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Abstract—When faced with stochastic networks with an uncertain 

duration for their activities, the securing of network completion time 
becomes problematical, not only because of the non-identical pdf of 
duration for each node, but also because of the interdependence of 
network paths. As evidenced by Adlakha & Kulkarni [1], many 
methods and algorithms have been put forward in attempt to resolve 
this issue, but most have encountered this same large-size network 
problem. Therefore, in this research, we focus on network reduction 
through a Series/Parallel combined mechanism. Our suggested 
algorithm, named the Activity Network Reduction Algorithm 
(ANRA), can efficiently transfer a large-size network into an S/P 
Irreducible Network (SPIN). SPIN can enhance stochastic network 
analysis, as well as serve as the judgment of symmetry for the Graph 
Theory. 
 

Keywords—Series/Parallel network, Stochastic network, Network 
reduction, Interdictive Graph, Complexity Index.  

I. INTRODUCTION 
LMOST all of the issues of stochastic networks are more 
difficult to deal with than those of deterministic networks 

due to the probability characteristics of activity duration. The 
approximation of completion time, for example, has been 
acknowledged as a very difficult problem. Adlakha & Kulkarni 
[1] has classified the methodology into three types: Exact 
analysis methods, Approximation & Bounding methods and 
Monte Carlo Simulation methods (MCS). Let alone their 
performance, most of these methods have encountered the 
network size problem which has affected their practical 
application in the real world and, thus, underlined the need to 
deal with it before dealing with stochastic network problems. 
As is well known, MCS has been used to solve the pdf of 
network completion time, first by [18] using the “Crude 
Simulation.” Martin[13], Hartley and Wortham[9], Ringer[14], 
Burt & Garman[3] and Robillard & Trahan [15] continued this 
research, with all concentrating on network reduction first and 
letting the network transfer into an S/P Irreducible Network 
(SPIN) to lessen activity numbers which can enhance the 
efficiency of simulation. Fisher, Saisi & Goldstein [8], Dodin 
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[5] and Dodin [6] also focused on network reduction before 
their approximation of network completion time, as did 
Kleinderfer [11], Kleinderfer [12] and Splede [17] for 
bounding the completion time of the network. The structure of 
SPIN can not be further reduced through the Series or Parallel 
combined operation on activities in the network, and the 
remaining activities in the network are in the end composed of 
various types of Interdictive Graph (IG). Therefore, SPIN can 
be seen as a network which is pieced together with structures of 
IG. IG is synonymous to “Wheatstone Bridge” or “Double 
Wheatstone Bridge” as depicted in Hartley & Wortham [9] and 
Ringer [14], respectively, who analyzed these specified 
structures to an approximation of the completion time of a 
stochastic network. In Bein et al. [2], SPIN was also used to 
help with the algorithm for finding Dominated Tree (DT), 
Reverse Dominated Tree (RDT) and, then, the Complexity 
Graph (CG). The “Complexity Index” must be generated from 
the CG, and this important concept is required for further 
applications of the stochastic network [10]. 
As noted above, network reduction is necessary for and 

essential to stochastic network research, but most of the 
literature is lacking in details as to the algorithm itself and 
instead gives only a simple network example as an explanation. 
Obviously, this is insufficient information for a large-size 
network. Thus, the focus of this research was to develop the 
Activity Network Reduction Algorithm (ANRA), which can do 
Series/Parallel network reduction very efficiently. and, 
therefore, can also be used to judge whether or not the network 
belongs to an S/P network. This judgment is important to and 
useful for project risk or reliability analysis in stochastic 
networks. 
 In this research, the network was in the form of a 

two-terminal Activity-On-Node(AON) and represented as 
G=(V, E), with V and E as the set of nodes and the edge, 
respectively, in the network. Let ,  m mS B to be defined as set of 
the successor and precedent nodes of node(m), node(i) and 
node(j) are series connected with each other in the network. In 
case that there exists jS i= and iB j= , node(i) and node(j) can 
commit the series combination and merge into single node 
node(k), where ,  k j k iS B B S= = . For the other case, if there 
exists a couple of 
nodes 1 2{ , ,..., }np p p and ,  ,  1,...,i ip p

S X B Y i n= = ∀ = , where 
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X, Y can be single or set of node, then 1 2{ , ,..., }np p p can 
commit the parallel combination and merge into single node 
node(r), where ,  r rS X B Y= = . 
For practical consideration, the research issues of stochastic 

networks should involve instances of large-size networks, 
which requires that network reduction be applied for reducing 
the network scale beforehand. In general, network reduction 
faces two challenges: 
1) The reducing algorithm can efficiently operate a large-size 

network. 
2) The reducing algorithm can recognize various types of IG 

structures from the network in the meantime, since the IGs 
could be connected with each other. 

Colby [4] indicated the above as an NP-hard problem and 
ANRA was developed to meet these challenges. The algorithm 
was based on the Label-Correcting Tracing Algorithm (LCTA) 
introduced by Yao, Chu & Tseng [19] and Yao and Chu [20]. 
LCTA was originally used for approximating the completion 
time of a stochastic network, as it could systematically visit 
each node in the network and commit relative executions. 
ANRA applies a modified LCTA mechanism and commits 
Series and Parallel combinations during the node visiting. 
When LCTA has finished that visiting, the network reduction 
has been completed. To ensure the validity of ANRA, several 
requirements had to be met: 
1) That any IG structures existing within the network could 

be identified after all the Series and Parallel combinations 
had been executed;  

2) None of the characteristics of the network could be 
changed after network reduction (such as the network 
completion time). 

3) The execution time of the algorithm should be reasonable 
when faced with large-size networks.  

This paper has 6 sections: Section II gives a detailed 
description of LCTA; Section III lists all the conditions for 
executing Parallel combinations in the networks which have 
been classified into 2 groups and 5 types; Section IV details the 
procedures and theorem of ANRA, assisted with pseudo codes; 
and Section V gives 2 examples to show and prove the 
performance of ANRA in this research. The last section is the 
conclusion and comments on future development. 

II.  LABEL CORRECTING TRACING ALGORITHM 
The Label-Correcting Tracing Algorithm (LCTA) is 

developed by [19] and [20], it was originally developed for the 
approximation of the completion time of the stochastic 
networks. It can be easily modified to deal with other 
applications for stochastic networks. LCTA has first to transfer 
the network to Expanded-Tress Structure (ETS), and visits each 
node through the Post-Order Tracing Procedure(POTP) in the 
ETS. During the node visiting, LCTA proceeds S/P 
combination The brief descriptions are described as follow: 

The first step of LCTA is to transfer the network into a tree 
structure, we name it as the Expanded-Tree Structure (ETS). 
Fig. 1 is an example of transformation. 

 
Fig. 1 An example of ETS transformation 

 

LCTA makes some calculations during its tracing visit, and 
the temporary generated results, status and information must be 
saved. LCTA has a node data structure for each node to fulfill 
these requirements. The contents of the data structure are in 
accordance with the purposed requirements. For this research, 
the contents of node(i) were arranged as shown in Table I: 

 
TABLE I 

THE DATA STRUCTURE OF NODE(I) 
i iB  iS  

( ).node i flag  _ ifinish flag  ( ).node i path  
 

1) i : index number of node(i). 
2) iB : set of precedent nodes of node(i). 
3) iS : set of success nodes of node(i). 
4) _ ifinish flag : visited flag value of node(i) initially set as 

0. When node(i) has been visited, it will be set as 1. 
5) ( ).node i flag : visited flag set of incident paths of node(i) 

where all are initially set as 0. When the kth incident paths 
of node(i) have been visited, the relative kth position of 

( ).node i flag will be set as 1. 
6) ( ).node i path : set of all sub-paths from node(0) to node(i). 

Each sub-path is recorded as a set of node index numbers 
by following the sequence of node(0) to node(i). 

LCTA starts its visiting from the terminal node of ETS (the 
root of the tree), and applies POTP to visit each node in ETS. 
The main rule of POTP is that, before visiting the current node, 
node(j), it must confirm that iB has visited in sequence from left 
to right. By following the rule of POTP, LCTA can then visit 
each node in the proper order. LCTA has a stack structure to 
record its tracing path of where the data get in and out by 
following the rule of the First In/First Out (FIFO); the data 
recording and accessing operations are denoted as push_stack() 
and pull_stack(), respectively.  

Initially, LCTA starts from node(N) and goes downward until 
reaching node(1); the index numbers of the nodes passed are 
recorded in a stack structure in sequence. Then, LCTA begins 
to bounce up and start the node visiting. By following the rule 
of POTP, all the nodes are visited systematically. The visiting 
order is directed and guided by accessing the index numbers 
from the stack structure, which lets all the child nodes find their 
way back to their father node position. With the status of 

( ).node i flag , node(i) can not only record the visited state of 
the child nodes but it can also find the next-to-visit child node. 
When all of the child nodes have been visited, 
the _ ifinish flag will be set. With the above mechanism of 
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tracing, the node-visited track of LCTA is downward and 
upward repeatedly within ETS, and then finally back to the 
position where it started, node(N). When that has happened, 
LCTA has completed its tracing, as the tracing sketch map of 
Fig. 1 becomes as shown in Fig. 2: 

 

 
Fig. 2 The tracing sketch map of Fig. 1 

LCTA has to check two conditions for current visited node 
node(cur_node) during the iterative tracing. The above two 
checking conditions have been summarized into two 
procedures: Upward_Trace (last node, current_node) and 
Downward_Trace (current_node), the details of which are 
described in the last section. 

III. PATTERNS OF PARALLEL REDUCTION IN THE NETWORK 
The major consideration of network reduction is to find 

nodes that can commit Parallel combination and merge them 
into a single node in the network. This can be easily done 
artificially for a small-size network, but it is more complex for a 
large-size network since there are various structure patterns of 
nodes which can commit the Parallel combination. The main 
job of ANRA was to find all the eligible patterns in the network 
and commit the Parallel combination individually. In this 
section, the eligible structure patterns have been classified into 
2 groups with 5 patterns in total, with detailed descriptions 
below.  

A.  First group of Parallel combination 
There are 2 structure patterns in the first group for Parallel 

combination, denoted as <1,1> and <1,2> , as shown in Fig. 3. 

 
Fig. 3 <1,1> and <1,2> structure patterns of Parallel combination 

 
Parallel combination is done with only two precedent nodes; 

if node(y) has more than two precedent nodes, they have to be 
executed iteratively pair by pair. In Fig. 3, node(y) has two 
precedent nodes, node(p1) and node(p2). These two nodes have 
only one path to node(1) and they share the single path of 
Path(1,…,b), which is also the main characteristic of the first 
group of Parallel combination. The <1,2> pattern is actually the 
special case of <1,2> pattern, of which the duration of node(p2) 
is zero. 

node(y) can be taken as the current visited node in LCTA, if 
one of the <1,1> and <1,2> structure patterns exist at node(y). 
LCTA notices it by the following condition checks: 
1) Any two incident paths of node(y) must share the same 

nodes, denoted as common_nodes. Taking Fig. 3 as an 
example, they are in Path(1,…,b) and common_nodes={ 
node(1), …, node(b)}. 

2) If the two incident paths of node(y) exclude the 
common_nodes, the remaining nodes are denoted as 

combined_nodes, which can be combined as a single node 
in the network; their precedent nodes would then need to 
be 1. Taking Fig. 3 as an example, combined_nodes={ 
node(p1), node(p2)}, all have only one precedent node, 
node(y). 

If any one of the above condition checks fails, Parallel 
combination can not be committed at node(y). Otherwise, the 
combined_nodes can be merged into a single node and 
embedded back to the original network.  

The combined_nodes can include current node node(y), if 
node(y) has no other precedent node except nodes of the 
combined_nodes. Therefore, the combination has two results, 
as shown in Fig. 4, where node(q) of Fig. 4a has included 
node(y) and node(q’) has not. Obviously, the precedent and 
successor relation of node(q) and node(q’)within the network is 
different, which is why the combination must take these two 
situations into consideration. 
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Fig. 4 Two combination results of the first group patterns 

A.  Second Group of Parallel combination 
There are 3 structure patterns in the second group of Parallel 

combination which are denoted as <2,1> , <2,2> and <2,3> , as 
shown in Fig. 5. 

Parallel combination is done with only two precedent nodes 
at a time; the current node, node(y), has two precedent nodes, 
node(g) and node(h). Unlike the first group patterns, the 
incident paths of node(g) and node(h) number more than one, 

and common_nodes is a node structure rather than a single path. 
This is the main characteristic of second group patterns. The 
<2,3> pattern is actually the special case of the <2,2> pattern, 
and the duration of node(g) is zero. 

When LCTA visits node(y), it also checks if <2,1> , <2,2> or 
<2,3> structure pattern exists at node(y). Parallel combination 
is executed if one of them exists. The condition checks for the 
second group patterns are much the same as for the first group 
patterns due to common_nodes. The condition checks are as 
follows: 
1) All the incident paths from node(1) to node(g) and node(h) 

must match, which means that node(g) and node(h) share 
the same common_nodes. Taking Fig. 5 as an example, the 
nodes within the blue-line frame are the common_nodes 
and they are exactly the same for node(g) and node(h). 

 
 
 

 
 

Fig. 5 <2,1> , <2,2> and <2,3> structure patterns of Parallel combination 
 

2) The combined_nodes are also defined as the remaining 
nodes of which the incident paths of node(y) exclude the 
common_nodes. There can be only one successor node of 
the combined_nodes. As shown in Fig. 5, the 
combined_nodes include node(g) and node(h), and there is 
only one successor node, node(y). 

If any one of the above condition checks fails, Parallel 
combination cannot be committed at node(y). Otherwise, the 
combined_nodes are merged into a single node and embedded 
back to the original network. As for the first group patterns, if 
node(y) has no precedent node other than the combined_nodes, 
node(y) can be included in the combined_nodes. As shown in 
Fig. 6, node(q) has included node(y) and node(q’) has not. The 
precedent and successor relation of node(q) and node(q’) within 
the network is different. 

IV. ACTIVITY NETWORK REDUCTION ALGORITHM 
As discussed in previous sections, ANRA applies LCTA to 

visit each node of the network and checks the Parallel 
combination for each visited node. If one of the patterns of 
Parallel combination exists at the visited node, Parallel 
combination will be executed and the combined_nodes will 
become a single node and embedded into the network. When 
LCTA has finished the tracing algorithm, the network 
reduction has also been completed. 
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Fig. 6 Two combination results of the second group patterns 

 
To fulfill the condition checks for Parallel combination, 

ANRA must search all the incident paths for each node in the 
network. This tedious job can also be solved through LCTA 
and the results saved in the node(i).path for each node(i), 
i=1,…,N. The searching algorithm of the incident paths will 
now be introduced, together with the conditions checking 
algorithm of Parallel combination, and the full algorithm of 
ANRA presented. 

A.  Incident Paths Searching Algorithm 
Let the kth incident path set of node(i) be denoted as pathk(i), 

which goes from node(1) to node(i). By applying the 
mechanism of LCTA node-visiting, all the incident paths of 
node(i) can be solved and saved into node(i).path. As shown in 
Fig. 1, LCTA starts its tracing from node(4), when LCTA 
touches down to node(1), it bounces up and begins to record the 
node index number of the incident path for the visited node 
node(i). Following the rule of POTP, each one of the incident 
paths was recorded sequentially and saved into node(i).path. 
When LCTA finished the tracing, the recording of all the 
incident paths was also completed. We denoted the above 
incident paths searching algorithm as Record_node (last_node, 
current_node) and the step-by-step description for Fig. 1, by 
referring to Fig. 2: 
1) LCTA starts its tracing from node(4) and goes downward 

until it touches node(1). 
2) To record index number of node(1) into node(1).path and 

then back to node(4). 
3) To record node(1).path and node(4) to node(4).path(1) as 

path1(4), the first incident path set of node(4). 
4) LCTA goes down to node(1) through node(2) by following 

the rule of POTP. Since node(1) has been visited, LCTA 
upwards and back to node(2) again. 

5) To record node(1).path and node(2) to node(2).path(1) as 
path1(2), the first incident path set of node(2).  

6) LCTA goes back to node(4), and records node(2).path and 
node(4) to node(4).path(2) as path2(4), the second path 
incidence path set of node(4).  

7) LCTA traces its last child nodes, goes downward to 
node(1) through node(3), since node(1) has been visited, 
then upward and back to node(3) again. 

8) To record node(1).path and node(3) to node(3).path(1) as 
path1(3), the first incident path set of node(3). 

9) LCTA traces the second child of node(3) and goes down to 

node(2). Since node(2) has been visited, it goes upward 
and back to node(3) again and records node(2).path and 
node(3) to node(3).path(2) as path2(3), the second 
incidence path set of node(3). 

B.  Conditions Checking Algorithm of Parallel Combination  
Let the current visited node be denoted as node(y) and the 

numbers of precedent node m. For any two precedent nodes, in 
this case node(a) and path(b), the conditions checking 
algorithm of the Parallel combination is as shown below: 
1) Pick one pair of precedent nodes of node(y), node(a) and 

path(b), and check their incident paths numbers. If they are 
not equal, there is no need to do the Parallel combination 
on these two precedent nodes. Pick another pair of 
precedent nodes of node(y) and repeat the above checks. 
Otherwise, go to step B. The above executions continue 
until there are no additional pairs of precedent nodes of 
node(y) to be selected. 

2) This step determines to which group patterns the Parallel 
combination belongs by the numbers of incident paths: if 
equal to 1, then go to step C and start the checking of the 
first group patterns; otherwise, go to step D and start the 
checking of the second group patterns. 

3) To check the first group patterns: 
a. Following the description in Section III, check if there are 

common_nodes between the incident paths of node(a)and 
node(b). If it is positive, continue further checking; 
otherwise, go back to step A. 

b. To solve the combined_nodes of node(a)and node(b), if 
any of their successive nodes is greater than 1, go back to 
step A; otherwise, continue checking. 

c. Following the description in Section III, check if the 
combined_nodes include node(y). If m>2, node(y) is 
excluded; otherwise, it is included. Then, merge the 
combined_nodes into a single node and assign it a new 
node index number; the new generated node should be 
arranged as to its precedent and successive relation in the 
network before being embedded into the network. 

d. m=m-1, then go back to step A. 
1) To check second group patterns: 

a. Following Section III, check if all the incident paths of 
node(a)and node(b) are equal with each other. If so, 
continue checking; otherwise, go back to step A. 

b. To determine the combined_nodes of node(a)and 
node(b), if any one of their successive nodes is greater 
than 1, go back to step A; otherwise, continue checking. 

c. Following Section III, check if the combined_nodes 
include node(y). If m>2, then node(y) is excluded; 
otherwise, it is included. It is then necessary to merge the 
combined_nodes into a single node and assign it a new 
node index number; the new generated node should be 
arranged as to its precedent and successive relation in the 
network before being embedded into the network. 

The author has arranged the above execution steps into an 
algorithm and denoted it as the  Parallel_Process 
(current_node), where current_node is the only input 
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parameter and the pseudo code is listed as Algorithm 1. 
 
Algorithm 1 (Parallel combination algorithm) 

current_node =Parallel_Process(current_node) 
q=n;  
A=node(current_node).precedent;   

 m=length(node(current_node).precedent); 
 while (there exists a pair nodes of A for parallel checking) 

do 
      Select a pair nodes(a1, a2)from A;  
      check_parallel=0;  
      if length(node(a1).path)= length(node(a2).path) 
          if length(node(a1).path)=1 
            com_node=intersect(node(a1).path, node(a2).path);   
            combined=setxor({node(a1).path, node(a2).path}, 

 com_node); 
            if ( length(node(ci).succesor)=1) 
                i , 1,..., length( )c combined i combined∀ ∈ =  
              check _parallel=1; 
              q=q+1; 
              Delete_nodes(combined); 
              Insert_node(combined , q); 

m=m-1; 
           end 
          else  
            Solve c_node_head1 (the first node with its 

 precedent>1 in the node(a1).path); 
            Solve c_node_head2 (the first node with its 

 precedent>1 in the node(a2).path); 
            combined = { node(j) | node(j)∈  

 [path(node(c_node_head1) ~node(a1)) ∪  
path(node(c_node_head1) ~node(a2))] };  

if ( length(node(ci).succesor)=1, 
i , 1,..., length( )c combined i combined∀ ∈ = ) 

               if c_node_head1= c_node_head2  
                 check _parallel=1; 
                 q=q+1; 
                 combined = combined-{ c_node_head1}; 
                 Delete_nodes(combined);  
                 Insert_node(combined , q);  
                 m=m-1; 
               else 

                 if (node(c_node_head1).precedent= 
node(c_node_head2).precedent)  

                   check _parallel=1;  
                   q=q+1; 
                   Delete_nodes(combined); 
                   Insert_node(combined , q); 
                   m=m-1;  
                 end 
               end 
            end 
          end 
end 
end /(while) 

if check_parallel=1 
     if m=1 
       combined ={ combined , current_node }; 
       Delete_nodes({q, current_node }); 
       q=q+1;  
       Insert_node(combined , q); 
       current_node=q; 
     end 
end 
 
The developed ANRA applies the LCTA implanted with 

algorithms of Record_node (last_node, current_node) and 
Parallel_Process (current_node) which have been discussed in 
Sections IV.A and IV.B, respectively. The Record_node 
(last_node, current_node) is usually executed before the 
Parallel_Process (current_node) for each node in LCTA and, 
therefore, they do not interfere with each other which assures 
the smooth going of Parallel_Process (current_node) in LCTA. 
The algorithm of ANRA is separated into two procedures: 
Downward_ Trace (k, j) and Upward_ Trace (k, j), where j= 
current_node and k=last_node. Their pseudo codes are listed 
as Algorithm 2. 

 
Algorithm 2 (Algorithm of ANRA) 

j= current_node; 
k=last_node; 
Downward_ Trace (k, j) 
 while ( _ 1nfinish flag = ) do 
       if ( _ 1jfinish flag = ) 
         k= j; 
         j = pull_stack(); 
         Upward_Tracing(k, j); 
       else 
         if (j=1? ) 
           _ 1jfinish flag = ; 
           Record_node(0, 1); 
           k=j;  
           j= pull_stack(); 
           Upward_Tracing(k,j); 
         Else 
           k=j; 
           push_stack(j); 
           j=Select_node(j);  
         end 
       end 
   end 
 
Upward_ Trace (k, j) 
while ( _ 1nfinish flag = ) do 
       Record_node(k, j); 
       if ( _ 1jfinish flag = ) 
         j=Parallel_Process(j); 
        _ 1jfinish flag = ; 
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         k=j; 
         j= pull_stack(); 
       else 
         k=j; 
         j=Select_node(j); 
         push_stack(j); 
         Downward_Tracing (k, j); 
       end 
   end 
 
The visiting mechanism of LCTA is done through two 

procedures: the Downward_ Trace(k, j) and Upward_ Trace(k, 
j). The initial value of the current node is set as N (the terminal 
node number), and the Downward_ Trace(N,N) starts first. The 
tracing of LCTA follows the iterative executions between 
Downward_ Trace(k, j) and Upward_ Trace(k, j). Within the 
two procedures, the visited node executes Parallel_Process(j) 
for the Parallel combination while the Record_node (k, j) is 
usually committed to getting all the incident paths of the current 
node beforehand. When LCTA finishes visiting all of the 
network nodes, all the possible Parallel combinations of the 
network will also be done, and network reduction will have 
been achieved. 

V.   EXPERIMENT OF EXAMPLES 
ANRA was applied to two examples of networks to help the 

reader more fully comprehend how it functions. The first 
network instance was designed to be a Series/Parallel network, 
which was reduced to a single node after running ANRA. The 
second network instance was implanted with an IG structure; 
network reduction shrank the network size to that of an S/P 
irreducible network. 

A.  Example 1 
The network instance of the first example is shown in Fig. 7, 

the procedures of ANRA are described as follows, with the 
middle merged results in Fig. 8. 

 
Fig. 7 The network instance of example 1 

1) LCTA starts tracing from node(9), and the Downward_ 
Trace (k, j) and Upward_ Trace (k, j) are iteratively 
executed with each other. The first checking of the Parallel 
combination stops at node(7), since it is the first node 
where the precedent node number is greater than 1.  

 
Fig. 8 The results of Parallel combination of Example 1 

 

2) The incident paths of node(7) is solved by Record_node 
(4,7) and Record_node (5,7) and saved in node(7).Path. 
The executions of Parallel_Process(7) are listed below: 

a. Parallel_Process(7) indicates that node(7) belongs to the 
<1, 1> pattern of Parallel combination, since there is only 
a single incident path for both precedent nodes of 
node(7). 

b. Parallel_Process(7) solves common_nodes ={1, 3} and 
combined_nodes={4, 5}. 

c. Parallel_Process(7) finally denies the Parallel 
combination on node(7), since the number of successive 
nodes of node(4) and node(5) is greater than 1. 

3) The second checking of Parallel combination stops at 
node(8), and the checking result is exactly the same as for 
node(7). 

4) node(9) is the third stop for Parallel combination checking. 
There are in total 3 pairs of precedent nodes for Parallel 
combination checking, since it has three precedent nodes, 
{node(6), node(7), and node(8)}. But, Parallel_Process (i) 
found only one pair, {node(7), node(8)}, which passed the 
checking executions listed below:  

a. Parallel_Process(9) indicates that it belongs to the <2,1> 
pattern of Parallel combination, since the incident path 
number of both node(7) and node(8) is greater than 1. 

b. Parallel_Process(9) solves common_nodes {node(1), 
node(3), node(4), node(5)} and combined_nodes 
={node(7), node(8)}. 

c. The common_nodes do not include node(9) since its 
precedent is greater than 2. Therefore, node(7) and 
node(8) are deleted from the network and merged into a 
single node, node(10), with precedent node and 
successive node as {node(4), node(5)} and node(9), 
respectively.  

5) node(10)becomes the current node and LCTA proceeds its 
checking and finds that it has passed: 

a. Parallel_Process(10) indicates that it belongs to the <1,1> 
pattern of Parallel combination as there is only a single 
incident path for both precedent nodes of node(10). 

b. Parallel_Process(10) solves common_nodes={node(1), 
node(3)} and combined_nodes={ node(4), node(5)}. 

c. The common_nodes include node(10) since its precedent 
is not greater than 2. Therefore, node(4) and node(5) are 
deleted from the network and merged into a single node, 
node(11), with its precedent node and successive node as 
node(3) and node(9), respectively. 

6) node(9) now has two precedent nodes remaining; LCTA 
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proceeds with its checking and finds that node(9) has 
passed: 

a. Parallel_Process(9) indicates that it belongs to the <1,1> 
pattern of Parallel combination as there is only a single 
incident path for both precedent nodes of node(9). 

b. Parallel_Process(9) solves common_nodes=node(1) and 
combined_nodes={node(2), node(3), node(6), node(11)}. 

c. The common_nodes include node(9) since its precedent 
node is not greater than 2. Therefore, node(2), node(3), 
node(6) and node(11) are deleted from the network and 
merged into a single node, node(12), which has only one 
precedent node, node(1). 

The last two nodes, node(12) and node(1), can be a series 
merged into node(13). 

B.  Example 2 
The network instance of example 2, as shown in Fig. 9, has 

an implanted IG structure which can be clearly displayed after 
running ANRA. The executed procedures and the middle 
merged results are listed below and shown in Fig. 10. 

 

 
Fig. 9 Network instance of example 2 

 
1) LCTA starts tracing from node(9), the Downward_ Trace 

(k, j) and Upward_ Trace (k, j) are iteratively executed with 
each other. The first checking of Parallel combination 
stops at node(5), since it is the first node with a precedent 
node number greater than 1. 

2) The incident paths of node(5) are solved by Record_node 
(3,5) and Record_node (4,5) and saved in node(5).Path. 
The executions of Parallel_Process(5) are as follows: 

a. Parallel_Process(5) indicates that it belongs to the <1,1> 
pattern of Parallel combination as there is only a single 
incident path for both precedent nodes of node(5). 

b. Parallel_Process(5) solves common_nodes = node(1) and 
combined_nodes={node(2), node(3), node(4)}. 

c. The common_nodes include node(5) since its precedent is 
not greater than 2. Therefore, node(2), node(3) and 
node(4) are deleted from the network and merged into a 
single node, node(10); its precedent node and successive 
nodes are node(1) and {node(7), node(8)}, respectively. 

3) The second checking of Parallel combination stops at 
node(8); Parallel_Process(8) proceeds with the checking 
procedures listed below: 

a. Parallel_Process(8) indicates that node(8) belongs to the 

<1, 1> pattern of Parallel combination, since there is only 
a single incident path for both precedent nodes of 
node(8). 

b. Parallel_Process(8) solves common_nodes = node(1) and 
combined_nodes={ node(6), node(10)}. 

c. Parallel_Process(8) finally denies the Parallel 
combination on node(8) since the numbers of successive 
node of node(10) are greater than 1. 

LCTA proceeds with its tracing and finally stops at node(9); 
there exists a Parallel combination checking over there, and the 
checking fails since the incident paths numbers of the two 
precedent nodes of node(9) are not equal. The final reduced 
network is an irreducible network achieved with one IG 
structure (refer to Fig. 10). 

 
Fig. 10 Results of Parallel combination of example 2 

VI. CONCLUSION 
As developed, ANRA can not only efficiently reduce a 

network into an S/P Irreducible Network (SPIN), but it can also 
be used as a tool for determining whether or not a network is a 
Series/Parallel network by displaying all IG structures in the 
network. The results produced by ANRA are important for 
stochastic networks since the reduced networks minimize the - 
burden of computational analysis. As far as the author is aware, 
most of the relevant literature has been concerned with only 
simple network cases when discussing network reduction, with 
none of the algorithms required for its implementation. The 
development of such an algorithm was the focus of this 
research by which ANRA has been realized.  

ANRA applies LCTA as developed and used for completion 
time approximation of stochastic networks by [19] and [20]. 
ANRA modifies the tracing mechanism of LCTA by adding the 
judgment of various conditions of executing Series/Parallel 
combination in the network. The author has classified 2 groups 
and 5 patterns in total, of Parallel combination in this research, 
which are checked on the visited node during the LCTA 
tracing. Provided that one of the patterns can be found, ANRA 
will find combinations of nodes for the respective pattern and 
the combined node embedded back does not bias the 
characteristics of the original network. Section III outlined the 
modified LCTA, which was followed by the description of the 
checking conditions for the 5 patterns and the details of the 
combined executions, which have all been assisted with pseudo 
codes. A clear and comprehensive picture of ANRA was 
presented in these sections, followed by examples of two 
network instances executed with ANRA. The results have not 
only clearly shown the efficiency of ANRA in reducing the 
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example networks, but they have also verified its validity. 
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