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Abstract—This paper proposes a novel system for monitoring the 

health of underground pipelines. Some of these pipelines transport 
dangerous contents and any damage incurred might have catastrophic 
consequences. However, most of these damage are unintentional and 
usually a result of surrounding construction activities. In order to 
prevent these potential damages, monitoring systems are 
indispensable. This paper focuses on acoustically recognizing road 
cutters since they prelude most construction activities in modern 
cities. Acoustic recognition can be easily achieved by installing a 
distributed computing sensor network along the pipelines and using 
smart sensors to “listen” for potential threat; if there is a real threat, 
raise some form of alarm. For efficient pipeline monitoring, a novel 
monitoring approach is proposed. Principal Component Analysis 
(PCA) was studied and applied. Eigenvalues were regarded as the 
special signature that could characterize a sound sample, and were 
thus used for the feature vector for sound recognition. The denoising 
ability of PCA could make it robust to noise interference. One class 
SVM was used for classifier. On-site experiment results show that the 
proposed PCA and SVM based acoustic recognition system will be 
very effective with a low tendency for raising false alarms. 
 

Keywords—One class SVM, pipeline monitoring system, 
principal component analysis, sound recognition, third party damage.  

I. INTRODUCTION 
ANY important pipelines in modern cities are laid 
underground and are often referred to as lifeline 

infrastructures. Recent reports in literature [1] show that most 
damages to these pipelines are usually caused by third party 
activities, rather than material failure and corrosion; for 
example, surrounding construction activities. Although 
unintentional damages might be considered rare events, a 
single incident may have catastrophic consequences; the 
Ghislenghien gas pipeline explosion disaster in Belgium on 
July 30, 2004 resulted in 24 deaths and over 120 injuries.  

For pipelines that are deemed dangerous, such as those 
carrying gas and high pressure oil, preventive measures to 
detect potential threats are more important than measures to 
detect real damages. In actual practices, dangerous pipelines 
are regularly patrolled by special personnel, either on foot, by 
vehicles, or even by helicopters. However, this kind of manual 
checking is laborious, economically expensive and is not seen 
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to be efficient or necessarily effective. Therefore, there is an 
increasing necessity for automatic, continuous, and low cost 
pipeline monitoring systems. 

In Europe, a monitoring system based on image processing 
and Unmanned Aerial Vehicles (UAV) technologies is under 
development [2]. However, this system is expensive and 
requires the tight integration of several complicated 
technologies. Furthermore, the tendency for false alarms is still 
not low enough.  

In the United States, Gas Technology Institute (GTI) is 
developing another monitoring system with the objective of 
preventing third party damage, particularly that resulting from 
nearby construction activities [3]. This system uses optical 
fibers, which are buried between the surface and the pipelines, 
to detect for vibrations in the ground. The magnitude and 
profile of the vibrations are then used to determine the 
existence of construction equipment nearby. However, this 
system is only applicable in areas where there is nothing on the 
topsoil. For pipelines under an asphalt or concrete road, which 
is the most common case in Japan, this system is not effective.  

Bearing in mind the availability of these systems, Wan et al. 
proposed a pipeline monitoring system based on acoustic 
recognition [4][5]. Construction work near pipelines is 
identified by the sounds emitted from the construction 
machines used. By continuously studying the surrounding 
noise, potential threats to the pipelines can be identified by 
detecting for dangerous construction equipment in the vicinity 
of the pipelines. In [4], a 0.2s sound sample was extracted out 
for recognition from time to time. Mel Frequency Cepstral 
Coefficient (MFCC) was used as the feature. However, 
depending on only a 0.2s sample, decisions will not be reliable 
due to noises. In [5], with the consideration of the noise effect, a 
tag train based postprocessor was proposed to make the final 
decision, based on many segmented initially recognized frames. 
In this paper, however, a different approach will be applied. 
With PCA and one class SVM, recognition of a whole sound 
sample, rather than tiny segmented frames, can be achieved. 
Simultaneously, robustness to noises due to the denoising 
ability of PCA, and thus accurate decision making, can also be 
realized. Meanwhile, high performance support vector 
machines could lead to high recognition accuracies. For these 
considerations, pipeline monitoring approach based on PCA 
and one class SVM is studied in detail in this paper. 
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II. PIPELINE MONITORING MECHANISM 
Usually, it is the presence of surface construction activities 

that threaten the well-being of underground pipelines; 
construction activities along asphalt or concrete roads threaten 
the pipelines that run along underneath the roads. In such 
activities, a road cutter is often used before any other 
equipment. Furthermore, the operation of a road cutter is 
accompanied with a very loud noise, which makes the 
recognition feasible and practical. For these two reasons, we 
can focus on detecting road cutters to determine if there are any 
construction activities near the pipelines. Fig. 1 shows a road 
cutter cutting the road.  

 

 
 

Fig. 1 A road cutter is cutting the road 
 

A sensor network could be deployed above ground along the 
pipelines. Each sensor will have a microphone to capture 
sounds and a small chip to process the sound signals by using 
acoustic recognition methods. Once it detects a dangerous 
sound, it will send off an alarm and at the same time send a 
message to the control center so that immediate and relevant 
measures can be expediently executed. Obviously, essential to 
the proposed system is the cutter detection by sound 
recognition. Nearly all environmental sound recognition 
researches in literature use short audio clips, often lasting from 
1s to 10s. For example, Ma [6] recognized an environment 
sound based on a 3s sample, while Lu [7] made a 
Content-based audio classification based on a 1s sample. In our 
research, a short period sound sample, lasting several seconds, 
is also applied to make sound recognition. In simplicity, the 
sound based cutter detection system on the whole can be 
described in 4 steps: 
1) Sound capture – catch a sound signal. If the strength of the 

sound exceeds a threshold, activate the processor to 
analyze the signal, otherwise do nothing. 

2) Sample extraction – extract a sound sample from the 
incoming sound signal. 

3) Sound classification – process the sample and decide 
whether belongs to road cutter or not.  

4) Alarm raising if necessary and further assessment – if the 
sound is classified to be that belonging to a road cutter, an 
alarm will be raised and a report will be sent to the control 
center so that further assessment can be made and 
measures taken. 

Location of the potential threat can be well identified by 
knowing which sensor is raising an alarm. Thus when a sensor 
detects a road cutter, it will give off an alarm to caution the 

people nearby of the underground pipeline. Meanwhile it will 
also send off a message to the control center to report the 
potential threat so relevant measures can be executed quickly. 
The whole monitoring process is depicted in Fig. 2. 

 

 
 

Fig. 2 Flow chart of the pipeline monitoring system 

III. SOUND RECOGNITION 
Although most acoustic recognition techniques were 

developed initially for speech recognition, other applications 
included environmental sound recognition mainly for the 
purpose of content-based classification, context awareness and 
ubiquitous surveillance.  

For environment sound recognition, most of the popular 
research focuses on features of Mel Frequency Cepstral 
Coefficients (MFCC), Linear Prediction Coding Cestrum 
(LPCC), etc., and on classifiers such as Euclidean distance, 
Vector Quantization (VQ), Support Vector Machine (SVM), 
Hidden Markov Models (HMM), Gaussian Mixture Model 
(GMM), k-nearest neighbor algorithm (KNN) and Neural 
Network (NN). Gaunard [8] classified five types of noise 
events using LPCC feature combined with a HMM classifier 
and showed a good result. Later, Peltonen [9] used MFCC and 
GMM to classify 10 inside and outside environments for scene 
recognition. Lu [7] classified five classes of sounds using 
MFCC and SVM in his audio segmentation and classification 
with good classification resolution achieved. In [10], Lu further 
pointed out that SVM is also much better than KNN and GMM. 
Toyoda [11] tried the multilayered Neural Networks for robotic 
audition. Krishna [12] compared MFCC and LPCC 
performance in musical instrument recognition and concluded 
that LPCC did better than MFCC. Ma [6] used the MFCC 
together with a HMM classifier to get a high resolution 
classification. 

However, even though HMM showed a good performance, it 
usually requires large amount of training data to accurately 
train the models. Large computation cost makes it inconvenient 
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for the small sensors. Above all, HMM, VQ as well, is a method 
for multi class classification and it is hard to be applied to the 
one class classification problem which is the case in our road 
cutter recognition. Neural Network method and GMM also has 
the problem of having a large computation burden. Since SVM 
seems to be better than GMM and KNN [10], and could be 
much faster as the computation is only depends on small 
number of supporting vectors, a one class SVM classifier is 
used for our proposed system. 

As for the features, MFCC and LPCC are cesptrum based 
features and a little too complicated. More over, they can only 
be used for recognizing a signal frame. In this paper, however, 
we would like to use a PCA-one class SVM based approach so 
that a several second sound sample with dozens of frames can 
be recognized all at once as a whole. This approach is 
introduced below in detail.  

A. Mechanism of PCA and SVM based Sound Recognition 
In most conventional sound recognition processes, a several 

second sound sample is often segmented out for testing. In the 
signal processing, it is usually further segmented into many tiny 
frames, usually lasting from 20ms to 30ms, with an overlap 
between every two adjacent frames. Acoustic recognition will 
then be carried out according to the features of all overlapped 
frames. Ma [6] recognized an environment sound based on a 3s 
sample, with 25ms frames and 15ms overlap. Goldhor [13] 
further pointed out that the overlap usually has to be more than 
25% of the frame size. On the other hand, Lu [7] classified a 1s 
sample, with 40 evenly segmented non-overlapping 25ms 
frames. Statistical characteristics over all 40 frame features 
were used to classify the sounds. Although Lu’s method 
required only short samples and no frame overlapping, the 
computing cost and memory requirement is still quite 
significant for tiny smart sensors. Also their approaches suffer 
the same problem, i.e., the last decision could not be made 
without features of all frames. This means every frame needs to 
be processed individually at first. The acquired data also need 
to be reserved. However, a sound sample usually contains 
many of such frames so that both the computation and memory 
cost will be huge. 

In order to lower the computational cost and memory 
requirement of the sensors, as well as its energy consumption, 
in this paper, however, another approach using PCA and one 
class SVM is applied, which can make a decision for a sound 
sample as a whole. More over, some individual frames 
interfered by the noise will be avoided affecting the last 
decision, due to the denoising ability of the PCA. For further 
decreasing the computation cost, considering of the 
monotonous characteristic of the noise emitted from a road 
cutter in constant operation, we proposed a separated frame 
blocking mechanism [6]. For each sound sample, all frames are 
segmented separately. An interval is set between every two 
adjacent frames instead of the overlap. Then those separated 
frames would provide us their power spectral density (PSD), 
which will be processed by PCA. After that, a feature vector, 
truncated eigenvalues, could be obtained. It is obvious that the 

acquired feature vector actually characterizes the whole sound 
sample, but rather than the individual frames. Based on the 
obtained feature, a one class SVM classifier will then be 
applied to make the classification and the decision can be made. 
The PCA and one class SVM based sound recognition process 
is briefly depicted in Fig. 3. 

 

 
 

Fig. 3 PCA and one class SVM based sound recognition 
 
B. Principal Component Analysis 
From the incoming sound sample, n separated fames will be 

segmented out for analysis. For every frame, the signal is 
transformed into frequency domain by FFT transform, so that 
the power spectral density (PSD) could be obtained. For the 
following pattern comparison, PSD of each frame is 
normalized into unit power within all frequency range. Thus 
n normalized PSDs could be obtained as: 

n)1,2(i       ),( 21 == ikiii fffP            (1) 

where: iP  is PSD vector of the i th sound frame; k is the FFT 

index; and 1
1

=∑
=

k

i
ijf . 

The covariance matrix  C  can be expressed as: 

             }TEEE (P))(P))(P{(PC −−=              (2) 
From this symmetric covariance matrix, a unit orthogonal basis 
can be obtained by finding its eigenvalues and eigenvectors. By 
setting the eigenvalues in a descending mode, the first 
eigenvector will point to the direction of largest variance of the 
data, while the second eigenvector has the direction of second 
largest variance and so on. The eigenvalue vector A can be 
expressed as: 

),,( 21 naaa=A                                (3) 
where: 

naaaa ≥≥≥ 321                            (4) 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:2, No:9, 2008

212

 

 

In PCA analysis, usually only first several principal 

components are needed. A truncated eigenvalue vector A~ is 
used for our feature vector which could be written as: 

nm       ),,(~
21 <= maaaA              (5) 

Every kind of sound has its own pattern and thus has its own 
principal space. Eigen vectors are actually the direction vectors, 
while eigenvalues represent the weights for each direction. In 
most cases, the truncated eigenvalues could uniquely 

characterize the sound. Thus using truncated eigenvalues A~ as 
the feature vector is feasible, practical and reasonable.  

C. One Class SVM 
Support Vector Machines (SVM) is a supervised learning 

method which can separate the data easily using a hyperplane 
by projecting them into a higher dimensional feature space. 
SVM was first introduced by Vapnik et al. and soon became 
popular due to its strong power of classification and many 
successful applications. 

SVM was initially used for classifying two classes. But it 
was soon extended to the use for multi-class and one class 
classification. For one class classification problems, they are 
often caused by lack of data or incomplete information. In our 
road cutter recognition, considering that it is impossible for us 
to collect all kinds of environmental sounds to train them, it is 
reasonable to apply one class SVM to make classification.  

The one class SVM classifier distinguishes other classes 
from a known class, depending on the decision hyperplane built 
on the support vectors and a Kernel function. The decision 
function for one class SVM has the form [14]: 

    )))(),(((sgn)(
1

ρα −ΦΦ⋅= ∑
=

ZXKxf i

l

i
i           (6) 

where: )( iXΦ  is a support vector, )(ZΦ  is a data vector to 

be classified, K  is a Kernel function, l  is the number of the 
support vectors and ρ is the offset. 

IV. EXPERIMENTS AND RESULTS 

A. Experiment Overview 
 

 
Fig. 4 An experiment was conducted at Tokyo 

 
In order to test the feasibility of deploying this monitoring 

system to a real pipeline, extensive experiments were 
conducted. The experiments were conducted at several places 

in Tokyo at different times. Fig. 4 shows an experiment 
conducted at Tokyo. During the experiments, a microphone 
(Sony ECM-CR120) was used to capture the sound, and a 
digital recorder (Olympus IC recorder) to record it. The 
specification of the experiment equipments can be shown in 
Table I.  

 
TABLE I 

EXPERIMENTAL EQUIPMENT SPECIFICATION 

Microphone Digital Recorder 

Model ECM-CR120 Model Olympus V-60 

Directivity Omni-directional Sampling 
frequency 44.1KHz 

Response 
range 100Hz-12KHz Response 

range 50Hz-13KHz 

Sensitivity -46dB±4dB 

 

Input level -70dBv 

 
We collected 151 sound samples in total, including road 

cutting sounds and other environmental sounds. As shown in 
Table II, we picked up 10 road cutting sounds as the cutting 
template sounds which were used to build the one class support 
vector machine. 15 other sounds, including 5 cutting sounds 
and 10 non-cutting sounds, were used for the training sounds, 
to train and optimize the Gaussian kernel parameters of the one 
class SVM, such as highest allowable fraction of the 
misclassification and the bandwidth of the Gaussian 
distribution. The rest of 126 sounds were used for testing. 

 
TABLE II 

EXPERIMENT DATA COLLECTION 

 Total 
sounds 

Template 
sounds 

Training 
sounds 

Testing 
sounds 

Road cutter 51 10 5 36 

Vehicle 15  1 14 

Backhoe 44  7 37 

Train 4   4 

Wood cutting 7   7 

Pionjar drill 5   5 

Others 25  2 23 

Total 151 10 15 126 

 
For analyzing the sound, we studied the power spectra of the 

road cutter samples at first. Usually the sound contains two 
parts, the low frequency band sound from the engine of the road 
cutter and the high frequency band sound from the action of 
road cutting. It can be found that the frequencies vary 
significantly in different samples even though they all belong to 
the same class, i.e., road cutter, as shown in Fig. 5. The 
variation of the frequency can be explained by the working 
conditions. The material the blade is cutting is always changing, 
either the soft asphalt, or sand, or the hard carpolite or 
something else. Also the pressure put on the cutter by the 
worker can never be kept constant. The lubricant effect of the 
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water, which is indispensable when the cutter is working, will 
change the frequency too. Thickness of the road also results in 
the frequency variation. At last, another fact we need to treat 
seriously is that the engine condition of different cutters varies 
significantly too. Usually, for a new cutter the low frequency 
component will be small while for an old cutter, the low 
frequency engine sound may be very large, making high 
frequency cutting sounds relatively trivial. All of these facts 
cause big problems for generalizing the classification process. 
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Fig. 5 Significant frequency variation of cutter sounds 

 
Since most environmental noise sounds from the street have 

relatively low frequency components, such as engine sounds of 
vehicles and voices of pedestrians, etc., interference may easily 
happen in the low frequency band. Moreover, the actual danger 
to the pipeline is coming from the action of road cutting. It 
seems that the road cutting sound should be the deterministic 
sound that actually characterizes a road cutter. In this sense, it 
seems that in order to effectively recognize a dangerous road 
cutter, its engine sound and road cutting sound should be 
separated. As we found that the frequencies from the cutter 
engine were usually around 140Hz, the effect for frequencies 
below 500Hz being either remained or removed were both 
studied in our research. 

B. PCA Analysis and One Class SVM Classification 
    For each sound sample, 25 tiny frames were segmented out, 
each lasting 23ms with a 200ms interval between every two 
adjacent frames. The normalized PSD were further analyzed by 
PCA. Thus the feature vector, eigenvalue vector, was obtained. 
Fig. 6 and Fig. 7 show the eigenvalues (without being truncated) 
and the accumulated proportion of variance for 10 template 
cutter sounds in both conditions when low frequency engine 
sound was remained and removed respectively. 
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Fig. 6 Eigenvalues and proportions of variance for low frequency 
engine sound being remained 
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Fig. 7 Eigenvalues and proportions of variance for low frequency 
engine sound being removed 

 
For principal component analysis, an important issue is to 

decide how many principal components (PCs) we should keep, 
i.e., decide the dimension of the principal space. Usually, it 
could be decided by following some criterions such as the 
Kaiser criterion, the variance proportion criterion which finds 
the number of components that comprise some part of the total 
variance, and the scree test criterion, which suggests to find the 
place where the smooth decrease of eigenvalues appears [15] 
[16][17]. It was pointed out that the Kaiser criterion may lead to 
too many PCs being taken while the scree test may lead to too 
few PCs. For simplicity, we focused on the last two criterions in 
this paper. From the eigenvalues in Fig. 6 and Fig. 7, according 
to the scree test criterion, the number of PCs should be around 5. 
However, according to proportion of variance, also shown in 
Fig. 6 and Fig. 7, about 15 PCs are needed even for 80% of total 
variance. Thus the PCs should between 5 and 15. Also, due to 
the significant eigen value variation caused by frequency 
variation between samples, it is very difficult for us to decide 
the exact dimension of the principal space for our case. In this 
paper, we therefore tested 3 conditions, when the number of 
PCs is set to be 5, 10, and 15.  
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After the truncation of the eigenvalue serials, the remained 
eigenvalues were used for the feature vector. The feature vector 
was then be classified by the trained one class SVM classifier. 
Usually, the hyperplane of the one class SVM is the geometric 
form of the decision function. When the discriminant value is 
larger than 0, the testing signal could be regarded as in the same 
class, otherwise it would be regarded as in different class. 
However, for this pipeline monitoring, considering the 
ponderance of the accidents, we would like to decrease the 
rejection error (regarding it is not a road cutter but actually it is), 
even though it would increase the risk of acceptance error 
(regarding it is a road cutter but actually it is not). By studying 
the discriminant values of the training samples, as shown in Fig. 
8, it could also be found that most of the non-cutter sound were 
well recognized so that their distances to the hyperplane were 
very large, thus leave us large space for adjusting. For these 
considerations, the hyperplane was deliberately shifted a little 
away from the road cutter class, to be -0.01, so that the margin 
for cutter class would be increased and could tolerate more 
suspicious samples.  
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Fig. 8 Discriminant values for training samples with PCs being 10 

and engine sound remained 
 

By this way, all the testing sounds were classified and the 
recognition decision errors were listed in the Table III. Results 
show that the PCA and one class SVM based cutter recognition 
algorithm can do the work very well. With low frequency 
engine sound remained and PCs being 10, only 1 cutter sound 
was incorrectly classified, while all the other sounds were 
recognized successfully and correctly. The recognition 
algorithm also works well when engine sound was removed, 
with totally 4 sounds being mistakenly recognized. The overall 
success rate, i.e., the success rate of either road cutter sound 
being correctly recognized as road cutter or non-cutter sound 
being correctly recognized as not from a road cutter, reaches as 
high as 99.21% when low frequency engine sound was 
remained, and 96.83% when engine sound was removed. Even 
though it seems that separating engine sound and road cutting 
sound could improve the recognition correctness, our 
experiments, however, showed an opposite result. The success 
rate when low frequency engine sound was remained is slightly 
better than that when the engine sound was removed. This is 
due to the robustness of the SVM. By the one class SVM, the 
engine sound was also helped to make classification in some 
extent. From the table we can also find that principal space 
dimension of 5 can basically satisfy our needs. Principal space 
dimension being 10 works best when the engine sound was 
remained. 

V. CONCLUSION 
In this paper, acoustic information is used to recognize 

dangerous construction machines that are potential threats to 
the well-being of underground pipelines. An automatic pipeline 
monitoring mechanism is proposed. A sound recognition 
approach based on PCA and one class SVM was studied and 
applied. With this approach, a sound sample can be recognized 
as a whole, instead of making decision based on many initially 
recognized frames. At the same time, abstracting ability of the 
PCA makes it robust to noises. Real site experiments were 
conducted and data were analyzed. Results showed that PCA 
and one class SVM based algorithm can do the work very well. 

TABLE III 
RECOGNITION ERROR 

Engine sound remained Engine sound removed 
 Test sounds 

dim=5 dim=10 dim=15 dim=5 dim=10 dim=15 

Cutter 36 1 1 1 1 1 1 

Vehicle 14 1 0 0 0 0 0 

Backhoe 37 2 0 0 0 0 0 

Train 4 0 0 0 0 0 0 

Wood cutting 7 0 0 0 1 1 1 

Pionjar drill 5 0 0 0 2 2 2 

Others 23 0 0 0 0 0 0 

Total 126 

 

4 1 1 

 

4 4 4 

dim stands for the dimension of the principal space applied, i.e., the number of PCs retained. 
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The automatic pipeline monitoring system and sound 
recognition technologies studied in this paper will be very 
useful for pipeline monitoring sensor network systems in the 
future to prevent potential damage and ensure the safety of 
underground lifeline infrastructures. 
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