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An Augmented Automatic Choosing Control
Designed by Extremizing a Combination of
Hamiltonian and Lyapunov Functions for

Nonlinear Systems with Constrained Input
Toshinori Nawata and Hitoshi Takata

Abstract— In this paper we consider a nonlinear feedback
control called augmented automatic choosing control (AACC)
for nonlinear systems with constrained input. Constant terms
which arise from sectionwise linearization of a given nonlinear
system are treated as coefficients of a stable zero dynamics.
Parameters included in the control are suboptimally selected
by extremizing a combination of Hamiltonian and Lyapunov
functions with the aid of the genetic algorithm. This approach
is applied to a field excitation control problem of power system
to demonstrate the splendidness of the AACC. Simulation
results show that the new controller can improve performance
remarkably well.

Keywords—Augmented Automatic Choosing Control, Non-
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I. INTRODUCTION

IT is generally easy to design the optimal control laws
for linear systems, but it is not so for nonlinear systems,

though they have been studied for many years[1]∼[8]. One
of the most popular and practical nonlinear control laws
is synthesized by applying the linearization method by
Taylor expansion and the linear optimal control method
to a given nonlinear system. This is only effective in a
small region around the steady state point or in almost
linear systems[1]∼[3].

As one of approaches to overcome these drawbacks,
an augmented automatic choosing control(AACC) is
proposed for nonlinear systems[8]. Moreover, in many
practical systems, there are physical constraints such as
limitation and saturations of inputs. In this paper we
consider a design method of the AACC for nonlinear
systems with constrained inputs. Its process is as follows.

Assume that a system is given by a nonlinear dif-
ferential equation. Choose a separative variable, which
makes up nonlinearity of the given system. The domain
of the variable is divided into some subdomains. On each
subdomain, the system equation is linearized by Taylor
expansion around a suitable point so that a constant
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term is included in it. This constant term is treated as a
coefficient of a stable zero dynamics. The given nonlinear
system approximately makes up a set of augmented linear
systems, to which the optimal linear control theory is
applied to get the linear quadratic (LQ) controls[2]. These
LQ controls are smoothly united by sigmoid type auto-
matic choosing functions to synthesize a single nonlinear
feedback controller, which is limited to be satisfied with
the constrained condition.

This controller is of a structure-specified type which
has some parameters, such as the number of division
of the domain, regions of the subdomains, points of
Taylor expansion, and gradients of the automatic choosing
function. These parameters must be selected optimally so
as to be just the controller’s fit. Since they lead to a
nonlinear optimization problem, we are able to solve it
by using the genetic algorithm (GA)[9] suboptimally. In
this paper the suboptimal values of these parameters are
obtained by acquiring both minimization of Hamiltonian
and maximization of a stable region in the sense of
Lyapunov.

This approach is applied to a field excitation control
problem of power system, which is Ozeki-Power-Plant of
Kyushu Electric Power Company in Japan, to demonstrate
the splendidness of the AACC. Simulation results show
that the new controller using the GA is able to improve
performance remarkably well.

II. AUGMENTED AUTOMATIC CHOOSING
CONTROL

Assume that a nonlinear system is given by

ẋ = f(x)+g(x)u, x ∈D (1)

subject to

uj,min ≤ u[j]≤ uj,max (j = 1, · · · , r) (2)

where · = d/dt, x = [x[1], · · · ,x[n]]T is an n-dimensional
state vector, u = [u[1], · · · ,u[r]]T is an r-dimensional con-
trol input vector, f(x) : D → Rn is a nonlinear vector-
valued function with f(0) = 0 and is continuously differ-
entiable, g(x) : D→Rn×r is a driving matrix with g(0) 6= 0
and is continuously differentiable, uj,min : the minimum
value of u[j], uj,max : the maximum value of u[j], D⊂Rn

is a domain , and T denotes transpose.
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Considering the nonlinearity of the system (1), in-
troduce a vector-valued function C : D → RL which
defines the separative variables {Cj(x)}, where C =
[C1 · · ·Cj · · ·CL]T is continuously differentiable. Let D be
a domain of C−1. For example, if x[2] is the element which
has the highest nonlinearity of (1), then

C(x) = x[2] ∈D ⊂R (L = 1)

(see Section 4). The domain D is divided into some
subdomains: D = ∪M

i=0Di, where DM = D−∪M−1
i=0 Di and

C−1(D0)3 0. Di(0≤ i≤M) endowed with a lexicographic
order is the Cartesian product Di = ΠL

j=1[aij , bij ], where
aij < bij .

Introduce a stable zero dynamics :

ẋ[n+1] =−σix[n+1] (3)

(x[n+1](0)' 1, 0 < σi < 1),

where the value of σi shall be selected so that σi =−ẋ[n+
1]/x[n+1]≤−ẋ[k]/x[k] holds for all k(k = 1, · · · ,n). This
tries to keep x[n+1]' 1 for a good while when the system
(1) is not on C−1(D0) (see Appendix).

Combine (1) with (3) to form an augmented system

Ẋ = f̄(X)+ ḡ(X)u (4)

where

X =
[

x
x[n+1]

]
∈D×R

f̄(X) =
[

f(x)
−σix[n+1]

]
, ḡ(X) =

[
g(x)

0

]
.

Let a cost function be

J =
1
2

∫ ∞

0

(
XT QX+uT Ru

)
dt (5)

where

Q =
[

Q 0
0 q

]
, R 3 q > 0,

Q = QT > 0 and R = RT > 0 which denote positive
symmetrix matrices. Values of Q and R are properly
determined based on engineering experience.

On each Di, the nonlinear system is linearized by the
Taylor expansion truncated at the first order about a point
X̂i ∈ C−1(Di) and X̂0 = 0 (see Fig. 1):

f(x)+g(x)u ' Aix+wi +Biu

' Aix+wix[n+1]+Biu (6)

where

Ai = ∂f(x)/∂xT |x=X̂i
, Bi = g(X̂i),

w0 = 0 , wi = f(X̂i)−AiX̂i.

That is, an approximation of (4) is

Ẋ = ĀiX+ B̄iu on C−1(Di)×R (7)

where

Āi =
[

Ai wi

0 −σi

]
, B̄i =

[
Bi

0

]
.

An application of the linear optimal control theory[2]
to (5) and (7) yields

ui(X) = FiX (8)

Fi =−R−1B̄T
i Pi (9)

where the (n+1)× (n+1) matrix Pi satisfies the Riccati
equation :

PiĀi + ĀT
i Pi +Q−PiB̄iR−1B̄T

i Pi = 0. (10)

Introduce an automatic choosing function of sigmoid
type:

Ii(x) =
L∏

j=1

{
1− 1

1+exp(2N1 (Cj(x)−aij))

− 1
1+exp(−2N1 (Cj(x)− bij))

}
(11)

where N1 is positive real value, −∞ ≤ aij and bij ≤∞.
Ii(x) is analytic and almost unity on C−1(Di), otherwise
almost zero(see Fig. 2).

Expansion
point

D0 DM

f(x)

xX0 XM
^

D1

^X̂1

f(x)

A1x+w1

AMx+wMA0x

0

Fig. 1Sectionwize linearization

aij bij aij bij

N1=3.0 N1=6.00.5

1

Fig. 2Automatic Choosing Function(N1=3.0,6.0)

Uniting {ui(X)} of (8) with {Ii(x)} of (11) yields

û(X) = [û(X)[1], · · · , û(X)[j], · · · , û(X)[r]]T

=
M∑

i=0

ui(X)Ii(x).

We finally have an augmented automatic choosing
control which is satisfied with the constraint condition
(2) by

u(X) = [u(X)[1], · · · ,u(X)[j], · · · ,u(X)[r]]T (12)
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where

u(X)[j] =





uj,max if û(X)[j]≥ uj,max

uj,min if û(X)[j]≤ uj,min

û(X)[j] otherwise

(1≤ j ≤ r).

III. PARAMETER SELECTION

The Hamiltonian for Eqs.(4) and (5) is given by

H(X,u,λ) =
1
2

(
XT QX+uT Ru

)

+λT
(
f̄(X)+ ḡ(X)u

)
. (13)

Assume that the adjoint vector λ(X) ∈Rn+1 is defined
by

λ(X) = [λI(X)T ,λII(X)T ]T (14)

where λI(X) = [λ[1], · · · ,λ[r]]T =−(GT (x))−1Ru(X),
λII(X) = [λ[r +1], · · · ,λ[n+1]]T = [0,E]λ̂,

λ̂ =
M∑

i=0

{(B̄i− ḡ(X))ḡ(X)†+E}T PiXIi(x) ∈Rn+1,

ḡ(X)†ḡ(X) = E, E is an appropriate-dimentional unit
matrix, and † denotes pseudo inverse.

There are two necessary conditions of the optimal-
ity. One of them is ∂H/∂u = 0 or u = −R−1ḡ(X)T λ =
−R−1GT (x)λI(X) , which is satisfied with Eq.(12) from
Eq.(14). By it, Eq.(13) becomes

H(X,u,λ) =
1
2
XT QX− 1

2
uT Ru+ f̄T (X)λ. (15)

The other one is λ̇ =−∂H/∂X.
Next, introduce a Lyapunov function candidate:

V (X) = XT Π(X)X (16)

where

Π(X) =
M∑

i=0

PiΠi(x) ,

Πi(x) = ηi

L∏

j=1

{
1− 1

1+exp(2N2 (Cj(x)−aij))

− 1
1+exp(−2N2 (Cj(x)− bij))

}
, (17)

N2 and ηi are positive real values.
By the Lyapunov’s direct method[3], the equilibrium

point 0 is uniformly stable on a connected set:

DV =
{

x ∈D : V (X) < γ, V̇ (X) < 0
}

where
γ = inf

{
V (X) : X 6= 0, V̇ (X) = 0

}
. (18)

In order to design the optimal control by Hamiltonian
and expand the stable region in the sense of Lyapunov as
wide as possible, we define a performance

PI = ω1

∫

D

|H(X,u,λ)|/XT XdX

+ω2

∫

D

∥∥∥λ̇+∂H(X,u,λ)/∂X
∥∥∥/XT XdX

−ω3 ·γ,

(19)

where ωi(ωi ≥ 0; i = 1,2,3) are weights.
A set of parameters included in the control (12):

Ω̄ =
{

M,N1,N2,aij , bij , X̂i,ηi

}

is suboptimally selected by minimizing PI with the aid of
GA[9] as follows.

<ALGORITHM>
step1:Apriori: Set values Ω̄apriori appropriately.

step2:Parameter: Choose a subset Ω⊂ Ω̄ to be improved
and rewrite it by Ω = {M,N1, ··}= {αk : k = 1, ··,K}.

step3:Coding: Represent each αk with a binary bit string
of L̃ bits and then arrange them into one string of L̃K
bits.

step4:Initialization: Randomly generate an initial
population of q̃ strings {Ωp : p = 1, ··, q̃}.

step5:Decoding: Decode each element αk of Ωp by
αk = (αk,max−αk,min)Ak/

(
2L̃−1

)
+αk,min,

where αk,max:maximum, αk,min:minimum, and Ak:
decimal values of αk.

step6:Adjoint: Make λ = λ(X)p (p = 1, ··, q̃) for Ωp by
using Eq.(14).

step7:Fitness value calculation: Calculate PIp by Eqs.(15)
and (19), or fitness Fp =−PIp. Integration of PIp is
approximated by a finite sum.

step8:Reproduction: Reproduce each of individual strings
with the probability of Fp/

∑q̃
j=1 Fj .

step9:Crossover: Pick up two strings and exchange them
at a crossing position by a crossover probability Pc.

step10:Mutation: Alter a bit of string (0 or 1) by a
mutation probability Pm.

step11:Repetition: Repeat step5∼step10 until prespecified
G̃-th generation. If unsatisfied, go to step2.

As a result, we have a suboptimal control u(X) for
the string with the best performance over all the past
generations.

IV. NUMERICAL EXAMPLE

Consider a field excitation control problem of power
system. Fig. 3 is a diagram of Ozeki-Power-Plant of
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Kyushu Electric Power Company in Japan. This system
is assumed to be described[5][6][8] by

M̃
d2δ

dt2
+ D̃(δ)

dδ

dt
+Pe(δ) = Pin

Pe(δ) = E2
I Y11 cosθ11 +EI Ṽ Y12 cos(θ12− δ)

EI +T ′d0

dE′
q

dt
= Efd

EI = E′
q +(Xd−X ′

d)Id(δ)

Id(δ) =−EIY11 sinθ11− Ṽ Y12 sin(θ12− δ)

D̃(δ)=Ṽ 2

{
T ′′d0(X

′
d−X ′′

d )
(X ′

d +Xe)2
sin2δ

+
T ′′q0(Xq−X ′′

q )
(Xq +Xe)2

cos2δ
}

,

where δ: phase angle, δ̇: rotor speed, M̃ : inertia coefficient,
D̃(δ): damping coefficient, Pin: mechanical input power,
Pe(δ): generator output power, Ṽ : reference bus voltage,
EI : open circuit voltage, Efd: field excitation voltage,
Xd: direct axis synchronous reactance, X ′

d: direct axis
transient reactance, Xe: external impedance, Y11 6 θ11: self-
admittance of the network, Y12 6 θ12: mutual admittance
of the network, and Id(δ): direct axis current of the
machine. Put x=[x[1],x[2],x[3]]T =[EI− ÊI , δ− δ̂0, δ̇]T and
u = Efd− Êfd, so that




ẋ[1]
ẋ[2]
ẋ[3]


 =




f1(x)
f2(x)
f3(x)


+




g1(x)
0
0


u (20)

where

f1(x) = − 1
kT ′d0

(
x[1]+ ÊI

)

+
(Xd−X ′

d)Ṽ Y12

k
x[3]cos

(
θ12−x[2]− δ̂0

)

f2(x) = x[3]

f3(x) = − Ṽ Y12

M̃

(
x[1]+ ÊI

)
cos

(
θ12−x[2]− δ̂0

)

−Y11cosθ11

M̃

(
x[1]+ÊI

)2

−D̃(x)

M̃
x[3]+

Pin

M̃

D̃(x) = Ṽ 2

{
T ′′d0(X

′
d−X ′′

d )
(X ′

d +Xe)2
sin2

(
x[2]+ δ̂0

)

+
T ′′q0(Xq−X ′′

q )
(Xq +Xe)2

cos2
(
x[2]+ δ̂0

)}

g1(x) =
1

kT ′d0

, k = 1+(Xd−X ′
d)Y11 sinθ11.

Assume that the constrained input is subject to

umin + Êfd ≤ Efd ≤ umax + Êfd.

Parameters are

M̃ = 0.016095[pu] T ′d0 = 5.09907[sec]
Ṽ = 1.0[pu] Pin = 1.2[pu]
Xd = 0.875[pu] X ′

d = 0.422[pu]
Y11 = 1.04276[pu] Y12 = 1.03084[pu]
θ11 = −1.56495[pu] θ12 = 1.56189[pu]
Xe = 1.15[pu] X ′′

d = 0.238[pu]
Xq = 0.6[pu] X ′′

q = 0.3[pu]
T ′′d0 = 0.0299[pu] T ′′q0 = 0.02616[pu].

Steady state values are

ÊI = 1.52243[pu] δ̂0 = 48.57◦
ˆ̇
δ0 = 0.0[deg/sec] Êfd = 1.52243[pu].

Fig. 3 Diagram of Ozeki-Power-Plant

Set X = [xT ,x[4]]T = [x[1],x[2],x[3],x[4]]T , n = 3, X̂0 =
δ̂0 = 48.57◦, C(x)=x[2], L = 1, Q=diag(1,1,1,1), R=1,
ω1 = ω2 = 1, P̃ = I and x[4](0) = 1, where I is (n+1)×(n+
1) unit matrix. Experiments are carried out for the new
control(AACC), the automatic choosing control(ACC)[6],
and the ordinary linear optimal control(LOC)[1][2].

1) AACC(ω3 = 10):
We experiment a case of ω3 = 10 and the unknown

parameter subset Ω={M,N1,N2,aij , bij , X̂i,ηi}. To reduce
the overwork of computers, we select the Taylor expansion
points {X̂i} from among candidates {X̂k : k = 1, · · · ,26}
which are prepared from 55◦ to 180◦ at intervals of
5◦. Put X̂0 = 48.57◦, a0 = −∞ and bM = ∞. Set σ0 =
σ1 = · · · = σ26 = 0.3262 at (3) because min{σim : 0 ≤ i ≤
26}= 0.3262 using Appendix. The parameters are subop-
timally selected along the algorithm of section 3, where
G̃=100, q̃=100, L̃=8, Pc=0.8, Pm=0.03. D=[-0.5,0.5]×[-
0.2,0.5]×[-2,2]×[0,1.0]. The constrained input value is
umax = −umin = 0.5. As a result, we have that M = 3,
N1 = 4.91, N2 = 1.21, a1 = b0 = 54.1◦ , a2 = b1 = 113.0◦,
a3 = b2 = 171.7◦, X̂1 = 55◦, X̂2 = 145◦, X̂3 = 180◦ and
η1 = η2 = η3 = 1.11.

2) AACC(ω3 = 100):
The parameters are suboptimally selected by using a

similar way of the AACC(ω3 = 10) under ω3 = 100. As a
result, we have that M = 2, N1 = 4.76, N2 = 2.94, a1 =
b0 = 53.3◦ , a2 = b1 = 90.3◦, X̂1 = 70◦, X̂2 = 115◦ and
η1 = η2 = 1.44.

3) AACC(ω2 = 0):
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The parameters are suboptimally selected by using a
similar way of the AACC(ω3 = 10) under ω2 = 0, which
does not include the differential coefficient of the adjoint
vector in Eq.(14). As a result, we have that M = 3, N1 =
7.18, N2 = 1.56, a1 = b0 = 53.5◦ , a2 = b1 = 147.5◦, a3 =
b2 = 177.8◦, X̂1 = 60◦, X̂2 = 175◦, X̂3 = 180◦ and η1 = η2 =
η3 = 2.82

4) ACC:
The parameters are suboptimally selected by using a

similar way of the AACC(ω3 = 0) under the same condition
as it when Ω={M,N,aij , bij , X̂i}. As a result, we have that
M = 1, N = 7.0, a1 = b0 = 64.8◦ and X̂1 = 75◦.

Table1 shows performances by the AACC, the ACC and
the LOC. The cost function of Table1 is

J̃ =
1
2

∫ 20

0

(
XT QX+uT Ru

)
dt.

Figs. 4 and 5 show the responses in case of xT (0) =
[0,1.4,0]. Figs. 6 and 7 show the responses in case
of xT (0) = [0,1.446,0]. These results indicate that the
AACC(ω3 = 10,100) with constraint input is better than
the AACC(ω2 = 0), ACC and LOC.

V. CONCLUSIONS

We have studied an augmented automatic choosing
control using zero dynamics for nonlinear systems with
constrained input. This approach have been applied to a
field excitation control problem of power system. Simula-
tion results have shown that the new controller is able to
improve performance remarkably well. The followings are
left for the future works: problem of optimum selection of
σi and ωi, application to more complicated systems such
as multi-machines power systems[7].
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Appendix

In the AACC, we make a linear approximation system
in (6) : f(x)'Aix+wix[n+1] by using an approximation
of Taylor expansion: f(x)'Aix+wi.
Thus we would like to keep x[n+1]' 1, namely x[n+1]∈
R (x[n+1](0)' 1) changes slower than the state vector
x ∈ Rn on C−1(Di) ⊂ D(i 6= 0). Whenever x ∈ Rn enters
into C−1(D0) which has the steady state point, this AACC
almost becomes the ordinary LQ control. That is, stay
x[n+1]' 1 for a good while except on C−1(D0). We shall
show how to do it.
Substituting (8) into (7) yields

Ẋ =
(
Āi− B̄iR−1B̄T

i Pi

)
X. (21)

Assume the controllability of the linear feedback system
described by (21). We define λik(0≤ i≤M,1≤ k ≤ n+1)
being eigenvalues of

(
Āi− B̄iR−1B̄T

i Pi

)
:

∣∣(Āi− B̄iR−1B̄T
i Pi

)−λikI
∣∣

=
∣∣∣∣

(
Ai−BiR−1BT

i Pi

)−λikI wi

0 −σi−λik

∣∣∣∣
= (−σi−λik)

∣∣(Ai−BiR−1BT
i Pi

)−λikI
∣∣

= 0 (22)

where | · | denotes determinant, and Pi = PT
i > 0 is

a solution of the Riccati equation: PiAi + AT
i Pi + Q−

PiBiR−1BT
i Pi = 0.

The asymptotically stable condition of (21) is

Re(λik) < 0 or Re(−λik) > 0 for all λik

where Re(·) denotes the real part.
Define σim as the minimal value of {Re(−λik)} for

(Ai−BiR−1BT
i Pi) by σim = minRe{−λik : 1≤ k ≤ n}.

That is, these {λik} are the solusion of∣∣(Ai−BiR−1BT
i Pi)−λikI

∣∣ = 0 from (22).
We should be able to select σi of (3) from σi ∈ (0,σim]⊂R
properly.
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TABLE I

PERFORMANCES

xT(0) : initial point
Method [0,0.6,0] [0,0.65,0] [0,1.0,0] [0,1.4,0] [0,1.446,0]

LOC 2.587 × × × ×
ACC 2.096 2.388 × × ×

AACC(ω2 = 0) 1.991 2.172 2.703 × ×
AACC(ω3 = 10) 1.995 2.178 2.663 3.096 ×
AACC(ω3 = 100) 1.997 2.182 2.705 3.050 4.988

× : very large value
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ir
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AACC(w2=0)
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2

Fig. 4 Responses of LOC,ACC,AACC(ω2 = 0)(
xT (0) = [0,1.4,0]

)

x[
1]

[p
u]

 : 
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Fig. 5 Responses of AACC(ω3 = 10,100)(
xT (0) = [0,1.4,0]
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Fig. 6 Response of AACC(ω3 = 10)(
xT (0) = [0,1.446,0]
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Fig. 7 Response of AACC(ω3 = 100)(
xT (0) = [0,1.446,0]
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