this is insufficient information for a large-size
network. Thus, the focus of this research was to develop the
Activity Network Reduction Algorithm (ANRA), which can do
Series/Parallel network reduction very efficiently. and,
therefore, can also be used to judge whether or not the network
belongs to an S/P network. This judgment is important to and
useful for project risk or reliability analysis in stochastic
networks.
 In this research, the network was in the form of a

two-terminal Activity-On-Node(AON) and represented as
G=(V, E), with V and E as the set of nodes and the edge,
respectively, in the network. Let , m mS B to be defined as set of
the successor and precedent nodes of node(m), node(i) and
node(j) are series connected with each other in the network. In
case that there exists jS i= and iB j= , node(i) and node(j) can
commit the series combination and merge into single node
node(k), where , k j k iS B B S= = . For the other case, if there
exists a couple of
nodes 1 2{ , ,..., }np p p and , , 1,...,i ip p

S X B Y i n= = ∀ = , where

An efficient Activity Network Reduction
Algorithm based on the Label Correcting Tracing

Algorithm
Weng Ming Chu

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2148

X, Y can be single or set of node, then 1 2{ , ,..., }np p p can
commit the parallel combination and merge into single node
node(r), where , r rS X B Y= = .
For practical consideration, the research issues of stochastic

networks should involve instances of large-size networks,
which requires that network reduction be applied for reducing
the network scale beforehand. In general, network reduction
faces two challenges:
1) The reducing algorithm can efficiently operate a large-size

network.
2) The reducing algorithm can recognize various types of IG

structures from the network in the meantime, since the IGs
could be connected with each other.

Colby [4] indicated the above as an NP-hard problem and
ANRA was developed to meet these challenges. The algorithm
was based on the Label-Correcting Tracing Algorithm (LCTA)
introduced by Yao, Chu & Tseng [19] and Yao and Chu [20].
LCTA was originally used for approximating the completion
time of a stochastic network, as it could systematically visit
each node in the network and commit relative executions.
ANRA applies a modified LCTA mechanism and commits
Series and Parallel combinations during the node visiting.
When LCTA has finished that visiting, the network reduction
has been completed. To ensure the validity of ANRA, several
requirements had to be met:
1) That any IG structures existing within the network could

be identified after all the Series and Parallel combinations
had been executed;

2) None of the characteristics of the network could be
changed after network reduction (such as the network
completion time).

3) The execution time of the algorithm should be reasonable
when faced with large-size networks.

This paper has 6 sections: Section II gives a detailed
description of LCTA; Section III lists all the conditions for
executing Parallel combinations in the networks which have
been classified into 2 groups and 5 types; Section IV details the
procedures and theorem of ANRA, assisted with pseudo codes;
and Section V gives 2 examples to show and prove the
performance of ANRA in this research. The last section is the
conclusion and comments on future development.

II. LABEL CORRECTING TRACING ALGORITHM
The Label-Correcting Tracing Algorithm (LCTA) is

developed by [19] and [20], it was originally developed for the
approximation of the completion time of the stochastic
networks. It can be easily modified to deal with other
applications for stochastic networks. LCTA has first to transfer
the network to Expanded-Tress Structure (ETS), and visits each
node through the Post-Order Tracing Procedure(POTP) in the
ETS. During the node visiting, LCTA proceeds S/P
combination The brief descriptions are described as follow:

The first step of LCTA is to transfer the network into a tree
structure, we name it as the Expanded-Tree Structure (ETS).
Fig. 1 is an example of transformation.

Fig. 1 An example of ETS transformation

LCTA makes some calculations during its tracing visit, and
the temporary generated results, status and information must be
saved. LCTA has a node data structure for each node to fulfill
these requirements. The contents of the data structure are in
accordance with the purposed requirements. For this research,
the contents of node(i) were arranged as shown in Table I:

TABLE I

THE DATA STRUCTURE OF NODE(I)
i iB iS

().node i flag _ ifinish flag ().node i path

1) i : index number of node(i).
2) iB : set of precedent nodes of node(i).
3) iS : set of success nodes of node(i).
4) _ ifinish flag : visited flag value of node(i) initially set as

0. When node(i) has been visited, it will be set as 1.
5) ().node i flag : visited flag set of incident paths of node(i)

where all are initially set as 0. When the kth incident paths
of node(i) have been visited, the relative kth position of

().node i flag will be set as 1.
6) ().node i path : set of all sub-paths from node(0) to node(i).

Each sub-path is recorded as a set of node index numbers
by following the sequence of node(0) to node(i).

LCTA starts its visiting from the terminal node of ETS (the
root of the tree), and applies POTP to visit each node in ETS.
The main rule of POTP is that, before visiting the current node,
node(j), it must confirm that iB has visited in sequence from left
to right. By following the rule of POTP, LCTA can then visit
each node in the proper order. LCTA has a stack structure to
record its tracing path of where the data get in and out by
following the rule of the First In/First Out (FIFO); the data
recording and accessing operations are denoted as push_stack()
and pull_stack(), respectively.

Initially, LCTA starts from node(N) and goes downward until
reaching node(1); the index numbers of the nodes passed are
recorded in a stack structure in sequence. Then, LCTA begins
to bounce up and start the node visiting. By following the rule
of POTP, all the nodes are visited systematically. The visiting
order is directed and guided by accessing the index numbers
from the stack structure, which lets all the child nodes find their
way back to their father node position. With the status of

().node i flag , node(i) can not only record the visited state of
the child nodes but it can also find the next-to-visit child node.
When all of the child nodes have been visited,
the _ ifinish flag will be set. With the above mechanism of

2

3

1 4

4

1 2 3

1 1 2

1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2149

tracing, the node-visited track of LCTA is downward and
upward repeatedly within ETS, and then finally back to the
position where it started, node(N). When that has happened,
LCTA has completed its tracing, as the tracing sketch map of
Fig. 1 becomes as shown in Fig. 2:

Fig. 2 The tracing sketch map of Fig. 1

LCTA has to check two conditions for current visited node
node(cur_node) during the iterative tracing. The above two
checking conditions have been summarized into two
procedures: Upward_Trace (last node, current_node) and
Downward_Trace (current_node), the details of which are
described in the last section.

III. PATTERNS OF PARALLEL REDUCTION IN THE NETWORK
The major consideration of network reduction is to find

nodes that can commit Parallel combination and merge them
into a single node in the network. This can be easily done
artificially for a small-size network, but it is more complex for a
large-size network since there are various structure patterns of
nodes which can commit the Parallel combination. The main
job of ANRA was to find all the eligible patterns in the network
and commit the Parallel combination individually. In this
section, the eligible structure patterns have been classified into
2 groups with 5 patterns in total, with detailed descriptions
below.

A. First group of Parallel combination
There are 2 structure patterns in the first group for Parallel

combination, denoted as <1,1> and <1,2> , as shown in Fig. 3.

Fig. 3 <1,1> and <1,2> structure patterns of Parallel combination

Parallel combination is done with only two precedent nodes;

if node(y) has more than two precedent nodes, they have to be
executed iteratively pair by pair. In Fig. 3, node(y) has two
precedent nodes, node(p1) and node(p2). These two nodes have
only one path to node(1) and they share the single path of
Path(1,…,b), which is also the main characteristic of the first
group of Parallel combination. The <1,2> pattern is actually the
special case of <1,2> pattern, of which the duration of node(p2)
is zero.

node(y) can be taken as the current visited node in LCTA, if
one of the <1,1> and <1,2> structure patterns exist at node(y).
LCTA notices it by the following condition checks:
1) Any two incident paths of node(y) must share the same

nodes, denoted as common_nodes. Taking Fig. 3 as an
example, they are in Path(1,…,b) and common_nodes={
node(1), …, node(b)}.

2) If the two incident paths of node(y) exclude the
common_nodes, the remaining nodes are denoted as

combined_nodes, which can be combined as a single node
in the network; their precedent nodes would then need to
be 1. Taking Fig. 3 as an example, combined_nodes={
node(p1), node(p2)}, all have only one precedent node,
node(y).

If any one of the above condition checks fails, Parallel
combination can not be committed at node(y). Otherwise, the
combined_nodes can be merged into a single node and
embedded back to the original network.

The combined_nodes can include current node node(y), if
node(y) has no other precedent node except nodes of the
combined_nodes. Therefore, the combination has two results,
as shown in Fig. 4, where node(q) of Fig. 4a has included
node(y) and node(q’) has not. Obviously, the precedent and
successor relation of node(q) and node(q’)within the network is
different, which is why the combination must take these two
situations into consideration.

Current_node

P

y

P

b b

z

1 1

Combined_ nodes

Common_ nodes

Front_node

… …

1
P

P
b y z ….

P1

y z 1 b….

Current_node

P1

y

b b

z

1 1

Combined_ nodes

Common_ nodes

Front_node

… …

<1,1> pattern <1,2> pattern

4

1 2 3

1 1 2

1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2150

Fig. 4 Two combination results of the first group patterns

A. Second Group of Parallel combination
There are 3 structure patterns in the second group of Parallel

combination which are denoted as <2,1> , <2,2> and <2,3> , as
shown in Fig. 5.

Parallel combination is done with only two precedent nodes
at a time; the current node, node(y), has two precedent nodes,
node(g) and node(h). Unlike the first group patterns, the
incident paths of node(g) and node(h) number more than one,

and common_nodes is a node structure rather than a single path.
This is the main characteristic of second group patterns. The
<2,3> pattern is actually the special case of the <2,2> pattern,
and the duration of node(g) is zero.

When LCTA visits node(y), it also checks if <2,1> , <2,2> or
<2,3> structure pattern exists at node(y). Parallel combination
is executed if one of them exists. The condition checks for the
second group patterns are much the same as for the first group
patterns due to common_nodes. The condition checks are as
follows:
1) All the incident paths from node(1) to node(g) and node(h)

must match, which means that node(g) and node(h) share
the same common_nodes. Taking Fig. 5 as an example, the
nodes within the blue-line frame are the common_nodes
and they are exactly the same for node(g) and node(h).

Fig. 5 <2,1> , <2,2> and <2,3> structure patterns of Parallel combination

2) The combined_nodes are also defined as the remaining
nodes of which the incident paths of node(y) exclude the
common_nodes. There can be only one successor node of
the combined_nodes. As shown in Fig. 5, the
combined_nodes include node(g) and node(h), and there is
only one successor node, node(y).

If any one of the above condition checks fails, Parallel
combination cannot be committed at node(y). Otherwise, the
combined_nodes are merged into a single node and embedded
back to the original network. As for the first group patterns, if
node(y) has no precedent node other than the combined_nodes,
node(y) can be included in the combined_nodes. As shown in
Fig. 6, node(q) has included node(y) and node(q’) has not. The
precedent and successor relation of node(q) and node(q’) within
the network is different.

IV. ACTIVITY NETWORK REDUCTION ALGORITHM
As discussed in previous sections, ANRA applies LCTA to

visit each node of the network and checks the Parallel
combination for each visited node. If one of the patterns of
Parallel combination exists at the visited node, Parallel
combination will be executed and the combined_nodes will
become a single node and embedded into the network. When
LCTA has finished the tracing algorithm, the network
reduction has also been completed.

<2,1>
<2,3><2,2>

g

y

h

z Front_node

Current nod Combined_no

Common node

S b t k

b3 b2 b1 b

1

b3 b2 b1 b

1

Sub-netw

ork

1 b3

b2 g

h

b1

y

b

z 1 b3

b2

c

b1

y

b

z
g

h

c

y

c

z Front_node

Current nod Combined_no

Common node

b3b2b1 b

1

 b3b2b1 b

1

g h

c

y

c

z Front_node

Current nod Combined_no

Common node

 b3b2b1 b

1

b3 b2 b1 b

1

h

1 b3

b2

c

b1

y

b

z
h

OR

a b

b

y

q’ Current no

Front no

Common n

1

….

b

z Front no

q Current no

1

…. Common n

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2151

Fig. 6 Two combination results of the second group patterns

To fulfill the condition checks for Parallel combination,

ANRA must search all the incident paths for each node in the
network. This tedious job can also be solved through LCTA
and the results saved in the node(i).path for each node(i),
i=1,…,N. The searching algorithm of the incident paths will
now be introduced, together with the conditions checking
algorithm of Parallel combination, and the full algorithm of
ANRA presented.

A. Incident Paths Searching Algorithm
Let the kth incident path set of node(i) be denoted as pathk(i),

which goes from node(1) to node(i). By applying the
mechanism of LCTA node-visiting, all the incident paths of
node(i) can be solved and saved into node(i).path. As shown in
Fig. 1, LCTA starts its tracing from node(4), when LCTA
touches down to node(1), it bounces up and begins to record the
node index number of the incident path for the visited node
node(i). Following the rule of POTP, each one of the incident
paths was recorded sequentially and saved into node(i).path.
When LCTA finished the tracing, the recording of all the
incident paths was also completed. We denoted the above
incident paths searching algorithm as Record_node (last_node,
current_node) and the step-by-step description for Fig. 1, by
referring to Fig. 2:
1) LCTA starts its tracing from node(4) and goes downward

until it touches node(1).
2) To record index number of node(1) into node(1).path and

then back to node(4).
3) To record node(1).path and node(4) to node(4).path(1) as

path1(4), the first incident path set of node(4).
4) LCTA goes down to node(1) through node(2) by following

the rule of POTP. Since node(1) has been visited, LCTA
upwards and back to node(2) again.

5) To record node(1).path and node(2) to node(2).path(1) as
path1(2), the first incident path set of node(2).

6) LCTA goes back to node(4), and records node(2).path and
node(4) to node(4).path(2) as path2(4), the second path
incidence path set of node(4).

7) LCTA traces its last child nodes, goes downward to
node(1) through node(3), since node(1) has been visited,
then upward and back to node(3) again.

8) To record node(1).path and node(3) to node(3).path(1) as
path1(3), the first incident path set of node(3).

9) LCTA traces the second child of node(3) and goes down to

node(2). Since node(2) has been visited, it goes upward
and back to node(3) again and records node(2).path and
node(3) to node(3).path(2) as path2(3), the second
incidence path set of node(3).

B. Conditions Checking Algorithm of Parallel Combination
Let the current visited node be denoted as node(y) and the

numbers of precedent node m. For any two precedent nodes, in
this case node(a) and path(b), the conditions checking
algorithm of the Parallel combination is as shown below:
1) Pick one pair of precedent nodes of node(y), node(a) and

path(b), and check their incident paths numbers. If they are
not equal, there is no need to do the Parallel combination
on these two precedent nodes. Pick another pair of
precedent nodes of node(y) and repeat the above checks.
Otherwise, go to step B. The above executions continue
until there are no additional pairs of precedent nodes of
node(y) to be selected.

2) This step determines to which group patterns the Parallel
combination belongs by the numbers of incident paths: if
equal to 1, then go to step C and start the checking of the
first group patterns; otherwise, go to step D and start the
checking of the second group patterns.

3) To check the first group patterns:
a. Following the description in Section III, check if there are

common_nodes between the incident paths of node(a)and
node(b). If it is positive, continue further checking;
otherwise, go back to step A.

b. To solve the combined_nodes of node(a)and node(b), if
any of their successive nodes is greater than 1, go back to
step A; otherwise, continue checking.

c. Following the description in Section III, check if the
combined_nodes include node(y). If m>2, node(y) is
excluded; otherwise, it is included. Then, merge the
combined_nodes into a single node and assign it a new
node index number; the new generated node should be
arranged as to its precedent and successive relation in the
network before being embedded into the network.

d. m=m-1, then go back to step A.
1) To check second group patterns:

a. Following Section III, check if all the incident paths of
node(a)and node(b) are equal with each other. If so,
continue checking; otherwise, go back to step A.

b. To determine the combined_nodes of node(a)and
node(b), if any one of their successive nodes is greater
than 1, go back to step A; otherwise, continue checking.

c. Following Section III, check if the combined_nodes
include node(y). If m>2, then node(y) is excluded;
otherwise, it is included. It is then necessary to merge the
combined_nodes into a single node and assign it a new
node index number; the new generated node should be
arranged as to its precedent and successive relation in the
network before being embedded into the network.

The author has arranged the above execution steps into an
algorithm and denoted it as the Parallel_Process
(current_node), where current_node is the only input

Current_node

OR

z

q

Front nod

Sub-network
b3 b2 b1 bm

1

y

q’

Front no

Current n

Sub-network
b3 b2 b1 bm

1

a b

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2152

parameter and the pseudo code is listed as Algorithm 1.

Algorithm 1 (Parallel combination algorithm)

current_node =Parallel_Process(current_node)
q=n;
A=node(current_node).precedent;

 m=length(node(current_node).precedent);
 while (there exists a pair nodes of A for parallel checking)

do
 Select a pair nodes(a1, a2)from A;
 check_parallel=0;
 if length(node(a1).path)= length(node(a2).path)
 if length(node(a1).path)=1
 com_node=intersect(node(a1).path, node(a2).path);
 combined=setxor({node(a1).path, node(a2).path},

 com_node);
 if (length(node(ci).succesor)=1)
 i , 1,..., length()c combined i combined∀ ∈ =
 check _parallel=1;
 q=q+1;
 Delete_nodes(combined);
 Insert_node(combined , q);

m=m-1;
 end
 else
 Solve c_node_head1 (the first node with its

 precedent>1 in the node(a1).path);
 Solve c_node_head2 (the first node with its

 precedent>1 in the node(a2).path);
 combined = { node(j) | node(j)∈

 [path(node(c_node_head1) ~node(a1)) ∪
path(node(c_node_head1) ~node(a2))] };

if (length(node(ci).succesor)=1,
i , 1,..., length()c combined i combined∀ ∈ =)

 if c_node_head1= c_node_head2
 check _parallel=1;
 q=q+1;
 combined = combined-{ c_node_head1};
 Delete_nodes(combined);
 Insert_node(combined , q);
 m=m-1;
 else

 if (node(c_node_head1).precedent=
node(c_node_head2).precedent)

 check _parallel=1;
 q=q+1;
 Delete_nodes(combined);
 Insert_node(combined , q);
 m=m-1;
 end
 end
 end
 end
end
end /(while)

if check_parallel=1
 if m=1
 combined ={ combined , current_node };
 Delete_nodes({q, current_node });
 q=q+1;
 Insert_node(combined , q);
 current_node=q;
 end
end

The developed ANRA applies the LCTA implanted with

algorithms of Record_node (last_node, current_node) and
Parallel_Process (current_node) which have been discussed in
Sections IV.A and IV.B, respectively. The Record_node
(last_node, current_node) is usually executed before the
Parallel_Process (current_node) for each node in LCTA and,
therefore, they do not interfere with each other which assures
the smooth going of Parallel_Process (current_node) in LCTA.
The algorithm of ANRA is separated into two procedures:
Downward_ Trace (k, j) and Upward_ Trace (k, j), where j=
current_node and k=last_node. Their pseudo codes are listed
as Algorithm 2.

Algorithm 2 (Algorithm of ANRA)

j= current_node;
k=last_node;
Downward_ Trace (k, j)
 while (_ 1nfinish flag =) do
 if (_ 1jfinish flag =)
 k= j;
 j = pull_stack();
 Upward_Tracing(k, j);
 else
 if (j=1?)
 _ 1jfinish flag = ;
 Record_node(0, 1);
 k=j;
 j= pull_stack();
 Upward_Tracing(k,j);
 Else
 k=j;
 push_stack(j);
 j=Select_node(j);
 end
 end
 end

Upward_ Trace (k, j)
while (_ 1nfinish flag =) do
 Record_node(k, j);
 if (_ 1jfinish flag =)
 j=Parallel_Process(j);
 _ 1jfinish flag = ;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2153

 k=j;
 j= pull_stack();
 else
 k=j;
 j=Select_node(j);
 push_stack(j);
 Downward_Tracing (k, j);
 end
 end

The visiting mechanism of LCTA is done through two

procedures: the Downward_ Trace(k, j) and Upward_ Trace(k,
j). The initial value of the current node is set as N (the terminal
node number), and the Downward_ Trace(N,N) starts first. The
tracing of LCTA follows the iterative executions between
Downward_ Trace(k, j) and Upward_ Trace(k, j). Within the
two procedures, the visited node executes Parallel_Process(j)
for the Parallel combination while the Record_node (k, j) is
usually committed to getting all the incident paths of the current
node beforehand. When LCTA finishes visiting all of the
network nodes, all the possible Parallel combinations of the
network will also be done, and network reduction will have
been achieved.

V. EXPERIMENT OF EXAMPLES
ANRA was applied to two examples of networks to help the

reader more fully comprehend how it functions. The first
network instance was designed to be a Series/Parallel network,
which was reduced to a single node after running ANRA. The
second network instance was implanted with an IG structure;
network reduction shrank the network size to that of an S/P
irreducible network.

A. Example 1
The network instance of the first example is shown in Fig. 7,

the procedures of ANRA are described as follows, with the
middle merged results in Fig. 8.

Fig. 7 The network instance of example 1

1) LCTA starts tracing from node(9), and the Downward_
Trace (k, j) and Upward_ Trace (k, j) are iteratively
executed with each other. The first checking of the Parallel
combination stops at node(7), since it is the first node
where the precedent node number is greater than 1.

Fig. 8 The results of Parallel combination of Example 1

2) The incident paths of node(7) is solved by Record_node
(4,7) and Record_node (5,7) and saved in node(7).Path.
The executions of Parallel_Process(7) are listed below:

a. Parallel_Process(7) indicates that node(7) belongs to the
<1, 1> pattern of Parallel combination, since there is only
a single incident path for both precedent nodes of
node(7).

b. Parallel_Process(7) solves common_nodes ={1, 3} and
combined_nodes={4, 5}.

c. Parallel_Process(7) finally denies the Parallel
combination on node(7), since the number of successive
nodes of node(4) and node(5) is greater than 1.

3) The second checking of Parallel combination stops at
node(8), and the checking result is exactly the same as for
node(7).

4) node(9) is the third stop for Parallel combination checking.
There are in total 3 pairs of precedent nodes for Parallel
combination checking, since it has three precedent nodes,
{node(6), node(7), and node(8)}. But, Parallel_Process (i)
found only one pair, {node(7), node(8)}, which passed the
checking executions listed below:

a. Parallel_Process(9) indicates that it belongs to the <2,1>
pattern of Parallel combination, since the incident path
number of both node(7) and node(8) is greater than 1.

b. Parallel_Process(9) solves common_nodes {node(1),
node(3), node(4), node(5)} and combined_nodes
={node(7), node(8)}.

c. The common_nodes do not include node(9) since its
precedent is greater than 2. Therefore, node(7) and
node(8) are deleted from the network and merged into a
single node, node(10), with precedent node and
successive node as {node(4), node(5)} and node(9),
respectively.

5) node(10)becomes the current node and LCTA proceeds its
checking and finds that it has passed:

a. Parallel_Process(10) indicates that it belongs to the <1,1>
pattern of Parallel combination as there is only a single
incident path for both precedent nodes of node(10).

b. Parallel_Process(10) solves common_nodes={node(1),
node(3)} and combined_nodes={ node(4), node(5)}.

c. The common_nodes include node(10) since its precedent
is not greater than 2. Therefore, node(4) and node(5) are
deleted from the network and merged into a single node,
node(11), with its precedent node and successive node as
node(3) and node(9), respectively.

6) node(9) now has two precedent nodes remaining; LCTA

1

3
5

4 7

8

6

9

2

5

7

4

3 3

9

1 1

5

8

4

3 3

1 1

6

2

1

5

10

4

3 3

9

1 1

6

2

1

q

1

3

9

1

6

2

1

q 12

1

13

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2154

proceeds with its checking and finds that node(9) has
passed:

a. Parallel_Process(9) indicates that it belongs to the <1,1>
pattern of Parallel combination as there is only a single
incident path for both precedent nodes of node(9).

b. Parallel_Process(9) solves common_nodes=node(1) and
combined_nodes={node(2), node(3), node(6), node(11)}.

c. The common_nodes include node(9) since its precedent
node is not greater than 2. Therefore, node(2), node(3),
node(6) and node(11) are deleted from the network and
merged into a single node, node(12), which has only one
precedent node, node(1).

The last two nodes, node(12) and node(1), can be a series
merged into node(13).

B. Example 2
The network instance of example 2, as shown in Fig. 9, has

an implanted IG structure which can be clearly displayed after
running ANRA. The executed procedures and the middle
merged results are listed below and shown in Fig. 10.

Fig. 9 Network instance of example 2

1) LCTA starts tracing from node(9), the Downward_ Trace

(k, j) and Upward_ Trace (k, j) are iteratively executed with
each other. The first checking of Parallel combination
stops at node(5), since it is the first node with a precedent
node number greater than 1.

2) The incident paths of node(5) are solved by Record_node
(3,5) and Record_node (4,5) and saved in node(5).Path.
The executions of Parallel_Process(5) are as follows:

a. Parallel_Process(5) indicates that it belongs to the <1,1>
pattern of Parallel combination as there is only a single
incident path for both precedent nodes of node(5).

b. Parallel_Process(5) solves common_nodes = node(1) and
combined_nodes={node(2), node(3), node(4)}.

c. The common_nodes include node(5) since its precedent is
not greater than 2. Therefore, node(2), node(3) and
node(4) are deleted from the network and merged into a
single node, node(10); its precedent node and successive
nodes are node(1) and {node(7), node(8)}, respectively.

3) The second checking of Parallel combination stops at
node(8); Parallel_Process(8) proceeds with the checking
procedures listed below:

a. Parallel_Process(8) indicates that node(8) belongs to the

<1, 1> pattern of Parallel combination, since there is only
a single incident path for both precedent nodes of
node(8).

b. Parallel_Process(8) solves common_nodes = node(1) and
combined_nodes={ node(6), node(10)}.

c. Parallel_Process(8) finally denies the Parallel
combination on node(8) since the numbers of successive
node of node(10) are greater than 1.

LCTA proceeds with its tracing and finally stops at node(9);
there exists a Parallel combination checking over there, and the
checking fails since the incident paths numbers of the two
precedent nodes of node(9) are not equal. The final reduced
network is an irreducible network achieved with one IG
structure (refer to Fig. 10).

Fig. 10 Results of Parallel combination of example 2

VI. CONCLUSION
As developed, ANRA can not only efficiently reduce a

network into an S/P Irreducible Network (SPIN), but it can also
be used as a tool for determining whether or not a network is a
Series/Parallel network by displaying all IG structures in the
network. The results produced by ANRA are important for
stochastic networks since the reduced networks minimize the -
burden of computational analysis. As far as the author is aware,
most of the relevant literature has been concerned with only
simple network cases when discussing network reduction, with
none of the algorithms required for its implementation. The
development of such an algorithm was the focus of this
research by which ANRA has been realized.

ANRA applies LCTA as developed and used for completion
time approximation of stochastic networks by [19] and [20].
ANRA modifies the tracing mechanism of LCTA by adding the
judgment of various conditions of executing Series/Parallel
combination in the network. The author has classified 2 groups
and 5 patterns in total, of Parallel combination in this research,
which are checked on the visited node during the LCTA
tracing. Provided that one of the patterns can be found, ANRA
will find combinations of nodes for the respective pattern and
the combined node embedded back does not bias the
characteristics of the original network. Section III outlined the
modified LCTA, which was followed by the description of the
checking conditions for the 5 patterns and the details of the
combined executions, which have all been assisted with pseudo
codes. A clear and comprehensive picture of ANRA was
presented in these sections, followed by examples of two
network instances executed with ANRA. The results have not
only clearly shown the efficiency of ANRA in reducing the

10

9

1

6

1

87

10

1

10’ ={2,3,4,5}

1

10

8

7

6

9

5

3

2
4

9

1 1

6

1

87

5

3

2
4

1 1

1

2

4

5

8
6

9

3 7

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2155

example networks, but they have also verified its validity.

REFERENCES
[1] Adlakha, V.G. & Kulkarni, V.G., “A classified bibliography of research

on stochastic PERT networks: 1966-1987”, Information Systems and
Operational Research, 27, n3, 272-296, 1989.

[2] Bein,W.W., Kamburowski, J. and Stallmann, M.F.M., “Optimal reduction
of two-terminal directed acyclic graphs,” SIAM J. Computing, 21,
1112-1129, 1992.

[3] Burt J.M., Garman M.B., “Conditional Monte Carlo: A simulation
technique for stochastic network analysis”, Management Science, 18, 3,
1971.

[4] Colby, A.H., Elmaghraby S.E., “On the complete reduction of directed
acyclic graphs”, OR Report No. 197, N.C. State Univ., Raleigh, NC.,
1984.

[5] Dodin, B.M., “Determining the K most critical paths in PERT networks”,
Operations Research, 32, n4, 859-877, 1984.

[6] Dodin, B.M., “Approximating the distribution function in stochastic
networks”,Computers and Operations Research, 12, n3, 251-264,1985.

[7] Duffin, R, “Topology ofseries-parallel networks”, J. Math. Anal. Appl.,
10, pp. 303-318, 1965.

[8] Fisher, D.L., Saisi, D. & Goldstein, W.M., “Stochastic PERT networks:
op diagrams, critical paths and the project completion time”, Computers
and Operations Research,12-5, 471–482, 1985.

[9] Harley, H.O., Wortham, A.W., “A statistical theory for PERT critical path
analysis”, Management Science, 12, n 10, 469-481, 1966.

[10] Kamburowski, J., Michael, D.J., Stallman, M.F.M., “Minimizing the
complexity index of an activity network”, Networks, 36, 47–52, 2000.

[11] Kleindorfer G.B., “Bounding distributions for stochastic logic”,
Operations Research, 19, 7, 1586-1601, 1971.

[12] Kleindorfer, G.B., “Bounding distributions for a stochastic acyclic
network”, Journal of Operations Research, 19-7, 1586–1601, 1977.

[13] Martin, J.J., “Distribution of the time through a directed acyclic network”,
Operational Research, 13, 46-66, 1965.

[14] Ringer, L.J., “Numerical operators for statistical PERT critical path
analysis”, Management Science, 16, 136-143, 1969.

[15] Robillard, P., Trahan, M., “The completion time of PERT networks”,
Operations Research. 25, 15-29, 1977.

[16] Sahner R.A., Trivedi K.S., “Performance and reliability analysis using
directed acyclic graphs”, IEEE Transactions on Software Engineering,
13, 1105-1114, 1987.

[17] Splde, J.G., “Bounds for the distribution function of network variables”,
First Symposium of Operations Research, 3, 113-123, 1977.

[18] Van, Slyke, R.M., “Monte Carlo methods and the PERT problem”,
Operations Research, 11, 839-861, 1963.

[19] Yao, M.J., Chu, W.M., Tseng, T.Y., “A Label-Correcting Tracing
Algorithm for the Approximation of the Probability Distribution Function
of the Project Completion Time”, Journal of Chinese Institute of
Industrial Engineers, 24-2, p.153~165, March 2007.

[20] Yao, M.J., Chu, W.M., “A New Approximation Algorithm for Obtaining
the Probability Distribution Function of the Project Completion Time”,
Computers and Mathematics with Applications., 54-2, p. 282~295, July
2007.

Weng Ming Chu was born in Taiwan, Jul. 1962. He received the Ph.D. degree
in the Department of Industrial Engineering and Enterprise Information,
Tunghai University, Taiwan. Now he is interested in project management,
supply chain management, inventory control, and telecommunication networks.
 Dr. Chu used to be an officer of Airforce for airplane radar training, Now, he
has retired and to be an assistant professor at Hsing Kuo University of
Management in Tainan.

