
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:4, 2012

391

An approach to the solving Non-Steiner minimum
link path problem
V. Tereshchenko and A. Tregubenko

Abstract—In this study we survey the method for fast finding a
minimum link path between two arbitrary points within a simple poly-
gon, which can pass only through the vertices, with preprocessing.

Keywords—minimum link path, simple polygon, Steiner points,
optimal algorithm.

I. INTRODUCTION

THE relevance of the problem. Nowadays there are a
lot of problems, which are related to the shortest paths

finding. Algorithms for finding optimal paths, which use the
Euclidean metric, are applied almost in all computer games.
Link-distance metric is used in robotics, when rotation is much
more expensive compared with motion itself. Link-distance
metric without using of Steiner points is used in problems,
which are related to transmitting straight wireless signals,
where it is necessary to have opportunity to define quickly,
how to transmit a signal from one point of area to another
using the least number of transmitters.

Analysis of the latest researches. For objectives of link-
distance metric in a simple polygon a concept of window
turns out to be very useful [1]. This structure is explained
better by using the idea of visibility. All points that are directly
visible from the point s have distance 1. We call this set V1.
The boundaries between visible points and invisible points we
denote as a window. Points from P\V1, which are visible from
any point from the window V1, have distance 2. Repetition of
this construction will give all windows partition of polygon.
For a fixed point s data structure ”windows tree” [1] makes
it possible to do search using O (log N) time and O (N) of
memory. When both of points are set by request, was proposed
data structure by Arkin, Mitchell and Suri [2] that allows to do
search for O (log N), but requires O

(
N3

)
time and O

(
N3

)
of memory for preprocessing. In a paper of W. McAveney it is
proposed the algorithm that operates for O

(
E(n)α(n) log2 n

)
[3].

NNovelty and idea. Unfortunately, a prohibition to the use
Steiner points don’t allow to use windows partition to find
the shortest link path. In this paper we consider a more
complicated partition of polygon into visible regions, the point
localization in these regions and fast finding of the shortest
path between the regions.

V. Tereshchenko and A. Tregubenko are with the Faculty of Cybernetics,
National Taras Shevchenko University of Kyiv, Kyiv, Ukraine, 02095 e-mail:
vtereshch@gmail.com, anton.tregubenko@gmail.com

Manuscript received February 20, 2012; revised February 29, 2012.

II. CONSTRUCTING THE ALGORITHM

Problem. Given a simple polygon P and a pair of points
s, t ∈ P . Find minimal link path within P from s to t without
using Steiner points, Figure 1.

Fig. 1. Minimal link path without using Steiner points

A. Search without preprocessing

The problem of finding the minimum link path without
using Steiner points is reduced to the problem of searching in
the visibility graph of a polygon. To do this, at first you need to
check points on the direct visibility for O (N), reconsidering
the intersection of link segment with polygon sides. If it is
no intersection, the shortest path is 1. Otherwise, you need
to build a visibility graph for vertices (O (E), [4]), find the
visible vertices from the points s and t (O (N), [5]), find
the tree of minimum paths from the vertex s by searching
in width (O (E), [6]) and reviewing all visible vertices of the
polygon from t find that one, the distance from s to which is
the smallest.

In general, the algorithm takes O (E) time and memory.

B. Search with preprocessing (algorithm of visible regions)

For fast request realization of the shortest path it is neces-
sary to include a construction of the tree of minimal paths to
the preprocessing. To do this, we divide a polygon into the
visibility regions, Figure 2.

Definition.A visibility region of a polygon is a such its part,
that for all points from this part the set of visible vertices will
be the same.

Preprocessing algorithm. At first we build visibility graph
for vertices (O (E), [4]). Then we build a convex hull of our
polygon according the Lee algorithm and register it as a knot
of the regions tree (O (N), [7]). Find a list of all windows
that form all vertices of the polygon (O

(
N2

)
, [1]). Add to



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:4, 2012

392

Fig. 2. Visibility regions in the convex hull

this list the initial polygon sides. All segments in the list will
be stored in such a way that from the left side of the segment
will be visible part, and from the right side - invisible. Let S
be a number of segments.

Then randomly we will add these vertices to the regions
tree in the following way: insert the segment into the knot
of the regions tree. If a vertex is a leaf node, then we cut
the segment into 2 regions and register formed parts into the
proper successors of this vertex, and segment – as cut off line
of this vertex. Otherwise, we check the position of the segment
comparatively the cut off line in the vertex. If there isn’t any
intersection, we continue to search in that subtree, in which
is the segment. If there is intersection, we divide a segment
into 2 parts and insert these parts in the appropriate subtrees.
All segments that overlap, we throw out. Let R be the total
number of obtained regions.

Further, for each of obtained visibility regions we find the
center and visible points from this center (O (N), [5]). On
the basis of this we build the tree of the shortest paths using
search in width (O (E), [6]).

Search algorithm. We need to check points on visibility. If
there is no direct visibility - start your search.Locate points
in the tree (O (log R)). To do this we check the knot of the
tree, from which side of the cut off line a point is situated and
continue to search in the proper subtree, until you reach the
leaf node. If the point lies on the cut off line, then accordingly
to our construction, left side for a segment, which formed a
cut off line, will be visible, so we continue search in the left
subtree. After doing the localization of points we find that
visible vertex from the visibility points of the second region
to which the shortest path from the first region (O (N)), Figure
3. Accordingly (this length + 2) will be minimal link length,
and the path can be derived for O (W ), where W - its length.

To achieve the request complexity of O (log N) during a
preprocessing we find the map of minimal paths between all
visibility regions (O

(
R2N

)
time, O

(
R2

)
memory). Then

during the search it is necessary only to locate the points
(O (log R)). Then a derivation of the path will be made for
O (W ), where W - its length.

III. JUSTIFICATION OF CORRECTNESS AND COMPLEXITY

Lemma 1. Let S is a number of segments and R is the
total number of obtained regions, then following statements
take place:

Fig. 3. Localization of points and finding the shortest path.

1)All regions are convex.
2)S < N (N − 1).
3)R ≤ (S+1)S

2
+ 1

Proof: .
1). Initially a convex hull of a polygon is in the tree, and so

a convex set. By induction we have that at each step we will
cut a convex set with a line, and so we get convex sets too.

2).The window is assigned by two vertices of a polygon.
3). At first there is one region. (i + 1)- cut off segment,

which we add, cannot intersect more than isegments (lines),
that have been already added, thus it forms no more than i+1

new regions. So R ≤ 1 +
S∑

i=1

i ≤ (S+1)S
2

+ 1.

Lemma 2. The same set of vertices can be seen from all
points of visibility region.

Proof: Let suppose the contrary and then there are two
points, one of which sees the vertex V , and another doesn’t
see. But then between them must be either a window, or a
polygon side, that would have divided region into two parts.

An average estimation. For random polygons R ∼ N2.
The total complexity of the algorithm. The algorithm re-

quires O
(
RN2

)
time and O (RN) memory for preprocessing

and O (log R + N) time on a request. Complicated algorithm
requires O

(
R2N

)
time and O

(
R2

)
memory for preprocessing

and O (log R) time on a request. Withdrawal of the minimum
path is executed for O (W ), where W - its length.

IV. IMPLEMENTATION

The program is designed in Delphi 7 and does not require
an installation of any additional modules, figure 4.

Input.Polygon inputting is implemented either manually
(mouse), or is loaded from a file. Request points are entered
manually after pretreatment of a polygon.

Output. On the screen are displayed a polygon itself (black),
path (orange) and the numbers N, S,R and W . The program
also allows you to display additional information such as the
partition on the regions (blue-green), the visibility of request
points (black) and localization of points in regions (red).

Main functions. Generation of partition on the regions,
regions insertion in the tree and a point localization in the
tree.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:4, 2012

393

Fig. 4. Example of the algorithm realization.

V. CONCLUSIONS

In this paper we consider algorithms for finding the mini-
mum link path in a polygon without using Steiner points. For-
bidding to use additional points reduce problem to the search
in visibility graph, for which there is no faster algorithms than
common for unweighted graphs [8].

In the program implementation not all functions are made
for the optimal time, because it does not affect the overall
complexity of the algorithm, and is not the purpose of this
work. As an improvement of a preprocessing algorithm we
can suggest an ordered construction of trees of minimal paths
for visibility regions. It is necessary to build a planar graph of
regions connections where two regions are connected if they
have a common edge. Then we organize regions by the number
of visible vertices and we build trees in order in a following
way. If there is no neighbors with defined tree of minimal
paths in the region, we define a tree in the usual way. If there
is a neighboring region, and a common edge does not change
the set of visible vertices (i.e. not a window, but an extension
of it), we record a tree of minimal paths that has been already
found for neighbor. If it changes the set of visible vertices, it
means in this region can be seen on a one vertex of polygon
more (because we order by the number of visible vertices,
so in this will be more). Updating of tree for a neighboring
region by adding a new vertex can be done in linear time
by simply watching all the paths and optimizing them if the
path from added vertex is shorter (with a map of minimum
path for vertices it can be done with constant time). Thus
time complexity of preprocessing in a simple algorithm will be
improved from O

(
RN2

)
to O (RN), and in the complicated

algorithm from O
(
R2N

)
to O

(
R2

)
. As an improvement of a

searching algorithm remains an open problem of construction
of balanced tree of visibility regions without increasing the
number of these regions.

REFERENCES

[1] S. Suri. On some link distance problems in a simple polygon. IEEE
Trans. Robot. Autom.,6, 1990, p:108-113.

[2] E.M. Arkin, J.S.B. Mitchell, and S.Suri. Optimal link path queries in a
simple polygon. In Proc.3rd ACM-SIAM Sympos. Discrete Algorithms,
1992, p:269-279.

[3] W. McAveney. Minimum link path finding methods in 2D polygons. CS
633 Fall 2007.

[4] J. Hershberger. An optimal visibility graph algorithm for triangulated
simple polygons. Algorithmica, 4,1989 p:141-155.

[5] B. Joe and R.B. Simpson. Correction to Lee’s visibility polygon
algorithm. BIT, 27, 1987, p:458-473.

[6] A Goldberg. P-to-P shortest path algorithms with preprocessing. Sofsem,
2007.

[7] D.T. Lee. On finding the convex hull of a simple polygon. IJCIS, Vol.12,
No. 2, 1983, pages 87-98.

[8] M. Nouri, M.Ghodsi. Space-query-time tradeoff for computing the
visibility polygon. LNCS, Vol.5598, 2009, pages 120-131.

Vasyl Tereshchenko In 1986 graduated from the
Mathematics and Mechanics Faculty of Kyiv Na-
tional Taras Shevchenko University. In 1992 grad-
uated from graduate school and in 1993 defended
PhD dissertation on the degree C.Sci. (Phys-Math.).
In 2011 I defended a dissertation for the degree a
doctor of Phys.-Math. sciences (theoretical bases of
computer science and cybernetics).

Since 1994 - Associate Professor Faculty of Cy-
bernetics KNTSU. Lecturer in computer graphics
and in computational geometry, and also in databases

and in the theory of algorithms.


