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An asymptotic solution for the free boundary
parabolic equations

Hsuan-Ku Liu and Ming Long Liu

Abstract—In this paper, we investigate the solution of a two
dimensional parabolic free boundary problem. The free boundary of
this problem is modelled as a nonlinear integral equation (IE). For
this integral equation, we propose an asymptotic solution as time
is near to maturity and develop an integral iterative method. The
computational results reveal that our asymptotic solution is very close
to the numerical solution as time is near to maturity.
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I. INTRODUCTION

IN this paper, we shall study the solutions
(P (S1, S2, t), X(t)) for the free boundary problem

(FBP) of parabolic equations as follows:

Pt + LP = 0, 0 <
S1

S2
< X(t), (1)

P (S1, S2, t) = S1 − S2, X(t) ≤ S1

S2
, (2)

P (S1, S2, T ) = (S1 − S2)
+, t = T (3)

P (0, S2, t) = 0, 0 < S2 < ∞, 0 < t < T, (4)

P (S1, 0, t) = S1, 0 < S1 < ∞, 0 < t < T, (5)

PS1(S1, S2, t) = 1,
S1

S2
= X(t), (6)

PS2(S1, S2, t) = −1,
S1

S2
= X(t). (7)

More pricisely, we transform the FBP into an integral equation
(IE) of X and provide an asymptotic solution and a numerical
method for the IE.

To derive the IE, we combine (1) and (2) and get

Pt + LP =

{
0, 0 < S1 < X(t)S2,

q1S1 − q2S2, S1 ≥ X(t)S2.

The solution of this inhomogeneous linear parabolic equation
with the final condition (3) is given as

P (S1, S2, τ) = p(S1, S2, τ) + S1e
−q1τ

∫ τ

0
q1e

q1sN(a3

σ )ds

−S2e
−q2τ

∫ τ

0
q2e

q2sN(a4

σ )ds,
(8)

H.-K. Liu, Department of Mathematics and Information Education,
National Taipei University of Education, Taiwan, Tel: 886-2-27321104
ext. 2321, Fax: 886-2-27373549 e-mail:HKLiu.nccu@gmail.com; M.-L.
Liu, Department of Mathematical Sciences, National Chengchi University;
email:mlliu@nccu.edu.tw

where τ = T − t and

a1 = 1√
τ
(log S1

S2
+ 1

2 (σ
2 − 2q1 + 2q2)τ),

a2 = 1√
τ
(log S1

S2
− 1

2 (σ
2 + 2q1 − 2q2)τ),

a3 = 1√
τ−s

(log S1

S2X(T−s) +
1
2 (σ

2 − 2q1 + 2q2)(τ − s)),

a4 = 1√
τ−s

(log S1

S2X(T−s) − 1
2 (σ

2 + 2q1 − 2q2)(τ − s)).

Let S1

S2
= X(T − τ). By imposing the boundary condition

(2) into (8), an implicit representation of the free boundary is
obtained as follows:

X(T − τ)− 1 = X(T − τ)e−q1τN( â1

σ )− e−q2τN( â2

σ )

+X(T − τ)e−q1τ
∫ τ

0 q1e
q1sN( â3

σ )ds

−e−q2τ
∫ τ

0 q2e
q2sN( â4

σ )ds,
(9)

where

â1 = 1√
τ
(logX(T − τ) + 1

2 (σ
2 − 2q1 + 2q2)τ),

â2 = 1√
τ
(logX(T − τ)− 1

2 (σ
2 + 2q1 − 2q2)τ),

â3 = 1√
τ−s

(log X(T−τ)
X(T−s) +

1
2 (σ

2 − 2q1 + 2q2)(τ − s)),

â4 = 1√
τ−s

(log X(T−τ)
X(T−s) − 1

2 (σ
2 + 2q1 − 2q2)(τ − s)).

In this paper we provide an asymptotic solution for the free
boundary of (1)-(7). The asymptotic solution is compared to
the numerical solution. The computational results reveal that
our approximation is close to the numerical results as time
near to maturity.

When q1 = q1 = 0, Margrabe [10] showed that the
FBP can be ragraded as a parabolic boundary value problem.
When the expiration date tends to infinity, the closed form
solution is obtained by [7]. For the numerical methods, Carr
[1] generalized the Gesker-Johnson approach [3] to find the
solution of P . Longstaff and Schwartz [9] and Rogers [12]
use least squares Monte Carlo to find the solution of the FBP
numerically.

This paper is organized as follows. S ection 2 provides an
FBP for the AEO valuation model. In section 3, an IE is
provided for the free boundary of this FBP. We propose an
asymptotic solution of this IE as the remaining time near to
maturity in section 4. In order to compare with our asymptotic
solution, a numerical method is provided in section 5. Finally,
the conclusions and comments are in section 6.

II. THE FORMULATION OF AEO

Let Si, σ2
i be the underlying asset price of the i-th asset and

the variance of the rate of return on the i-th asset, i = 1, 2.
Let T and P be the maturity time and the pricing function
of the American exchange option on the assets S1 and S2,



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:7, 2011

1064

respectively. Following Black and Scholes’ assumption, we
assume a perfect market, a constant volatilities σi, and the
continuous dividend rate qi of the asset i, respectively. We set
current time to be zero.

Under the risk neutral probability measure, the stochastic
processes for the asset price changes are assumed to be

dSi

Si
= (r − qi)dt+ σidwi, i = 1, 2

where r is the constant risk-free interest rate and dw1 and
dw2 are the differential of a Wiener processes with correlation
corr(dw1, dw2) = ρdt.

The terminal payoff of the European exchange option (EEO)
is given by

V (S1, S2, T ) = max(S1 − S2, 0), (10)

and V (S1, S2, t) denotes the value of EEO at the time t. As
the suggestion of Margrabe [10], the value of EEO satisfies
the linear homogeneous property in S1 and S2, that is

V (λS1, λS2, t) = λV (S1, S2, t).

We apply Euler Theorem to the function V (S1, S2, t) and
obtain the following equation:

V − S1
∂V

∂S1
− S2

∂V

∂S2
= 0. (11)

This means that the portfolio of holding ∂V
∂Si

units of asset
i, i = 1, 2 becomes a replication of EEO.

By applying Itô Lemma to (11) and considering the instan-
taneously return with the dividends rate of both the assets, we
obtain the following pricing equation

Vt + L0V = 0, t < T, (12)

where the operator L0 is defined as

L0V = 1
2σ

2
1S

2
1VS1S1 + ρσ1σ2S1S2VS1S2

+ 1
2σ

2
2S

2
2VS2S2 − q1S1VS1 − q2S2VS2 .

If assets S1 and S2 both do not pay dividends, the value for
American options are the same as the corresponding European
option, which was discussed by Margrabe [10].

Now, we consider the case of that one of the assets pays
the continuous dividends. Since the American option can be
exercised at any time t < T , the value P (S1, S2, t) of AEO
must satisfy the following condition:

P (S1, S2, t) ≥ max(S1 − S2, 0)

for all t ≥ 0. This is because that if P < max(S1−S2, 0), we
can purchase an AEO and one unit of asset two in the market
at the same time; then we exercise this AEO immediately. This
portfolio produces an arbitrage possibility and make a riskless
profit S1−S2−P which is positive. Thus, at any given time t,
we separate the (S1, S2)-plane into two distinct regions, one
is optimal to exercise prematurity S(t) and the other is C(t),
where

S(t) = {(S1, S2, t) ∈ R+×R+×[0, T ]|P (S1, S2, t) ≤ S1−S2},
C(t) = {(S1, S2, t) ∈ R+×R+×[0, T ]|P (S1, S2, t) > S1−S2}.

Here R+ denotes the set of all nonnegative real numbers.
Let X(t) be defined as follows:

X(t) = inf{S1

S2
|(S1, S2, t) ∈ S(t)}.

Then we have

P (S1, S2, t) = S1 − S2, for
S1

S2
> X(t) (13)

and

P (S1, S2, t) > max(S1 − S2, 0), for
S1

S2
≤ X(t).

The function X(t) is called the early exercise ratio of the
assets S1 and S2 at time t.

The portfolio consists of longing one unit of AEO, shorting
∂P
∂S1

units of asset one and shorting ∂P
∂S2

units of asset two,
that is

P − ∂P

∂S1
S1 − ∂P

∂S2
S2

and the value of AEO is equal to S1 − S2 when the AEO is
exercised. According to the argument of no arbitrage, we need
the following two conditions

∂P

∂S1
= 1 and

∂P

∂S2
= −1. (14)

Condition (14) is commonly called the high contact conditions,
so named because conditions (13) and (14), respectively,
indicate that P (S1, S2, t), ∂P

∂S1
(S1, S2, t) and ∂P

∂S2
(S1, S2, t)

are continuous across the optimal exercise boundary.
Thus, the value P (S1, S2, t) of an AEO together with the

early exercise ratio x(t) are the solution of the following free
boundary problem (1)-(7). The value of the alive AEO is an
increasing function of S1, a decreasing function of S2 and of
t.

III. THE INTEGRAL EQUATION

It is convenience to define new independent variables y1,
y2 and τ as follows:

yi =
−1

σi
(qi +

1

2
σ2
i )τ +

1

σi
log(Si), i = 1, 2,

τ = T − t.

The original pricing formula (1)-(2) can be rewritten in the
following dimensionless form:

∂p
∂τ = L1p, y1 − σ2

σ1
y2 ≤ x(τ), 0 < τ < T,

p(y1, y2, 0) = (eσ1y1 − eσ2y2)+, τ = 0,

p(y1, y2, τ) = e(q1+
1
2σ

2
1)τ+σ1y1 − e(q2+

1
2σ

2
2)τ+σ2y2 ,

y1 − σ2

σ1
y2 = x(τ), 0 < τ < T,

where (x− y)+ = max(x− y, 0) and

L1p =
1

2
(
∂2

∂y21
+ 2ρ

∂2

∂y1∂y2
+

∂2

∂y22
)p.

Under this transformation, the relation between X(t) and
x(τ) is defined by

x(τ) =
1

σ1
(log(X(T − τ))+(q2+

1

2
σ2
2 − q1− 1

2
σ2
1)τ). (15)
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To solve this problem we convert equations (III)-(III) to a
non-homogeneous equation by imposing (III) into (III), then
we have

pτ − L1p =

⎧⎪⎪⎨
⎪⎪⎩

0, if y1 − σ2

σ1
y2 ≤ x(τ)

q1e
(q1+

1
2σ

2
1)τ+σ1y1 − q2e

(q2+
1
2σ

2
2)τ+σ2y2 ,

if y1 − σ2

σ1
y2 ≥ x(τ).

(16)
By introducing the Green’s function φ(x, y, τ) for (16) yields

φ(y1, y2, τ ; ξ1, ξ2, s)

= 1
2π(τ−s)

1√
1−ρ2

exp(− (y1−ξ1)
2−2ρ(y1−ξ1)(y2−ξ2)+(y2−ξ2)

2

2(1−ρ2)(τ−s) ).

Applying Green’s function to p(x, y, τ) as well as the
fact that φ is in a domain bounded by the optimal exercise
boundary and the line τ = 0, we obtain

p(y1, y2, τ)

=
∫∞
−∞

∫∞
σ2
σ1

ξ1
eσ1ξ1φ(y1, y2, τ ; ξ1, ξ2, 0)dξ1dξ2

− ∫∞
−∞

∫∞
σ2
σ1

ξ1
eσ2ξ2φ(y1, y2, τ ; ξ1, ξ2, 0)dξ1dξ2

+
∫ τ

0

∫∞
−∞

∫∞
σ2
σ1

ξ1+x(s) q1e
σ1ξ1φ(y1, y2, τ ; ξ1, ξ2, s)dξ1dξ2ds

− ∫ τ

0

∫∞
−∞

∫∞
σ2
σ1

ξ1+x(s)
q2e

σ2ξ2φ(y1, y2, τ ; ξ1, ξ2, s)dξ1dξ2ds

= I(1) − I(2) + I(3) − I(4).
(17)

If the values of q1 and q2 are both equal to zero; that is, there
is no dividends on the underlying assets, then the integral I(3)

and I(4) contribute nothing. So the early exercise premium of
the AEO equal to zero. This means that the value of the AEO
which is written on the no dividend paying assets is the same
as the European counterpart.

By letting
√
τu1−σ1τ = y1−ξ1 and

√
τu2−ρσ1τ = y2−ξ2

in I(1),
√
τu1 − ρσ2τ = y1 − ξ1 and

√
τu2 − σ2τ = y2 − ξ2

in I(2),
√
τ − su1 − σ1(τ − s) = y1 − ξ1 and

√
τ − su2 −

ρσ1(τ − s) = y2 − ξ2 in I(3) and
√
τ − su1 − ρσ2(τ − s) =

y1 − ξ1 and
√
τ − su2 − σ2(τ − s) = y2 − ξ2 in I(4), the

integrals I(1)-I(4) can be written as the following equations

I(1) = e(σ1y1+
1
2σ

2
1τ)

∫∞
−∞

∫ a1+bu2

−∞ ϕ(u1, u2)du1du2,

I(2) = e(σ2y2+
1
2σ

2
2τ)

∫∞
−∞

∫ a2+bu2

−∞ ϕ(u1, u2)du1du2,

I(3) = e(σ1y1+
1
2σ

2
1τ)

∫ τ

0 q1e
q1s

∫∞
−∞

∫ a3+bu2

−∞ ϕ(u1, u2)du1du2ds,

I(4) = e(σ2y2+
1
2σ

2
2τ)

∫ τ

0
q2e

q2s
∫∞
−∞

∫ a4+bu2

−∞ ϕ(u1, u2)du1du2ds,

where

a1 = 1
σ1

√
τ
(σ1y1 − σ2

σ1
y2 + (σ2

1 − ρσ1σ2)τ),

a2 = 1
σ1

√
τ
(σ1y1 − σ2

σ1
y2 + (ρσ1σ2 − σ2

2)τ),

a3 = 1
σ1

√
τ−s

(σ1y1 − σ2

σ1
y2 + (σ2

1 − ρσ1σ2)(τ − s)− σ1x(s)),

a4 = 1
σ1

√
τ−s

(σ1y1 − σ2

σ1
y2 + (ρσ1σ2 − σ2

2)(τ − s)− σ1x(s)),

σ2 = σ2
1 − 2ρσ1σ2 + σ2

2 ,

and the function ϕ(u1, u2) is defined as

ϕ(u1, u2) =
1

2π

1√
1− ρ2

exp(−u2
1 − 2ρu1u2 + u2

2

2(1− ρ2)
),

which is the probability density function of the standard
bivariate normal distribution with covariant correlation ρ.

In order to reducing the double integrals in I(1)-I(4) into
single integrals, we first derive the following identity.

∫∞
−∞

∫ a+
σ2u2
σ1

−∞
1

2π
√

1−ρ2
ϕ(u1, u2)du1du2

=
∫∞
−∞

∫ a

−∞
1

2π
√

1−ρ2
e−

σ2
1v21
σ2 e

− σ2

2σ2
1(1−ρ2)

(v2+σ1σ2−σ1ρ

σ2 v1)
2

dv2dv1

=
∫ a

−∞
1√
2π

e−
(σ1v1)2

2σ2 σ
σ1

∫∞
−∞

1√
2π

e−
w2

2 dwdv1

=
∫ aσ1

σ

−∞
1√
2π

e−
v2

2 dv = N(aσ1

σ ).

Here v1 = u1−bu2, v2 = u2 and the function N(x) is known
as the distribution of the cumulative normal distribution.

Thus the double integrals in I(1)-I(4) can be converted to
the following single integrals:

I(1) = e(σ1y1+
1
2σ

2
1τ)N(σ1a1(y1,y2,τ)

σ ),

I(2) = e(σ2y2+
1
2σ

2
2τ)N(σ1a2(y1,y2,τ)

σ ),

I(3) = e(σ1y1+
1
2σ

2
1τ)

∫ π

0 q1e
q1sN(σ1a3(y1,y2,τ,s,x(s))

σ )ds,

I(4) = e(σ2y2+
1
2σ

2
2τ)

∫ π

0
q2e

q2sN(σ1a4(y1,y2,τ,s,x(s))
σ )ds.

Following the above transformation, a simple representation
of the price of AEO is obtained as follows:

p(y1, y2, τ)

= e(σ1y1+
1
2σ

2
1τ)N(σ1a1(y1,y2,τ)

σ )

−e(σ2y2+
1
2σ

2
2τ)N(σ1a2(y1,y2,τ)

σ )

+e(σ1y1+
1
2σ

2
1τ)

∫ π

0 q1e
q1sN(σ1a3(y1,y2,τ,s,x(s))

σ )ds

−e(σ2y2+
1
2σ

2
2τ)

∫ π

0
q2e

q2sN(σ1a4(y1,y2,τ,s,x(s))
σ )ds.

(18)

If the value of S1

S2
reach the early exercise ratio at the first

time, that is S1

S2
= X(T − τ) or σ1y1 − σ2y2 = σx(τ), it

is optimal to exercise this AEO. By imposing the boundary
condition (III) into (18), we obtain an implicit representation
of the early exercise ratio as follows:

e(q1+
1
2σ

2
1)τ+σ1x(τ) − e(q2+

1
2σ

2
2)τ

= eσ1x(τ)+
1
2σ

2
1τN(a1

σ )− e
1
2σ

2
2τN(a2

σ )

+eσ1x(τ)+
1
2σ

2
1τ

∫ τ

0 q1e
q1sN(a3

σ )ds

−e
1
2σ

2
2τ

∫ τ

0
q2e

q2sN(a4

σ )ds,

(19)

where

ā1 = 1√
τ
(x(τ) + (σ2

1 − ρσ1σ2)τ),

ā2 = 1√
τ
(x(τ) + (ρσ1σ2 − σ2

2)τ),

ā3 = 1√
τ−s

(x(τ) + (σ2
1 − ρσ1σ2)(τ − s)− x(s)),

ā4 = 1√
τ−s

(x(τ) + (ρσ1σ2 − σ2
2)(τ − s)− x(s)).

By using the relation of (15), we replace x(τ) by X(τ)
obtaining the following equation

X(T − τ)− 1 = X(T − τ)e−q1τN( â1

σ )− e−q2τN( â2

σ )

+X(T − τ)e−q1τ
∫ τ

0
q1e

q1sN( â3

σ )ds

−e−q2τ
∫ τ

0
q2e

q2sN( â4

σ )ds,
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where

â1 = 1√
τ
(logX(T − τ) + 1

2 (σ
2 − 2q1 + 2q2)τ),

â2 = 1√
τ
(logX(T − τ) − 1

2 (σ
2 + 2q1 − 2q2)τ),

â3 = 1√
τ−s

(log X(T−τ)
X(T−s) +

1
2 (σ

2 − 2q1 + 2q2)(τ − s)),

â4 = 1√
τ−s

(log X(T−τ)
X(T−s) − 1

2 (σ
2 + 2q1 − 2q2)(τ − s)).

IV. AN ASYMPTOTIC SOLUTION OF FINITE-LIVED AEO

Unfortunately, the explicit solution of (9) is not easy to
obtain when the maturity date T is finite. In this section we
will apply the properties of the complementary error function
to provide an asymptotic solution for (9).

Let erfc(x) denotes the complementary error function, i.e.

erfc(x) =
2√
π

∫ ∞

x

e−t2dt.

The relation between error function and normal distribution
function is

N(x) = 1− 1

2
erfc(

x√
2
). (20)

By using the Taylor expansion and integration by parts, the
complementary error function is asymptotic to

erfc(x) =
e−x2

√
πx

(1− 1

2x2
+− · · · ) ∼ e−x2

√
πx

, as x → ∞. (21)

In this section, we will replace N(x) in terms of erfc( x√
2
)

and provide an asymptotic solution for the early exercise ratio
X(T − τ) as the remaining time near to zero.

Before deriving the asymptotic expression of X(T −τ), we
address the following lemma which has been provided in [2].

Lemma 1: Let B(z, τ) be a monotone decreasing function
of z on [0, 1]. Suppose that there is a z0 ∈ [0, 1] such that
B(z0, τ) = 0 for all τ and that B2(z, τ) → ∞ for all z 	= z0
as τ → 0. Then, as τ is near to 0, we have following two
asymptotic formulas:∫ 1

0

A(z)e−B2(z)dz ∼ A(z0)

√
π

|Bz(z0)| , (22)

1√
π

∫ 1

0

B−1e−B2

dz ∼ − Bzz(z0)

2|Bz(z0)|3 . (23)

Proof: Since B2(z, τ) → ∞ for all z 	= z0 as τ → 0 and
B2(z0, τ) = 0 for all τ then e−B2(z,τ) → 0 for all z 	= z0
as τ → 0 and e−B2(z0,τ) = 1 for all τ . This implies that
the neighborhood of z0 provides the main contribution to the
value of the Laplace integral as τ is near to 0. Thus, we expand
B2(z, τ) at z = z0 by using Taylor expansion and obtain that

B2(z, τ) = B2(z0, τ) + 2B(z0, τ)Bz(z0, τ)(z − z0)

+B2
z(z0, τ)(z − z0)

2 + · · ·
∼ B2

z (z0, τ)(z − z0)
2

since B(z0, τ) = 0. And then, we use this expansion formula
in the exponent. As τ is near to 0, the Laplace integral will
approximate to the following Gaussian integral∫ 1

0

A(z)e−B2(z,τ) ∼ A(z0)

∫ 1

0

e−B2
z(z0,τ)(z−z0)

2

dz.

Now, we rewrite the above Gaussion integral by its asymptotic
formula and obtain that

A(z0)

∫ 1

0

e−B2
z(z0,τ)(z−z0)

2

dz ∼ A(z0)

√
π

|Bz(z0, τ)| .

Since B(z0) = 0 then B−1 → ∞ as z → z0. The above
result can not be applied when A(z) = B−1(z, τ). Now, we
rewrite B−1(z, τ) as follows:

B−1 = Bz(z0)(z−z0)−B(z)
B(z)Bz(z0)(z−z0)

+ [Bz(z0)(z − z0)]
−1

∼ −Bzz(z0,τ)
2B2

z(z0)
+ [Bz(z0)(z − z0)]

−1

Here, the final term of above equation is obtain by applying
Tayor expansion to B(z) at z = z0. Now, we use this
asymptotic formula to substitute B−1 and obtain the following
formula

1√
π

∫ 1

0
B−1e−B2

dz

∼ 1√
π

∫ 1

0

(
−Bzz(z0,τ)

2B2
z(z0)

+ [Bz(z0)(z − z0)]
−1

)
e−B2

z(z0)(z−z0)
2

dz

∼ − Bzz(z0)
2|Bz(z0)|3 .

We now begin to derive the asymptotic expression of X(T−
τ) as τ is near to 0.

Theorem 2: The asymptotic solution of (9), when τ closed
to zero, is as follows:

1) For q1 > q2,

X(T − τ) ∼ (1 +
σ2τ( q1

q1−q2
) + d

1 + σ2τ( q1
q1−q2

)2
)e(q1−q2)τ , (24)

where d =
√
d1 − d2. d1 = σ4τ2( q1

q1−q2
)2, d2 =

2σ2τ log[ (q1−q2)π
√
2τ

σ2 ](1 + σ2τ( q1
q1−q2

)2).
2) for q1 = q2,

X(T − τ) ∼ e−[−2σ2τ log(
√
2πτσ−2q1)]

1/2

.

Proof: By defining Y (T − τ) = X(T − τ)e(q2−q1)τ , (9)
can be converted as follows:

Y (T − τ)eq1τ − eq2τ = Y (T − τ)N( ã1(τ)
σ )−N( ã2(τ)

σ )

+Y (T − τ)
∫ τ

0
q1e

q1sN( ã3(τ,s)
σ )ds

− ∫ τ

0 q2e
q2sN( ã4(τ,s)

σ )ds,
(25)

where

ã1(τ) =
log Y (T−τ)√

τ
+ 1

2σ
2√τ = ã2(τ) + σ2√τ,

ã3(τ, s) =
log Y (T−τ)

Y (T−s)√
τ−s

+ 1
2σ

2
√
τ − s = ã4(τ, s) + σ2

√
τ − s.

By applying (20), we express (25) in terms of the comple-
mentary error function as follows:

Y (T − τ)erfc( 1√
2
( log Y (T−τ)

σ
√
τ

+ 1
2σ

√
τ ))− erfc( 1√

2
( log Y (T−τ)

σ
√
τ

− 1
2σ

√
τ ))

= limy→Y (T−τ){y
∫ τ

0 q1e
q1serfc( 1√

2
(
log y

Y (T−s)

σ
√
τ−s

+ 1
2σ

√
τ − s))ds

− ∫ τ

0
q2e

q2serfc( 1√
2
(
log y

Y (T−s)

σ
√
τ−s

− 1
2σ

√
τ − s))ds}.

(26)
As τ near to zero, since X(T −τ) > X(T ) ≥ 1 and Y (T −

τ) = X(T − τ)e(q2−q1)τ then 1√
2
( log Y (T−τ)

σ
√
τ

± 1
2σ

√
τ) =
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1√
2
( logX(T−τ)

σ
√
τ

± 1
2 (σ + q2−q1

σ )
√
τ ) tends to infinity Thus,

component of LHS of (26), erfc( 1√
2
( log Y (T−τ)

σ
√
τ

± 1
2σ

√
τ )),

has the following asymptotic form:

erfc( 1√
2
( log Y (T−τ)

σ
√
τ

± 1
2σ

√
τ))

∼ 1√
π

1
log Y (T−τ)

σ
√

τ
± 1

2

√
σ2τ

e
− 1

2 (
log Y (T−τ)

σ
√

τ
± 1

2σ
√
τ)2

,
(27)

as τ → 0. By applying the integral mean value theorem, the
integrand of RHS of (26) can be rewritten as

erfc( 1√
2
(
log y

Y (T−s)

σ
√
τ−s

± 1
2σ

√
τ − s))

= erfc( 1√
2
(
log y

Y (T−s)

σ
√
τ−s

))∓ 2√
π

∫ 1√
2
(
log

y
Y (T−s)

σ
√

τ−s
± 1

2σ
√
τ−s)

1√
2
(
log

y
Y (T−s)

σ
√

τ−s
)

e−η2

dη

= erfc( 1√
2
(
log y

Y (T−s)

σ
√
τ−s

))∓ 1√
π
σ
√
τ − se−c2 ,

where c lies between 1√
2
(
log y

Y (T−s)

σ
√
τ−s

) and 1√
2
(
log y

Y (T−s)

σ
√
τ−s

±
1
2σ

√
τ − s). By setting s = τz, and considering τ near to

zero, we have c ∼ 1√
2
(
log y

Y (T−s)

σ
√
τ−s

) and eqiτ ∼ 1, i = 1, 2.
Then the RHS of (26) has the following asymptotic form

limy→Y (T−τ){(q1y − q2)τ
∫ 1

0 erfc( 1√
2

log y
Y (T−τz)√

σ2τ(1−z)
)dz

−(q1y − q2)
σ2τ

3
2√

π

∫ 1

0

√
1− ze

− log2
y

Y (T−τz)

2σ2τ(1−z) dz}.
Therefore, we derive the following asymptotic equation of
(26):√

2
π

σ2τ
3
2

log2 Y (T−τ)
e
− 1

2 (
log Y (T−τ)√

σ2τ
− 1

2

√
σ2τ)2

∼ limy→Y (T−τ){(q1y − q2)τ
∫ 1

0
erfc( 1√

2

log y
Y (T−τz)√

σ2τ(1−z)
)dz

−(q1y − q2)σ
2τ

3
2

∫ 1

0

√
1−z
π e

− log2
y

Y (T−τz)

2σ2τ(1−z) dz}.
(28)

Note that
Y (T ) = max(1,

q2

q1
).

Now we consider the case of q1 ≥ q2 and let

α(τ) =
− logY (T − τ)√

τ
, for q1 ≥ q2,

and then (28) can be converted as follows:

σ2τ3/2

τα2(τ)e
− τα2(τ)

2σ2τ ∼√
π
2

(
q1e

−√
τα(τ) − q2

)
τ
∫ 1

0
erfc (B(z, α(zτ), y)) dz

−
(
q1e

−√
τα(τ) − q2

)
σ2τ3/2√

2

∫ 1

0

√
1− ze−B2(z,α(zτ),y)dz,

(29)
as y → Y (T − τ). Here

B(z, α(τz), y) =

√
zα(τz) − log

q2
q1y√
τ

σ
√

2(1− z)
.

By applying the definition of α(τ) and take the limit under
the integral, we have

B(z, α(τz), α(τ)) =

√
zα(τz)− α(τ)

σ
√

2(1− z)
.

For convenient we denote B(z, τ, y) as B(z). Since Y (T −
τz) is a monotone increasing function of z, then there is an
unique number z0 such that

Y (T − τz0) = y

and Y (T − τz0) < y for z < z0 and Y (T − τz) > y for
z > z0. This implies that B(z, τ, y) → ∞ for all z in [0, z0)
and B(z, τ, y) → −∞ for all z in (z0, 1], as τ → 0. Thus, we
replace erfc(B(z)) by using (21) for B(z, τ) → ±∞ when τ

is small. Then the first integral of (29) can be rewritten as the
following asymptotic formula :∫ 1

0 erfc(B(z))dz

∼ 1√
π

∫ z0(x)

0 B−1(z)e−B2(z)dz +
∫ 1

z0(x)
(2 +B−1(z) e

−B2(z)√
π

)dz

= 2[1− z0] +
1√
π

∫ 1

0
B−1(z)e−B2(z)dz.

In order to find out the asymptotic solution of (29), we
consider that y approaches to Y (T − τ) and sets z0 = 1. The
remainder is to evaluate the following two integrals

1√
π

∫ 1

0

B−1(z)e−B2(z)dz and

∫ 1

0

√
1− ze−B2(z)dz.

Since B(z0, τ) = 0 for all τ and, for z 	= z0, B2(z, τ) → ∞
as τ → 0 then

1√
π

∫ 1

0

B−1(z)e−B2(z)dz ∼ − Bzz(z0)

2|Bz(z0)|3 , (30)∫ 1

0

√
1− ze−B2(z)dz ∼ √

1− z0

√
π

|Bz(z0)| , (31)

by using lemma 1.
The limit of the first integral in (29) is asymptotic to the

RHS of (30). We see that this asymptotic expression is∫ 1

0

erfcB(z)dz ∼ 2
√
π

α2(τ)
(32)

as z0 → 1. By applying (31), the second integral of (29) tends
to zero as z0 → 1. So we obtain the following equation:

e−
α2(τ)

2σ2 ∼
√
2τπ

σ2

(
q1e

−√
τα(τ) − q2

)
. (33)

Since Y (T − τ) = e−
√
τα(τ), (33) can be rewritten as

e−
log2 Y (T−τ)

2σ2τ ∼
√
2τπ

σ2
(q1Y (T − τ) − q2). (34)

Let Y (T − τ) = 1 + y(τ), then (34) can be rewritten as

e−
log2(1+y(τ))

2σ2τ ∼
√
2τπ

σ2
(q1y(τ) + q1 − q2).

And then, we have

− log2(1 + y(τ))

2σ2τ
∼ log[

(q1 − q2)π
√
2τ

σ2
]+log(

q1

q1 − q2
y(τ)+1).

Multiplying above equation by 2σ2τ and expanding log2(1 +
y(τ)) and log( q1

q1−q2
y(τ) + 1) at 1, we obtain that

−y2(τ) ∼ 2σ2τ log[ (q1−q2)π
√
2τ

σ2 ]

+2σ2τ( q1
q1−q2

y(τ) +
q21

2(q1−q2)2
y2(τ)).



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:7, 2011

1068

This implies that

1 + σ2τ
q21

(q1−q2)2
]y2(τ)

+2σ2τ( q1
q1−q2

)y(τ)

+2σ2τ log[ (q1−q2)π
√
2τ

σ2 = 0,

and that the solution of this quadratic equation is

y(τ) =
σ2τ( q1

q1−q2
) + d

1 + σ2τ( q1
q1−q2

)2
,

where

d2 = σ4τ2( q1
q1−q2

)2

−2σ2τ log[ (q1−q2)π
√
2τ

σ2 ](1 + σ2τ( q1
q1−q2

)2).

Here, we select positive term to make sure y(τ) ≥ 0. So, we
have

Y (T − τ) = 1 +
σ2τ( q1

q1−q2
) + d

1 + σ2τ( q1
q1−q2

)2
,

and

X(T − τ) = (1 +
σ2τ( q1

q1−q2
) + d

1 + σ2τ( q1
q1−q2

)2
)e(q1−q2)τ .

However, the above approximation can not be applied to
the case q1 = q2. We use first order approximation to
q1e

−√
τα(τ) − q2 and obtain

q1e
−√

τα(τ) − q1 ∼ −q1
√
τα(τ), as τ → 0.

Now, (33) can be rewritten as follows:

e−
α2(τ)

2σ2 ∼ −
√
2πτσ−2q1α(τ).

Beginning the iteration scheme from the initial value α0 = 0,
we obtain that

α(τ) ∼
[
−2σ2 log

(√
2πτσ−2q1

)]1/2
.

Then

Y (T − τ) ∼ e−[−2σ2τ log(
√
2πτσ−2q1)]

1/2

,

and

X(T − τ) ∼ e−[−2σ2τ log(
√
2πτσ−2q1)]

1/2

.

V. NUMERICAL COMPARISON

The asymptotic formula is compared to the numerical
solution of the IR method [6]. Figure 1 displays the graph
of the case of that σ1 = σ2 = 0.5, q1 = 0.02, q2 = 0.01
and ρ = 0.5. Figure 2 displays the graph of the case of that
σ1 = σ2 = 0.5, q1 = q2 = 0.01 and ρ = 0.5. The solid curve
is numerically computed by IR method and the dash curve
is computed by our asymptotic formulas. These figures show
that the results from our asymptotic formula and IR method
are very close as time near to maturity.
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Fig. 1. The early exercise ratio X(τ) as a function of τ = T − t for q1 =
0.02, q2 = 0.01 with given by (24)(dash curve) and recursive integration
method(solid curve)
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Fig. 2. The early exercise ratio X(τ) as a function of τ = T − t for
q1 = q2 = 0.01 with given by (??)(dash curve) and recursive integration
method(solid curve)

VI. CONCLUSION

An AEO pricing model together with the early exercise ratio
are modelled as a FBP and this FBP is converted into an IE.
Meanwhile, the formula of this early exercise ratio is implicit
in the solution of the IE. We propose an asymptotic solutions
of the IE for the cases of q1 > q2 and q1 = q2, respectively.
However, this approach can not derive an asymptotic formula
for the case of q1 < q2. We also extend the numerical method
of one variable integral recursive method proposed by Kim [6]
to the case of two variables. Compared with this numerical
solution, our asymptotic solution of the IE is very close to the
numerical solution as time near to maturity.
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