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 
Abstract—Maneuver decision-making plays a critical role in 

high-performance intelligent driving. This paper proposes a risk 
assessment-based decision-making network (RADMN) to address the 
problem of driving strategy for the commercial vehicle. RADMN 
integrates two networks, aiming at identifying the risk degree of 
collision and rollover and providing decisions to ensure the 
effectiveness and reliability of driving strategy. In the risk assessment 
module, risk degrees of the backward collision, forward collision and 
rollover are quantified for hazard recognition. In the decision module, 
a deep reinforcement learning based on multi-objective optimization 
(DRL-MOO) algorithm is designed, which comprehensively considers 
the risk degree and motion states of each traffic participant. To 
evaluate the performance of the proposed framework, 
Prescan/Simulink joint simulation was conducted in highway 
scenarios. Experimental results validate the effectiveness and 
reliability of the proposed RADMN. The output driving strategy can 
guarantee the safety and provide key technical support for the 
realization of autonomous driving of commercial vehicles. 
 

Keywords—Decision-making strategy, risk assessment, 
multi-objective optimization, commercial vehicle. 

I. INTRODUCTION 

S the main undertaker of road transportation, the safety 
status of commercial vehicles is the focus of attention at 

home and abroad. Due to the high center of mass, large outline 
size, and strong operation intensity, commercial vehicle traffic 
accidents easily result in large and catastrophic accidents, 
which seriously threaten the social public security. Relevant 
statistics confirm that more than 60% of road traffic accidents 
are derived from improper decision-making [11]. Among all 
traffic accidents of commercial vehicles, collision and rollover 
accident rank the first and second respectively. Before a traffic 
accident occurs, if the pre-processing time can be increased by 
0.5s, the number of accidents will be reduced by about 30% to 
60%. Therefore, research on accurate and effective driving 
decision-making methods for the commercial vehicle plays an 
important role in the enhancement of the operation safety and 
guarantees capabilities of commercial vehicles and 
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improvement of road traffic safety. 
To deal with the aforementioned issues, researchers have 

proposed various solutions based on different principles. The 
existing driving decision-making strategies are mainly 
categorized into two groups, the rule-based method and the 
learning algorithm-based method. Among the rule-based 
methods, a behavior decision system based on Finite State 
Machine (FSM) was established to implement three modes of 
decision-making states [1]. In [2] and [3], the behavior decision 
methods based on Hierarchical State Machine (HSM) were 
studied. A decision-making framework that contained motion 
prediction and threat assessment was built for autonomous 
driving at road intersections [4]. Generally speaking, as a 
widely used behavioral decision model, the rule-based model 
has the advantages of simple construction and convenient 
implementation. However, it still has certain shortcomings in 
the depth of scene traversal and the accuracy of decision- 
making. Therefore, the application of the rule-based method is 
limited in handling complex driving conditions. 

Among the learning algorithm-based methods, a decision 
model based on Partially Observable Markov Decision 
Processes (POMDP) was established in [5]. However, the 
targeted scenario in this study is relatively simple. Reference 
[6] proposed an end-to-end decision-making model based on 
deep reinforcement learning, and map the driving state to 
driving action continuously. Nevertheless, the influence of the 
traffic environment on vehicle behavior decisions is not taken 
into consideration. 

Reference [7] studied the lane-keeping decision system 
based on deep Q network (DQN) and DDAC (Deep 
Deterministic Actor Critic) algorithm. The results confirmed 
that DQN can only output discrete actions. Reference [8] 
designed a smart car lateral control algorithm based on deep 
reinforcement learning, to keep the vehicle in the center of the 
lane by controlling the steering wheel angle. However, the 
presented studies do not fully consider the impact of 
surrounding traffic participants on decision-making, so that the 
decision-making results still have certain deficiencies in terms 
of accuracy and rationality. 

Through the comparative analysis of the existing methods 
and models, it is concluded that the research object of the above 
decision algorithms is mainly passenger vehicles. Compared 
with passenger vehicles, commercial vehicles with large mass 
and high centroid have longer braking distance, poor side-roll 
stability, and are prone to side-roll when braking or turning to 
brake. Therefore, the existing decision-making algorithms 
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cannot be directly applied to commercial vehicles. Overall, 
there are relatively few studies on driving decision-making for 
operational vehicles. Meanwhile, the impact of the backward 
collision is ignored. There are still large deficiencies in 
rationality, effectiveness, accuracy, etc. In particular, there is a 
vacancy in the research of effective and reliable 
decision-making of commercial vehicles. 

In this paper, we propose a decision-making framework 
named risk assessment-based decision-making network 
(RADMN). The RADMN is composed of two networks, 
aiming at identifying the risk degree and construct a driving 
decision-making strategy. First, risk degrees of the backward 
collision, forward collision and rollover are quantified for 
hazard recognition. Then, the driving decision-making problem 
which aims at safety is modeled as a Markov decision process. 
A multi-objective optimized decision-making model in the 
highway scenario for the commercial vehicle is established. In 
turn, effective and reliable driving decision-making strategies 
under different driving conditions can be obtained. The main 
contributions of this work are as follows: 
1) A framework named RADMN comprehensively considers 

the impact of forward collision, backward collision and 
rollover on the safety of the commercial vehicle. And it 

achieves effective and reliable driving decision-making for 
commercial vehicles in highway scenarios. 

2) The proposed framework quantifies driving strategies such 
as deceleration and steering in the form of numerical 
values, further improving the effectiveness and reliability 
of driving decisions. At the same time, the output driving 
strategy can be adjusted according to different driving 
conditions. 

II. OVERVIEW OF PROPOSED FRAMEWORK 

The driving strategy of the proposed framework is realized 
by RADMN, which is mainly composed of two parts, i.e., risk 
assessment module and decision-making module, as shown in 
Fig. 1. 

In the risk assessment module, according to multi-sensor 
information, the risk degree of collision and rollover is 
calculated in real-time, which is used to provide more state 
information for the decision-making module. In the decision 
module, a deep reinforcement learning algorithm optimized for 
forward collision avoidance, backward collision avoidance and 
anti-rollover is proposed, which comprehensively considers the 
potentiality of danger and motion states of surrounding traffic 
participants. 
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Fig. 1 Overall architecture of the proposed driving decision-making framework 
 

III. DESIGN DETAILS FOR DRIVING DECISION-MAKING 

STRATEGY 

Driving decision-making is utilized to obtain an effective 
and reliable driving strategy, and then ensures the safety of 
commercial vehicles by avoiding collision, rollover, and other 
accidents. For the adaptability improvement to driving 
conditions, it is necessary to recognize the potentiality of 
danger. Meanwhile, a few techniques have been studied to 
promote the effectiveness and reliability of a decision-making 
strategy. Among them, risk assessment and decision-making 
algorithms are representative. In this paper, we present the 
fundamental characteristics of the key technologies, module 
design, and architecture of DRL-MOO. 

A. The Risk Assessment Module 

Accurate and real-time risk assessment is important to ensure 
the safety of the commercial vehicle. To this end, a risk 
assessment module containing collision risk assessment and 
rollover risk assessment is established. 

1) Backward Collision Risk Assessment 

Firstly, the time required for collision between the 
commercial vehicle and the backward vehicle is described as: 

 

sr

r

d
RTTC

v
                                   (1) 

 
where RTTC  denotes the reverse time to collision, rd  denotes 
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the relative distance from the backward vehicle, Rv  denotes the 

resultant velocity of the backward vehicle, rv  denotes the 

relative velocity which r C Rv v v  . 

Secondly, the risk degree of backward collision is calculated. 
According to the national transportation industry-standard 
named “performance requirements and test procedures for rear 
collision warning system for commercial vehicles”, a backward 
collision warning is issued when RTTC is not less than 2.1 s and 
not more than 4.4 s, indicating that the backward collision 
warning system has passed the test. Based on this, the risk 
degree of backward collision is quantified as 

 

4.4
0 4.4

4.4 2.1
0 4.4

bc

RTTC
RTTC

RTTC


   
 

                 (2) 

 
where bc  denotes the quantified value of backward collision 

risk, when bc = 0, it means no backward collision risk, when 0

bc  0.5, there is backward collision risk, when 0.5 bc  1, 

it means that the backward collision risk is high. 

2) Forward Collision Risk Assessment 

Firstly, the time required for collision between the 
commercial vehicle and the forward vehicle is calculated by 

 

   2
2F C F C sf F C

F C

v v v v d a a
ETTC

a a

    
 


             (3) 

 
where ETTC  denotes the enhanced time to collision, Cv  and 

Fv  denote the resultant velocity of the commercial vehicle and 

forward vehicle, Ca  and Fa  denote the acceleration of the 

commercial vehicle and forward vehicle. sfd  denotes the 

relative distance from the forward vehicle. 
Secondly, the risk degree of forward collision is quantified as 
 

0

0

s
s

s sfc

s

ETTC
ETTC

ETTC

 
 



    
 

                  (4) 

 
where fc  denotes the risk degree of forward collision, s and 

s  denote the impact factors of a forward collision. According 

to the national transportation industry-standard named 
“performance requirements and test procedures for advanced 
emergency braking system for operating vehicles”, take 3s   

and 0.8s  . 

3) Rollover Risk Assessment 

Rollover risk is assessed through the lateral acceleration 
 

sin
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
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                    (5) 

where lata  and thra  denote the lateral acceleration and the 

preset lateral acceleration threshold, respectively. r  denotes 

the quantified value of rollover risk, when r = 1, it means that 

rollover is about to happen. 

B. The Decision Module 

To reduce the traffic accidents caused by collisions or 
rollovers and improve the safety of commercial vehicles, a 
driving decision module is configured.  

The complexity and uncertainty of traffic conditions and 
road state are important affecting factors for decision-making. 
Considering that deep reinforcement learning applies to fully 
mine and characterizing the high-dimensional features of traffic 
conditions, a driving decision-making model is established 
based on a deep reinforcement learning algorithm. 

Generally, there are three decision-making strategies, 
namely the value-based method, policy search-based method, 
and actor-critic based method. The value-based method cannot 
deal with the issue of continuous output and cannot meet the 
requirements for continuous output driving strategy. Compared 
with the method based on policy search, the actor-critic method 
combines the value function estimation and policy search and 
possesses a faster update velocity. The deep deterministic 
policy gradient (DDPG) algorithm draws lessons from the 
DQN experience playback method and shows a better 
performance in the output of continuous action space. 
Therefore, after considering the influence of vehicle operation 
state, forward and backward obstacle types, and potentiality of 
danger on vehicle operation safety, the DDPG algorithm is 
adopted for establishing the decision-making model [9]. 

1)  Defining the Basic Parameters of the Driving Decision 
Model 

Considering that the future motion state of the commercial 
vehicle is affected by both the current motion state and current 
actor, the decision-making is modeled as a Markov decision 
process (MDP). The basic parameters of the model include the 
state-space St, action-space At, and the corresponding return 
value Rt of action-space.  

a) State-Space 

The collision risk and roll stability of a commercial vehicle 
are related to not only the vehicle’s motion state but also the 
traffic conditions. Therefore, state-space (as illustrated in Table 
I) is defined based on vehicle motion state parameters and 
interactive information of traffic participants, which is 
described as 

 

, , , , , , , , , , , , , , ,

, ,

t x y lon lat lon lat yaw h roll swa thr brake l sr sf

bc fc r

S p p v v a a d d d     

  

 


(6) 

b) Action-Space 

In the actual driving, the throttle and brake control quantities 
will not be applied to the commercial vehicle at the same time. 
Simultaneously, considering the effect of both lateral and 
longitudinal movements on vehicle running state, steering 
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wheel and brake/throttle opening are used as control quantities 
to define the driving strategy, that is, the action-space 
represents 

 

_ ,t str out outA p                                    (7)  

 
where _str out denotes the steering wheel angle control which is 

normalized in the range [-1,1]. outp  denotes the brake/throttle 

control which is normalized in the range [-1,1]. When 0outp  , 

it represents that the throttle control is exerted to the 
commercial vehicle for acceleration. When 0outp  , it 

represents that the brake pedal control is exerted to the 
commercial vehicle for deceleration. 

 
TABLE I 

DESCRIPTION OF THE STATE-SPACE tS  

Symbol Unit Description 

xp  / Local lateral position of the commercial vehicle 

yp  / Local longitudinal position of the commercial vehicle 

lonv  m/s Longitudinal speed of the commercial vehicle 

latv  m/s Lateral speed of the commercial vehicle 

lona  m/s2 Longitudinal acceleration of the commercial vehicle 

lata  m/s2 Lateral acceleration of the commercial vehicle 

yaw  rad/s Yaw velocity of the commercial vehicle 

h  ° Heading angle of the commercial vehicle 

roll  ° Roll angle of the commercial vehicle 

swa  ° Steering wheel angle of the commercial vehicle 

thr  / Throttle opening of the commercial vehicle 

brake  / Brake pedal opening of the commercial vehicle 

ld  m Distance between vehicle and lane centerline 

srd  m Clearance from the backward vehicle 

sfd  m Clearance from the forward vehicle 

bc  / Quantitative value of backward collision risk 

fc  / Quantitative value of forward collision risk 

r  / Quantitative value of rollover risk 

c) Reward Function 

To evaluate the quality of output decision-making, an 
evaluation is materialized and quantified by establishing a 
reward function. Since driving decision-making is a multi- 
objective optimization problem involving safety, comfort and 
other objectives, the reward function is designed as 

 
Rt=r1+r2+r3+r4                                                        (8) 

 
where Rt denotes the total reward function. r1, r2, r3, and r4 
denote the safety distance reward function, the anti-rollover 
reward function, the comfort reward function, and the penalty 
function. 

First, to prevent the commercial vehicle from colliding, a 
safety distance reward function is designed as 
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(9)  
 

where 0d  denotes the safety distance threshold, f  and r  

denote the safe distance weighting factors, respectively. 
Secondly, to prevent the vehicle from rollover, an anti- 

rollover reward function is designed as 
 

2 sin sin
2 2

lat roll

thr thr

a
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a

 


   
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                      (10)  

 

where thra  and thr  denote the preset lateral acceleration 

threshold and roll angle threshold, respectively. 
Thirdly, to ensure a better driving comfort, the excessive 

impact should be avoided. A comfort reward function is 
designed as 

 

   3 1j lon lonr a t a t                     (11)  

 
where j  denotes the comfort weight factor. 

Finally, a penalty function is designed as 
 

4

100,  collision occured

100,  rollover occured

0, no collision or rollover occured

r


 



              (12)  

2) Designing a Network Architecture for Decision-Making 
Model 

An actor-critic framework is implemented to construct the 
decision-making model, including actor-network and critic- 
network. The actor-network takes the state-space information 
as input and outputs the action-space, which is the control value 
of the brake pedal opening, throttle opening and steering wheel 
angle. The critic-network takes state-space information and 
action decisions as inputs to output the current value of state- 
action (as illustrated in Fig. 2). 

For actor-network, a hierarchical structure is built to extract 
features from various information in state-space. Firstly, the 
network encodes the motion state information and driver 
control information by using a few fully connected/ReLU 
layers, respectively. To map the above variables to fixed-length 
feature vectors, max- pooling layers are used behind fully 
connected layers. In the meanwhile, the network encodes the 
risk degree which is exported from the risk assessment module 
by using a fully connected layer. Then, feature vectors h1, h2, 
and h3 are concatenated and mapped to a few fully connected 
layers to output actions. 

For critic-network, the result from encoded state-space is 
mapped to a fully connected/ReLU layer and actions from 
actor-network are mapped to a fully connected layer. Then they 
are concatenated and mapped to a few fully connected layers to 
output the Q-value. 
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IV. EXPERIMENTAL RESULTS 

To verify the feasibility of the proposed framework, 
validation experiments were conducted based on the Prescan 
driving simulation platform. The simulation environment is 
imported from a real scene through Open Street Map, which is a 
part of Nanjing Airport Highway, China. The training scene 
and validation scene are shown in Fig. 3. 

Experiments were conducted on a commercial vehicle. The 

commercial vehicle was equipped with a high precision 
differential GPS with centimeter-level position accuracy 
sampled at 50 Hz, an IMU sampled at 100 Hz, a lane marker 
sensor sampled at 20 Hz, and two millimeter-wave radars with 
100 Hz update rate. The mounting positions of the sensors are 
shown in Fig. 4. All experiments were performed on a 
computer equipped with 64 GB RAM, Intel Core i7-7700k 
CPU with 32 cores, and a single GeForce GTX 2080 GPU. 
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Fig. 2 Framework of the proposed actor-critic network 
 

 

Fig. 3 Simulation environment of the highway scenario 
 

 

Fig. 4 Installation position of sensors on the commercial vehicle 
A. Training Setup 

For the part of feature extraction, the numbers of neurons in 

fully connected layer FC1, FC2, FC3, FC4, FC5, FC6, and FC7 are 
48, 48, 24, 48, 48, 24, 48 respectively. For the actor-network, 
the numbers of neurons in fully connected layer FC8, FC9, FC11, 
FC12 are 48, 48, 24, and 24. The activation function of each 
layer is a linear rectification unit (ReLU). Adam optimizer [10] 
is utilized and the learning rate is set to 0.0001. The discount 
factor is set to 0.95, and the smooth factor is set to 0.0015. 

For the critic network, the number of neurons in the layers 
FC10, FC14 is 48. The activation function of each layer is ReLU. 
Critic network’s learning parameter is the same as actor- 
network but for learning rate 0.001. The training batch size is 
set to 32. The maximum number of sequence states stored in the 
experience pool is 100000. 

To improve the convergence speed of action-network and 
critic-network, the termination condition is set. In the case of 
retrograde, collision, rollover, and leaving the road, the current 
episode will be terminated and a new episode will be started for 
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training. Besides, if the reward does not increase within 100 
steps, the new round will be restarted. 

B. Performance Evaluation 

In Fig. 5, the distribution of reward after training the network 
for 950 episodes (208713 of total steps) is illustrated, in which 
the red line represents the variation of average rewards and the 
blue line represents the variation of episode reward. During the 
training process, the Q-value (as illustrated in the yellow line in 
Fig. 5) increases gradually and tends to be gentle. In the 
beginning, the network explores randomly with a minor reward 
of about 1000. Collision or rollover of the vehicle results in a 
reward of -100 in each step. With the training going on, the 
reward gradually increases. From the 120th episode, reward 

concentrates around 2500, and the distribution shifts to high 
reward, but the agent still gets out of track sometimes. From the 
320th episode, the change of reward gradually flattens and the 
vehicle rarely collides or rolls over, which means the network is 
converged. 

In Figs. 6 (a) and (b), control quantities of action decisions in 
the last training episode are shown. From the figure, we can see 
that the change of the curve is relatively gentle. The variation of 
control quantities (steering wheel angle, brake pedal, and 
throttle) at each moment is not changing dramatically. 
Moreover, there is no sudden steering, emergency braking, and 
other actions that affect the safety of the vehicle. 

 

 

Fig. 5 Episode reward for driving decision-making 
 

 

Fig. 6 (a) Control quantities of throttle/braking pedal opening 
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Fig. 6 (b) Control quantities of steering wheel angle 
 

 

Fig. 7 (a) Clearance results in scenario 1 
 

 

Fig. 7 (b) Rollover risk results in scenario 1 
 

For intuitive evaluation of the network learning, two 
scenarios are selected in which the speed of surrounding 
vehicles is changing and constant randomly. Firstly, the 
simulation results for the surrounding vehicle driving at a 

dynamic speed are indicated. The commercial vehicle can 
follow the forward vehicle and keep a safe distance. In the 
running process, the clearances from surrounding vehicles are 
shown in Fig. 7 (a). The curve of rollover risk is illustrated in 
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Fig. 7 (b). It is worth noting that clearance equals 100 means no 
vehicle in the direction. 

As can be seen from Figs. 7 (a) and (b), for the case without 
considering the backward collision, the clearance from 
backward vehicle, the clearance cannot always be greater than 
the safety distance threshold. The safety of the commercial 
vehicle cannot be guaranteed. For the framework proposed in 
this paper, the variables which include clearance from the 
backward vehicle and forward vehicle are always higher than 
the threshold. Meanwhile, the rollover risk is always less than 
the threshold. The output driving decision-making is confirmed 
to be able to avoid collision and rollover accidents.  

Secondly, the simulation results for the surrounding vehicle 

driving at a constant speed are validated. The results show that 
the commercial vehicle follows the forward vehicle and keeps a 
safe distance. In the running process of the commercial vehicle, 
the clearances from the forward vehicle and backward vehicle 
are shown in Fig. 8 (a). The rollover risk of the commercial 
vehicle is shown in Fig. 8 (b). As can be seen from the figure, 
when the backward anti-collision is not considered in reward 
function, the performance of driving strategy is poor. For the 
proposed framework, the clearance at each moment is higher 
than the threshold, and rollover risk is less than the threshold. 
The output driving strategy can ensure the safety of the 
commercial vehicle. 

 

 

Fig. 8 (a) Clearance results in scenario 2 
 

 

Fig. 8 (b) Rollover risk results in scenario 2 
 

V. CONCLUSION 

To enhance the safety of the commercial vehicle under the 
highway scenario, an effective decision-making method based 
on multi-objective optimization is proposed in this work. With 
the constructed risk assessment module, the risk of collision 
and rollover is significantly recognized. Reward function and 
network learning parameters are optimized to improve the 

performance of driving decision-making. The proposed 
framework comprehensively considers the impact of forward 
and backward obstacles on vehicle collision and rollover. The 
framework is theoretically and experimentally verified that it 
can output driving strategies under different driving conditions, 
and provide drivers with effective and reliable driving advice. 
Future work will focus on driving strategies under different 
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road attachment conditions. 
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