
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:6, 2010

511

An augmented beam-search based algorithm for the
strip packing problem

Hakim Akeb and Mhand Hifi

Abstract—In this paper, the use of beam search and look-ahead
strategies for solving the strip packing problem (SPP) is investigated.
Given a strip of fixed width W, unlimited length L, and a set of
n circular pieces of known radii, the objective is to determine the
minimum length of the initial strip that packs all the pieces. An
augmented algorithm which combines beam search and a look-ahead
strategies is proposed. The look-ahead is used in order to evaluate
the nodes at each level of the tree search. The best nodes are then
retained for branching. The computational investigation showed that
the proposed augmented algorithm is able to improve the best known
solutions of the literature on most instances used.

Keywords—combinatorial optimization, cutting and packing, beam
search, heuristic, look-ahead strategy.

I. INTRODUCTION

Cutting-and-packing problems can be encountered in several
real applications: logistics (Cochran and Ramanujam [5]),
manufacturing and production processes (Baltacioglu et al. [2],
Burke et al. [4]), and industrial engineering (Menon and
Schrage [13]). A cutting (or packing) problem consists to cut
(or pack) a set of items of known dimensions from (or into)
one or more larger objects (or containers) in order to minimize
the unused part of the objects (or waste). The items and the
containers may have rectangular, circular, or irregular forms. In
this paper, the strip packing problem (SPP) is studied, where
the items are circular and the container is represented by a
strip (see Wäscher et al. [17]).

In SPP, an initial strip S of fixed width W and unlimited
length L is given, as well as a finite set N of n small circular
pieces Ci of known radius ri, i ∈ N = {1, . . . , n}. The
problem is then to pack (or cut) all pieces such that:

(i) there is no overlapping between pieces, and between
pieces and the edges of the strip and,

(ii) the aim is to minimize the length to which the initial strip
S is filled, as well as to determine the coordinates (xi, yi)
of the center of Ci, i ∈ N.

The SPP can be stated as follows:
min L

subject to

(xi − xj)
2 + (yi − yj)

2 ≥ (ri + rj)
2, j < i, (i, j) ∈ N2 (1)

xi − ri ≥ 0, ∀i ∈ N (2)
yi − ri ≥ 0, ∀i ∈ N (3)
W − yi − ri ≥ 0, ∀i ∈ N (4)
L− xi − ri ≥ 0, ∀i ∈ N (5)
L ≥ L (6)

H. Akeb is a Professor at ISC Paris, School of Management, 22 boulevard
du Fort de Vaux, 75017 Paris, France. (hakeb@groupeisc.com)

M. Hifi is a Professor at Université de Picardie Jules Verne, Équipe
ROAD, UR MIS, 33 rue Saint-Leu, 80039 Amiens, France. (mhand.hifi@u-
picardie.fr)

where L =
(
π × ∑

i∈N r2i

)
/W. Equation (1) denotes the

non-overlap constraint of any pair of distinct pieces (Ci, Cj).
It means that the distance between the center of both pieces
must be greater than or equal to the sum of the radii of
Ci and Cj (there are n(n − 1)/2 of these non-overlap con-
straints). Equations (2), (3), (4) and (5) state that any piece
Ci, i ∈ N, does not exceed the target-rectangle boundary
of dimensions (L,W). Equation (6) means that the optimal
solution is bounded by the simple lower bound L. Hence, SPP
is characterized by a linear function, by four linear constraint
types and by a nonlinear constraint type.

The remainder of the paper is organized as follows. Section
II provides a review of SPP related literature. Section III
presents the main principle of the beam search, a truncated
branch and bound. Section IV summarizes the principle of
the minimum local-distance position (Section IV-B) and the
adaptive beam search algorithm (Section IV-D) already used
in Akeb and Hifi [1]. Section V details the main steps of the
augmented algorithm that combines the beam search with a
look-ahead-based heuristic and a series of target values. In
Section VI, the performances of the proposed algorithm are
evaluated on a set of benchmark instances. Finally, Section
VII summarizes the contributions of this paper.

II. RELATED LITERATURE

To our knowledge, most published papers for the circular
cutting/packing problem can be categorized into two cate-
gories: (i) cutting/packing (non)identical circles into a large
circle and, (ii) cutting/packing (non)identical circles into a
rectangle or a strip.

For the first category, the problem of packing non-identical
circles into a containing circle of known radius was studied by
several authors (see for instance, Hifi and M’Hallah [7], Huang
et al. [11] and Sugihara et al. [16]). For the second category,
most of the proposed papers solve variants of the packing
problem, in particular, packing circles into a rectangle or a
strip. George et al. [6] designed an approach based upon sev-
eral building rules simulating the packing operation; the best
rules use a quasi-random approach and a genetic algorithm.
Birgin et al. [3] tackled the same problem using a non-linear
approach-based algorithm. Stoyan and Yaskov ([15]) solved
the SPP using a mathematical model that searches for feasible
local optima by combining a tree-search procedure and a
reduced-gradient method. Hifi and M’Hallah [8] proposed
a constructive procedure and a genetic algorithm to pack
circles into a strip. Huang et al.[10] proposed two solution
procedures for the SPP, called B1.0 and B1.5. Finally, Akeb
and Hifi [1] proposed three algorithms for the SPP: (i) an

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:6, 2010

512

open strip generation solution procedure which is based on
an optimization problem, (ii) a local beam-search solution
procedure that combines beam search and the open strip gen-
eration procedure and (iii) a hybrid algorithm that combines
beam search, dichotomous interval search and the open strip
generation procedure.

In this paper, the SPP is solved using an augmented algo-
rithm which combines a constructive solution procedure, beam
search, dichotomous search and a look-ahead strategy.

III. A STANDARD BEAM SEARCH

Beam Search (BS) is a classical tree-search method that
was introduced in the context of scheduling (Ow and Mor-
ton [14]), but has since then been successfully applied to
many other combinatorial optimization problems (Kim and
Kim [12], Akeb and Hifi [1], and Hifi et al. [9]). It is based
on a truncated branch and bound, where at each level of the
search tree only a subset of promising nodes are selected
for further branching. The other nodes are ignored, and no
backtracking is performed. The number ω of promising nodes
to be investigated at each level is called the beam width. The
selected nodes are those having a high potential to lead to the
optimal solution. The potential of a node is assessed via an
evaluation operator whose role is to provide a good separation
mechanism of the nodes at each level of the search tree.

Initialization Phase

1) Let ω be the beam width.
2) If an initial feasible solution is available, set z∗ to its objective

function value; otherwise, set z∗ = −∞.
3) Set B = {B0} and Bω = ∅, where B is the set of nodes to

be investigated, and Bω the set of nodes branched out of the
nodes in B.

Iterative Phase
Repeat

4) Choose a node μ ∈ B; branch out μ; remove μ from B and
insert the created nodes (i.e., the offsprings of μ) into Bω.

5) If a node μ of Bω is a leaf, then
a) compute its objective function value zμ;
b) if zμ > z∗, update z∗ and the incumbent solution;
c) remove μ from Bω.

6) Assess the potential of each node of Bω using an evaluation
operator.

7) Rank the nodes of Bω in a non-increasing order of their values.
8) Insert the min{ω, |Bω|} best nodes of Bω into B; and set Bω =

∅.
Until B = ∅.

Fig. 1. A standard beam search solution procedure.

BS is characterized by the beam width ω, which is a con-
stant used for filtering the set of offspring nodes Bω (step 1 in
the Initialization phase). As with branch and bound,
an upper bound can be used to fathom nodes. If a starting
feasible solution is available, then it is set as the incumbent
solution and its value is assigned to z∗ (step 2). On the other
hand, if no initial feasible solution is available, z∗ is set to
−∞ (assuming that the problem at hand is a maximization
problem). A node corresponds to a partial feasible solution.

The set B of the current nodes is initialized to the root node
B0 whereas the set Bω of the offspring nodes is initialized
to the empty set (step 3 of the Initialization Phase).
A current node of B generates a set of offspring nodes, and
adds them to Bω (step 4 in the Iterative Phase). If a
node μ of Bω is a leaf (i.e, no further branching is possible
out of μ), then its objective function value zμ is computed
and compared to z∗ (Step 5 of the Iterative Phase). If
zμ > z∗, then the incumbent solution is set to the leaf node;
z∗ is then updated: z∗ = zμ; and μ is removed from Bω.
The nodes of Bω are after that assessed using an evaluation
operator (step 6), and ranked in a non-ascending order of their
values (step 7). The first ω nodes of Bω are then chosen as
the elite nodes and are appended to B, the set of nodes to
be further investigated, whereas the remaining nodes of Bω

are fathomed and Bω is reset to the empty set (step 8). This
process is repeated until no further branching is possible, i.e.
B = ∅.

IV. ADAPTING THE BEAM SEARCH FOR THE SPP
This section explains how to adapt the beam search strategy

fo the strip packing problem. Section IV-B describes the
principle of the Minimum Local-Distance Position (MLDP)
used by Akeb and Hifi [1] as a constructive strategy for
the algorithm. Section IV-D summarizes Akeb and Hifi’s
dichotomous beam search adapted for approximately solving
the SPP.

A. Notations

In the rest of the paper, the following notations are used:
(i) N = 1, ..., n denotes the set of circles to pack,

(ii) the strip S is placed with its bottom left corner at (0, 0),
(iii) the four edges of S are denoted by Sleft, Stop, Sright and

Sbottom,
(iv) each circular piece Ci of radius ri is placed with its

centre at (xi, yi),
(v) Ii represents the set of the i circles already packed inside

the strip,
(vi) Ii contains the circles outside the strip (not yet placed),

(vii) PIi denotes the set of distinct corner positions of Ci+1

given the set Ii,
(viii) a corner position pi+1 ∈ PIi is determined by using

two elements a and b. An element is either a piece
already placed or one of the three edges of S (Sleft,
Stop, Sbottom). Tpi+1

denotes the set composed of both
elements a and b.

B. The MLDP strategy

MLDP can be viewed as a greedy strategy used for selecting
a corner position among a set of feasible positions. The
principle of the selection strategy follows. Having positioned
a set Ii ⊆ N of circular pieces, the process tries to position
the next piece, namely Ci+1, i ∈ N\Ii, into a corner position
among all its eligible positions in the strip S −i.e., without
overlapping any of the pieces already placed.

Figure 2 illustrates such corner positions −dotted-line cir-
cular pieces− for the piece C3, where I2 = {C1, C2} and

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:6, 2010

513

(3)

1

2

p (1)

p
3

p
3

(1)

p
3

p (2)
3

3

(3)

Fig. 2. Feasible distinct corner positions of C3 in the strip S.

PI2 = {p(1)3 , p
(2)
3 , p

(3)
3 }. The notation p

(k)
3 , for k = 1, . . . , 3,

denotes the kth corner position such that p
(k)
3 ∈ I2. Here,

the corner position p
(1)
3 is generated by using the piece C2

and the top-edge of the strip, p(2)3 is provided by using both
pieces C1 and C2 and p

(3)
3 is obtained by using C1 and the

bottom-edge of the strip. It follows that T
p
(1)
3

= {C2, Stop},
T
p
(2)
3

= {C1, C2} and T
p
(3)
3

= {C1, Sbottom}.
Let Ci+1 be the selected circular piece to pack at position

pi+1 and δi+1(edge), edge ∈ Eedge = {Sleft, Sbottom, Stop},
be the three distances defined as follows: δi+1(Sleft) = xi−ri,
δi+1(Sbottom) = yi − ri,and δi+1(Stop) = W − yi − ri.

Consider also the distance δi+1(j), which separates circles
Ci+1 (when positioned at pi+1) and Cj , defined as follows:

δi+1(j) =
√

(xi+1 − xj)2 + (yi+1 − yj)2 − (ri+1 + rj).

Then, the MLDP of a piece Ci+1 when positioned at pi+1 ∈
PIi is:

δ̂pi+1 = min
α∈Ii∪Eedge\Tpi+1

{δi+1(α)}.

Note that, on the one hand, the computation of the MLDP
of the piece Ci+1 needs to compute all the distances from each
position p

(k)
i+1 of PIi to the pieces already placed Ii augmented

by the three edges of the strip S, and by excluding the elements
of T

p
(k)
i+1

(since the last distance is always reduced to zero).
On the other hand, when the piece Ci+1 touches more than
two elements, then the MLDP is reduced to zero;

Figure 2 indicates that the minimum local distance between
C3 and the already-packed circular pieces, when positioned in
p
(1)
3 and p

(3)
3 , are δ̂

p
(1)
3

and δ̂
p
(3)
3

respectively.
Specifically, for a pre-determined ordering of the pieces,

the solution procedure starts by positioning the first circular
piece C1 at the bottom-left corner i.e., at the position (r1, r1)
whereas the remaining n−1 pieces are successively positioned
using the MLDP rule.

C. Open strip generation procedure

In order to define an upper limit for the target-rectangle
length, an open strip generation procedure (OSGSP) was
proposed in Akeb and Hifi [1]. The procedure considers the
strip as a rectangle with an unlimited length (an open strip)
bounded by the left, top and bottom edges. OSGSP places the
first circle of the instance C1 in the bottom-left corner of the
open strip and uses after that the MLDP procedure in order
to place the remaining n − 1 circles. OSGSP exits with the

upper limit of the strip length L which can be used as un
upper bound in a dichotomous search algorithm like BSBIS
(Figure 3).

D. An adaptive dichotomous beam search for the SPP

In Akeb and Hifi [1], combining the dichotomous search
and beam search yielded a Dichotomous width-beam search
algorithm denoted by BSBIS (Beam-Search Binary-Interval
Search). BSBIS uses two solution procedures: (i) a procedure
that uses an interval search [L,L], and (ii) a procedure Beam-
Search (denoted by BS) which tries to pack all the pieces in
the successive target-rectangles, where each target-rectangle
(L∗,W) is such that L∗ ∈ [L,L].

Figure 3 describes the main steps of BSBIS and its principle
can be summarized by the following points (for more details,
the reader can refer to Akeb and Hifi [1]):

(i) The starting interval search is initialized with an upper
limit L (obtained by applying the Open Strip Generation
Solution Procedure (OSGSP) summarized above) and a
natural lower bound L =

(
π × ∑

i∈N r2i

)
/W.

(ii) The lower limit L is updated every time the packing
procedure BS (detailed in Figure 1) yields an infeasible
solution for the current target-rectangle (L∗,W), where
L∗ ∈ [L,L].

(iii) The upper limit L is set equal to the current length
of the rectangle every time the aforementioned packing
procedure BS yields a feasible solution.

(iv) The dichotomous search is stopped when the width of the
interval search becomes smaller than a given tolerance
gap δ; i.e., when L− L ≤ δ.

The packing procedure BS (detailed in Figure 1) builds
a set of favorite nodes following MLDP rule. It receives
two parameters: η�, the node at level �, and ω ∈ N

+, the
beam width. Depending on the considered node, the procedure
considers what follows.

Input. A beam width ω.
Output. A feasible packing containing the n circles and the best
length L∗ for the strip.

Initialization Phase.

1) Assume that the pieces of N are ranked following the decreas-
ing value of their radii.

2) Let [L, L] be the starting interval and δ be the tolerance gap
of the dichotomous search.

3) Set L∗ = L, where L∗ denotes the best solution found so far.
Iterative Phase.
while (L− L > δ) do

4) Set L∗ = (L+ L)/2.
5) Generate the node η1 characterized by I1 = {C1}, I1 =

N \ {C1, Ck}, k ∈ {2, . . . , n}, and PI1 .
6) Set Feasible = BS(η1, ω)
7) if Feasible=true {the n pieces have been packed}

then set L = L∗, otherwise set L = L∗.
enddo

Fig. 3. Dichotomous Beam Search algorithm (BSBIS)

The first node η1, corresponding to the first level, is
composed of (i) I1 = {C1}, where C1 is packed at the

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:6, 2010

514

bottom-left corner of the current rectangle (L∗,W); that is
tangent to both edges Sleft and Sbottom at position (r1, r1),
(ii) I1 = N \{C1, C2} the set of n−2 circles that have not yet
been considered for packing, and (iii) PI1 , the set of feasible
distinct corner positions of C2 given the position of C1.

An internal node, corresponding to the node at level �, is
characterized by (i) I�, the set of already-positioned circles,
(ii) PI� , the set of feasible eligible corner positions of the
circle C�+1 to be packed, and (iii) I�, the set of circles that
remain to be packed; i.e., I� = N \ I� \ {C�+1}.

At a level � ≥ 1, branching out of a node becomes
equivalent to choosing a position in PI� for C�+1. There are as
many possible branches out of a node as there are elements in
PI� . Moreover, out of all the nodes at level �, the ω positions
having the smallest MLDPs are chosen as branches to be
further investigated. All other nodes of level � are fathomed.
In addition, a node whose PI� = ∅ is fathomed since it does
not lead to a feasible packing of the n circles into (L∗,W).
Also, a node whose I� = ∅ is a leaf; that is, the n circles have
been packed into (L∗,W), and a feasible solution is at hand.
Such a node has a level � = n.

Input. A node η� and the beam width ω.
Output. Feasible=true if a feasible packing into the target-
rectangle (L∗,W) is obtained; and Feasible=false otherwise.

Initialization Step.

1) Let B (resp. Bω) be the set of current (resp. offspring) nodes.
2) Set B = {η�}, where η� is a node of level � characterized by

I�, I�, and PI� .
3) Set Feasible = false.

Recursive Step.

while B �= ∅ do
4) Set � = �+ 1.
5) Set B equal to the min{|Bω|, ω} nodes of Bω having

the best MDLPs and corresponding to distinct feasible
corner positions, and reset Bω = ∅.

6) for each selected node of level �, do
a) Pack C�+1 into its selected position, and remove the

node from B.
b) if �+ 1 = n, then a feasible solution is at hand;

Feasible=true; exit.
c) Determine PI�+1 , the set of potential distinct corner

positions for C�+2 given the positions of the already-
packed circles of I�+1.

d) if PI�+1 = ∅, then the node does not lead to a
feasible solution for the target-rectangle; fathom the
node.

e) else

i) Create |PI�+1 | branches out of the node; each
corresponding to a node characterized by the
potential position of C�+2 given the positions
of the already-packed circles of I�+1.

ii) Append the created offspring nodes to Bω not
allowing the duplication of existing corner posi-
tions.

enddo

enddo

Fig. 4. The beam search as a packing procedure (BS)

V. AN AUGMENTED ALGORITHM FOR SPP

In this section, the principle of the look-ahead, which leads
to a filling procedure for the SPP, is described in Section V-A.
In Section V-B, the augmented algorithm, denoted by ADBS
(Augmented Dichotomous Beam Search), is exposed. ADBS
combines the filling procedure, beam search, and a dichoto-
mous interval search.

A. A filling procedure

Observe that the MLDP strategy can be used as a greedy
procedure for searching for a quick solution. In this section, a
filling procedure (FP), which combines MLDP and the look-
ahead strategy, is exposed.

A look-ahead strategy, that may be more time-consuming
but may produce better results, can be viewed as a particular
case of the forward phase in branch and bound solution
procedures. The forward strategy tries to explore all directions
according to the positions associated to each decision variable
(circular piece) whereas the look-ahead selects the best posi-
tion according to the complementary lower bound used.

Input. A list B = {η1
� , ..., η

ω
� } of ω nodes and a boolean variable

feasible.
Output. Either a feasible solution corresponding to
feasible=true or a set Bω of ω nodes (those leading to
the highest densities through the MLDP packing procedure).
Starting Phase.

Let P�i be the set of corner positions of node ηi
� ∈ B

Set Bω = ∅
Set feasible = false.

Iterative Phase.
for each node ηi

� of B do
for each corner position pi ∈ P�i do

1) Pack Ci+1 in pi and insert the resulting node η�+1 into
Bω .

2) Evaluate the new inserted node η�+1 by placing the
remaining circles using the MLDP packing procedure.

3) if all circles are placed then set feasible =
true, exit.
else assign to η�+1 the density obtained by MLDP.

enddo
enddo

Terminal Phase.

4) Reduce Bω to the ω nodes that led to the highest
densities using MLDP.

5) Exit with Bω .

Fig. 5. The filling procedure (FP)

The objective of the filling procedure FP, described in
Figure 5, is to assess the potential of the nodes of the current
level of the search tree. It is called at each iteration in the
while loop of algorithm ADBS described in Figure 6. This
strategy can be viewed as a global search strategy since it
allows the choice of the expanding paths according to the best
global solutions reached by applying the look-ahead.

The main steps of FP, are described in Figure 5. FP receives
two parameters. The first one (B = {η1� , ..., ηω� }) corresponds
to the nodes of the current level of the beam-search tree,
and the second one (feasible) is a boolean value. In the

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:6, 2010

515

Iterative Phase, the procedure creates as many nodes
as there are positions in B by positioning the next circle
at each position. This creates a list of offspring nodes Bω .
The MLDP packing procedure evaluates each node of Bω by
applying the MLDP rule. Here, two cases can be distinguished.
First, FP obtains a feasible solution (Figure 5, step 3 of the
Iterative Phase), i.e. all remaining pieces are packed
into the target-rectangle (L∗,W); thus, feasible is set to
true and FP exits with a solution. Second, FP does not obtain
a solution after running MLDP on all nodes of Bω , then the
best nodes leading to the highest densities obtained by using
the MLDP rule are returned, and these are used by algorithm
ADBS (Figure 6) for branching. Note that the density of a
node is equal to the sum of the surfaces of the circles placed
divided by the surface of the target rectangle (L∗,W).

B. An augmented beam search algorithm

The large number of positions that can be produced by
the search process excludes an exhaustive search. So in the
augmented algorithm, the beam width can constrain the num-
ber of branches to explore, and the look-ahead-based filling
procedure attempts to compensate for this restriction imposed
on the search.

Indeed, the proposed augmented algorithm ADBS combines
the dichotomous beam-search algorithm (BSBIS, Section IV),
the filling procedure (FP, Section V-A) and an incremental
upper bound limit for curtailing the search process.

Input. A node η� and a beam width ω.
Output. A feasible packing and the best corresponding value for the
rectangle length (Lbest).

Initialization Phase.

- Let [L, L] be the starting interval and δ be the tolerance gap
of the dichotomous search.

- Let B and Bω be the sets of nodes to be considered and the
offspring nodes of the node currently being considered.

- Let Lbest be the best length found so far.
- Let feasible be a boolean variable.

Iterative Phase.

while (L− L > δ) do

1) Set B = {η�}, where η� is a starting node of level �
characterized by I�, I�, and PI� .

2) Set L∗ = (L+ L)/2.
3) Set feasible = false
while (B �= ∅) and (feasible=false) do
a) Set � = �+ 1.
b) Set Bω = FP(B, feasible).
c) if feasible=true then set L = L∗ and Lbest = L∗

else set B = Bω and Bω = ∅.

enddo

4) if feasible=false then set L = L∗.
enddo

Fig. 6. Augmented Dichotomous Beam Search algorithm (ADBS)

As shown in Section IV, a node is defined by the pair of
subsets Ii and Ii, where Ci+1 is the current circular piece
to pack. The first set Ii can be viewed as a local partial

subset and Ii the complementary subset. The pieces of Ii have
already been positioned whereas the pieces of Īi remains to be
positioned. Positioning all the circular pieces is then equivalent
to branching out of the node

(
Ii, Īi

)
. Of course, in some cases

only a subset of the remaining pieces can be positioned into
the target-rectangle (L∗,W). Algorithm ADBS, described in
Figure 6, combines the dichotomous beam search (algorithm
BSBIS of Figure 3) with the filling procedure (FP, described
in Figure 5) in order to try to achieve better solutions.

Figure 6 describes the main steps of algorithm ADBS
applied to the SPP. It is composed of two main phases. The
Initialization Phase in which the starting interval
search is initialized with its lower and upper limits L and
L. The best length Lbest is equal to the best length found so
far (if no solution is known, then Lbest = L).

The second phase of ADBS is the Iterative Phase.
It contains two nested while loops. The first while loop
corresponds to steps 1, 2, 3, and 4. Step 1 initializes the
set B to the current node η�. Step 2 computes the current
target lenght of the rectangle (L∗,W). Step 3 initializes the
value of the boolean variable feasible to false (feasible
indicates if a feasible packing into the target rectangle (L∗,W)
is obtained). After step 3, the second while loop takes place.
In step (a) the level � of the searh tree is incremented. ADBS
calls after that the filling procedure FP at step (b) in order to
evaluate each position of each node of the current level. In step
(c), two cases may be destinguished. If parameter feasible
has the value true, then the procedure FP reaches a feasible
solution for the current target rectangle (L∗,W). In this case,
the upper bound L is set equal to L∗ and Lbest is updated. If
the value of feasible is equal to false then the procedure
FP does not reach a feasible solution by using the look-ahead
strategy, in this case the list Bω returned by this procedure
contains the best ω expanded nodes. The nodes of Bω then
replace the nodes of B.

Finally in step 4, if the value of parameter feasible if
false then no feasible packing is obtained by the second
while loop for the current value L∗ (the target rectangle is
not large enough). In this case, the lower bound L is updated
and set to L∗.

Algorithm ADBS stops when (L − L ≤ δ) and the algo-
rithm’output corresponds to a feasible packing containing the
n circles placed inside the rectangle (Lbest,W).

VI. COMPUTATIONAL RESULTS

The objective of the computational investigation is to assess
the performance of the proposed algorithm. The different
tested algorithms are coded in C language and run on a 3-
GHz Intel Celeron, with 256 MB of RAM.

Note that, generally, when using approximate algorithms to
solve optimization problems, it is well-known that different
parameter settings for the approach lead to results of variable
quality. Of course, a different adjustment of the method’s
parameters would lead to a higher percentage of good so-
lutions. But this better adjustment would sometimes lead to
onerous execution-time requirements. The various algorithms
use two decision parameters: (i) the value ω associated to

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:6, 2010

516

the beam width and (ii) the width of the interval search
associated to the limits of the target-rectangle length L. On
the one hand, as shown in [1] for BSBIS algorithm, a higher
value associated to ω does not necessarily result in better
solutions but it considerably influences the degree. In order
to maintain the same degree of comparison, the same starting
limits corresponding to L and L, as discussed in Section IV,
are considered.

A. Sets of instances used

All algorithms were tested on two sets of instances. The
first set contains the six instances taken from Stoyan and
Yaskov [15] and identified as SY1, SY2, SY3, SY4, SY5,
and SY6. These instances contain between 20 and 100 circles.
The other twelve problems, forming the second set, are taken
from Akeb and Hifi [1], and are obtained by concatenating
the six original problems of the first set. The problems of the
second set are identified as SY12, SY13, SY14, SY23, SY24,
SY34, SY56, SY123, SY124, SY134, SY234, and SY1234
and contain between 45 and 200 circles. In fact, the instances
of the second set include relatively large and hard problems;
thus, reflect the behavior of the proposed augmented algorithm
ADBS when the problem size increases.

TABLE I
DESCRIPTION OF THE INSTANCES USED

Instance n m rmin rmax W L LOSGSP

SY1 30 30 0.527 2.0500 9.5 14.5500 18.4136
SY2 20 20 0.566 2.1710 8.5 12.1600 16.8254
SY3 25 25 0.509 2.1470 9 12.2336 15.2054
SY4 35 35 0.606 2.1780 11 19.9073 24.9282
SY5 100 99 0.533 2.1864 15 31.2822 38.4229
SY6 100 98 0.509 2.1847 19 31.7844 39.7836
SY12 50 48 0.527 2.1710 9.5 25.4301 32.3336
SY13 55 54 0.509 2.1470 9.5 26.1398 33.3387
SY14 65 65 0.527 2.1780 11 32.4732 39.9354
SY23 45 45 0.509 2.1710 9 23.7181 30.2653
SY24 55 54 0.566 2.1780 11 29.3037 37.3802
SY34 60 59 0.509 2.1780 11 29.9166 36.4357
SY56 200 193 0.509 2.1864 19 56.4809 68.8995
SY123 75 72 0.509 2.1710 9.5 37.0198 45.8464
SY124 85 82 0.527 2.1780 11 41.8696 50.9251
SY134 90 88 0.509 2.1780 11 42.4826 52.3415
SY234 80 78 0.509 2.1780 11 39.3130 47.7496
SY1234 110 105 0.509 2.1780 11 51.8790 62.1011

Table I describes the caracteristics of the eighteen instances
used. Column 1 idicates the instance’s name. Column 2
contains the instance’s size (n) and column 3 corresponds
to the number of circle types (m) which is the number of
inferent radii in the instance. Columns 4 and 5 indicate the
smallest radius (rmin) and the greatest radius (rmax) in the
instance. Column 6 displays the width of the strip (W). Finally,
Columns 7 and 8 contain respectively the trivial lower bound
of the target-rectangle length L = π

W × ∑n
i=1(r

2
i) and the

upper limit of the length LOSGSP computed by the OSGSP
packing procedure as explained in Section IV-C.

B. Solution quality

TABLE II
SOLUTION QUALITY OF THE ALGORITHMS

Instance n Best B1.0 B1.5 BSBIS ADBS

SY1 30 17.2315 17.561 17.291 17.2315 17.3269
SY2 20 14.5350 14.735 14.535 14.6277 14.5837
SY3 25 14.4700 14.660 14.470 14.5310 14.5073
SY4 35 23.5550 23.915 23.555 23.6719 23.5794
SY5 100 36.0796 36.547 36.327 36.0796 36.1357
SY6 100 36.8456 36.997 36.857 36.8456 36.7839
SY12 50 29.7011 30.067 31.203 29.7011 30.0010
SY13 55 30.6371 30.891 32.217 30.6371 30.5829
SY14 65 38.0922 38.265 40.628 38.0922 37.8367
SY23 45 27.8708 28.270 28.664 27.8708 27.7962
SY24 55 34.5476 34.605 36.373 34.5476 34.3350
SY34 60 34.9011 34.901 37.296 34.9354 34.8059
SY56 200 64.7246 69.979 69.979 64.7246 65.0187
SY123 75 43.2558 43.626 45.457 43.2558 43.2260
SY124 85 48.8927 49.335 52.477 48.8927 48.9442
SY134 90 49.3954 49.721 53.399 49.3954 49.2606
SY234 80 45.8880 45.888 49.145 45.9526 45.6405
SY1234 110 60.2613 61.906 65.248 60.2613 60.1844

Four versions of the BSBIS algorithm (described in Fig-
ure 3) were used in [1]. These versions are denoted by BSBISa,
BSBISb, BSBISc, and BSBISd, corresponding to a variation
of the beam-width ω in the integer interval [1, . . . , 25] for
the first version, [1, . . . , 50] for the second version, [1, . . . , 75]
for the third version and [1, . . . , 100] for the fourth version.
Obviously, the BSBISd version get the best results but with
a larger average runtime. Note that, the results reported in
[1] were compared to those obtained by B1.0 and B1.5;
both algorithms are based upon the Maximum Hole Degree
strategy (MHD) [10] for which only the results for the first
set of instances (SY1,. . .,SY6) (see Table I) are available.
Furthermore, in order to compare the performance of the
proposed algorithms, both B1.0 and B1.5 are run on the second
set containing twelve instances (described in Table I) by fixing
the runtime to thirty hours.

Herein, in order to maintain the same degree of comparison,
the beam width ω is taken in the interval [1, . . . , 30] for ADBS
and each run is fixed to one hour. Moreover, the cumulative
runtime for each algorithm does not exceed thirty hours for
the thirty trials.

Table II displays the results reached by the proposed al-
gorithm (ADBS) on all instances. The solution quality is
compared to the best results of the literature that are ex-
tracted from [1]. These best results are obtained either by
BSBIS [1] or by B1.5 [10] for the first set of instances
SY1, . . ., SY6. Columns 1 and 2 contain the instance’s name
and the number of circles (n). Column 3 indicates the best
known result in the literature (the best length of the target-
rectangle). Columns 4 and 5 contain the results obtained by
B1.0 and B1.5 respectively by fixing the runtime at thirty
hours. Column 6 contains the best result obtained by the
BSBIS algorithm (more precisely by BSBISd) extracted from

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:6, 2010

517

[1]. Finally, Column 7 displays the results reached by the
augmented algorithm ADBS (described in Figure 6).

Table II indicates that the BSBIS algorithm remains com-
petitive, by providing better solutions, for the instances SY1,
SY5, SY12, SY56, and SY124. The Maximum Hole Degree
heuristic (algorithm B1.5) remains better on some instances
(SY2, SY3, and SY4). But the proposed algorithm (ADBS)
improves the best known results (column 3) in 10 occasions
out of 18 (it improves BSBIS in 13 occasions and B15 in 14
occasions), and is thus the best one.

The study of the solution quality (Table II), shows that look-
ahead-based algorithm (ADBS) is adapted for medium and
large instances (n > 35) since it obtained the best results on
the majority of these instances.

C. Computation time

TABLE III
COMPUTATION TIME OF THE VARIOUS ALGORITHMS

Instance n B1.0 B1.5 BSBIS ADBS

SY1 30 292 – 1010 7836
SY2 20 27 22397 320 1351
SY3 25 108 – 545 3368
SY4 35 875 – 1482 13095
SY5 100 – – 27607 93453
SY6 100 – – 28299 93415
SY12 50 6970 30h 3779 48599
SY13 55 6883 30h 4734 60000
SY14 65 36858 30h 7657 73900
SY23 45 3164 30h 2576 34151
SY24 55 12185 30h 4913 60238
SY34 60 16735 30h 5698 65409
SY56 200 30h 30h 30h 101137
SY123 75 67298 30h 10480 83106
SY124 85 30h 30h 15237 88905
SY134 90 30h 30h 17549 88437
SY234 80 103492 30h 12791 85213

Table III reports a comparative study of the cumulative
computation time (in seconds) realized by the considered
algorithms. Columns 1 and 2 indicate the instance’s name
and its size (n). Columns 3 and 4 display the cumulative
runtime taken by B1.0 and B1.5, respectively. The symbol ”–
” means that the algorithm needed more than thirty hours for
attaining the solution reported in [10] (which is also displayed
in Table II). Note that only the results for the first set of
instances SY1, . . ., SY6 are reported in [10]. The results
obtained by B1.5 indicate that this algorithm is not efficient
when the computation time is bounded; this phenomenon can
be explained by the fact that the algorithm uses a heavier look-
ahead strategy coupled with a time-consuming restarting strat-
egy (see [10]). Column 5 of Table III indicates the cumulative
computation time of BSBIS taken from [1]. Herein, BSBIS
attains the limit of thirty hours when considering the largest
instance SY56 that contains 200 circles. Finally, Column 6
corresponds to the augmented algorithm ADBS (that combines
BSBIS and the look-ahead strategy). Of course, increasing the

search space implies more computation time, as it is confirmed
in Table III, but ADBS is able to improve the solution quality,
as shown in Table II.

VII. CONCLUSION

This paper solves the strip packing problem using a beam
search-based heuristic which is combined with a dichotomous
interval search and a complementary partial solution, leading
to an augmented algorithm. The computational investigation
shows that the proposed algorithm is able to reach interesting
solutions for all considered instances, varying from small to
large-sized instances. The provided results highlight the im-
portance of the choice of the evaluation operator that assesses
the potential of each node in order to lead to good solutions.

REFERENCES

[1] H. Akeb, and M. Hifi, “Algorithms for the circular two-dimensional open
dimension problem,” International Transactions in Operational Research,
vol. 15, pp. 685–704, 2008.

[2] E. Baltacioglu, J.T. Moore, and R. R. Hill, “The distributor’s three-
dimensional pallet-packing problem: a human intelligence-based heuristic
approach,” International Journal of Operational Research, vol. 1, pp.
249–266, 2006.

[3] E. G. Birgin, J. M. Martinez, and D. P. Ronconi 2005, “Optimizing the
packing of cylinders into a rectangular container: A nonlinear approach,”
European Journal of Operational Research, vol. 160, pp. 19–33, 2005.

[4] E. Burke, R. Hellier, G. Kendall, and G. Whitwell, “A new bottom-left-fill
heuristic algorithm for the two-dimensional irregular packing problem,”
Operations Research, vol. 54, pp. 587–601, 2006.

[5] J. K. Cochran, and B. Ramanujam, “Carrier-mode logistics optimization
of inbound supply chains for electronics manufacturing,” International
Journal of Production Economics, vol. 103, pp. 826–840, 2006.

[6] J. A. George, J. M. George, and B. W. Lamar, “Packing different-sized
circles into a rectangular container,” European Journal of Operational
Research, vol. 84, pp. 693–712, 1995.

[7] M. Hifi, and R. M’Hallah, “A dynamic adaptive local search based algo-
rithm for the circular packing problem,” European Journal of Operational
Research, vol. 183, pp. 1280–1294, 2007.

[8] M. Hifi, and R. M’Hallah, “Approximate algorithms for constrained
circular cutting problems,” Computers and Operations Research, vol. 31,
pp. 675–694, 2004.

[9] M. Hifi, R. M’Hallah, and T. Saadi, “Beam search algorithms for
constrained two-staged two-dimensional cutting problems,” INFORMS
Journal on Computing, vol. 20, pp. 212–221, 2008.

[10] W. Q. Huang, Y. Li, H. Akeb, and C. M. Li, “Greedy algorithms for
packing unequal circles into a rectangular container,” Journal of the
Operational Research Society, vol. 56, pp. 539–548, 2005.

[11] W. Q. Huang, Y. Li, C. M. Li, and R. C. Xu, “New heuristics for packing
unequal circles into a circular container,” Computer and Operations
Research, vol. 33, pp. 2125–2142, 2006.

[12] K. H. Kim, and J. B. Kim, . “Determining load patterns for the delivery
of assembly components under JIT systems,” International Journal of
Production Economics, vol. 77, pp. 25–38, 2002.

[13] S. Menon, and L. Schrage, “Order allocation for stock cutting in the
paper industry,” Operations Research, vol. 50, pp. 324–332, 2002.

[14] P. S. Ow, and T. E. Morton, “Filtered beam search in scheduling,”
International Journal of Production Research, vol. 26, pp. 35–62, 1988.

[15] Y. G. Stoyan, and G. N. Yaskov, “Mathematical model and solution
method of optimization problem of placement of rectangles and circles
taking into account special constraints,” International Transactions in
Operational Research, vol. 5, pp. 45–57, 1998.

[16] K. Sugihara, M. Sawai, H. Sano, D. S. Kim, and D. Kim, “Disk packing
for the estimation of the size of wire bundle,” Japan Journal on Industrial
and Applied Mathematics, vol. 21, pp. 259–278, 2004.

[17] G. Wäscher, H. Haussner, and H. Schumann, “An improved typology
of cutting and packing problems,” European Journal of Operational
Research, vol. 183, pp. 1109–1130, 2007.

