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Abstract—This paper describes a method for AWGN (Additive
White Gaussian Noise) variance estimation in noisy stochastic
signals, referred to as Multiplicative-Noising Variance Estimation
(MNVE). The aim was to develop an estimation algorithm with
minimal number of assumptions on the original signal structure. The
provided MATLAB simulation and results analysis of the method
applied on speech signals showed more accuracy than standardized
AR (autoregressive) modeling noise estimation technique. In
addition, great performance was observed on very low signal-to-noise
ratios, which in general represents the worst case scenario for signal
denoising methods. High execution time appears to be the only
disadvantage of MNVE. After close examination of all the observed
features of the proposed algorithm, it was concluded it is worth of
exploring and that with some further adjustments and improvements
can be enviably powerful.
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variance estimation.

1. INTRODUCTION

UCH has been done in the field of signal denoising in
recent years. A useful overview of the subject is
provided in [1]. Knowing noise variance is a prerequisite for
working with and denoising AWGN (Additive White
Gaussian Noise) noisy signals. Common methods of noise
variance estimation rely on linear modeling of stochastic
signals [2]. This paper tries to make minimal number of
assumptions on the original signal (e.g. linear structure) and
aims to be general in the matter of application (speech signals,
biomedical, etc.). The noise variance estimation algorithm
proposed in this paper assumes stationarity of the original
signal and its statistical independence with white Gaussian
noise, and zero-mean Gaussian nature of noise. The algorithm
shall be denoted by an abbreviation MNVE, which stands for
Multiplicative-Noising ~ Variance Estimation. Its name
highlights the basic step of the method — multiplication of
noisy signal and synthetic AWGN noise. Every noise
estimation algorithm works better for greater values of signal-
to-noise ratio. In the case of greater SNR (signal-to-noise
ratio), the difference between signal and noise values is
greater, and consequently, more accessible to algorithms for
discriminating the main signal and noise sequence. However,
MNVE shows considerable performance at very low SNR
values which was explained by theory of random variables.
The following analysis of MNVE, as well as comparison to
AR (autoregressive) modeling variance estimation, shows
great expectations for the proposed algorithm. Its accuracy and
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wide range of signals it can be applied on make it worth of
further research.

This paper consists of several key parts. First, theoretical
background is presented justifying the algorithm steps; then
the method itself is described. Next, simulation is performed
on speech signals to confirm efficiency of MNVE. After
discussion of the simulation results, a conclusion has been
provided and a few proposals for future work were made.

II. THEORETICAL BACKGROUND

Mathematical expressions describing stochastic signals
shall provide theoretical background for deriving the proposed
algorithm [3], [4]. The problem presented is estimating
variance of zero-meaned noise random variable (2, when it is
added to the original random variable X, resulting in random
variable Y.

Y=X+0Q (1)

Random variable M is also introduced. The basis of the
method is calculating variance of Y previously corrupted by M
as multiplicative noise, mathematically

Var[Y -M]=Var[X -M +Q-M]. )

Thus, (2) transforms to (3) after considering the property of
variance operator Var that variance of the sum of random
variables equals to sum of variances of these variables
separately and double covariance of the variables.

Var[Y -M]=Var[X -M ]+Var[Q-M ]
+2CoV[X -M, Q-M]

3)

Next, the assumption is made on statistical independence of
variables X and M, which makes sense knowing that X is real
recording and M is pseudorandom generated sequence.
Variance of product of two independent variables can be
calculated via

Var[A-B]= E[A*]-E[B?]- E[A]*-E[B]?, (4

where A and B are independent variables, and E operator
represents expected value. Another assumption is that variable
M is zero-meaned, written in (5), so the expression in (6) can
be derived.

E[M]=0 (5)
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Var[Y -M]=E[X*]-E[M*]+Var[Q-M ] (6)
+2Cov[X -M, Q-M]

Several conclusions can be derived through analyzing (6).
The first term of the summation is linearly dependent on
E[M?], which is, because of the zero mean, variance Var[M].
The second term is the variance of product of two random
noise variables. They are both white Gaussian noise and zero-
meaned. Intuitively, variance should be greater as the two
variables differ more, i.e. come from distributions with greater
difference of variance parameters. The actual algorithm uses
this fact rephrased as following. The function Var[{2M]
should have a minimum in the case of

D[Q]=D[M], %

where operator D denotes the underlying distribution of the
random variable as argument. In the case of normally
distributed(2 and M, this means

2

2
Oaoa~0O w ®)

i.e. variance parameters o and om? of Gaussian distributions
of variables 2and M are equal.

The last term in (6) is interpreted as error of estimation
method. It becomes greater as signal-to-noise ratio increases,
that is, as underlying distributions of X and (2 and thus, of
X:M and M, are more distinct. This is why MNVE works
better at low SNR. Namely, low SNR means X and (2 (original
signal and noise applied to it) are more similar; hence, the
estimation error is lower.

III. METHOD DESCRIPTION

The MNVE algorithm consists of several steps. Input data
are samples of noisy signal y, and the output is noise variance
estimate 0.

e Step 1: Signal y is normalized to unit variance and zero
mean.

e Step 2: Zero-meaned Gaussian random noise signal is
generated for different linearly distributed values of
sample variance estimate. Each of these noise signals are
multiplicated by y, after which the sample variance
estimate of all product signals is calculated. As a result of
this step, discrete function of variance with multiplicative
noise variance as argument is taken.

e  Step 3: Remove linear trend from the variance function.

e Step 4: Find multiplicative noise variance at which
detrended variance function has minimum and multiply it
by sample variance estimate of y (denormalization).

e Step 5: Steps 1 to 4 are repeated on corresponding
surrogate signals instead of'y.

e Step 6: Noise variance estimate is found as minimum of
all minimums calculated in repeated steps 4.

Normalization in step 1 makes the algorithm general
because if noisy signal has unit variance, linear change of

variance in step 2 is always in range from 0 to 1. Also, zero-
meaning renders the signal less nonstationary. The assumption
of stationarity of X in deriving (6) is made, so in the case of
input signal that has more prominent linear trend (or moving
average) in time domain, zero-meaning yields in estimation
accuracy.

Sample variance estimate of multiplicative noise signals
and product signals (step 2) is the unbiased variance estimate
\&

©

where, N is length of vector variable A for which the estimate
is calculated.

Detrending in step 3 is done to compensate for the linear
term in (6). The method applied is subtracting the least-square
fit of a straight line to the given signal (variance function).

Finding the minimum of variance function corresponds to
finding the case described in (8). However, the estimate is not
equal to the real value of noise variance because of the error
term in (6). Namely, minimum of the variance function is not
equal, but close to minimum of its second term. In order to
partially compensate the error, repetition of previous steps is
done on several surrogate signals of noisy original. Surrogates
are generated by a simple method of random permutations of
time series [5]. It was shown that the error makes an estimate
slightly greater than real value, so compensation is done by
taking the minimum estimate from all the surrogate cases (step
6).

IV. SIMULATION

A. Data and Simulation Features

For the evaluation of the algorithm, NOIZEUS (A noisy
speech corpus for evaluation of speech enhancement
algorithms [6]) database was used. Two noiseless IEEE
sentences were chosen. Those are “The birch canoe slid on the
smooth planks” and “He knew the skill of the great young
actress”. Two nonsilent sections of 125ms (1000 samples) in
length were extracted from these recordings and used as input
signal for MNVE algorithm. Number of surrogates generated
per noisy signal (step 5 of the algorithm) is set to 50. Fig. 1
shows time domain evolution of the two chosen speech signals
aandb.

Noise is pseudorandom generated from zero-mean Gaussian
distribution. Noise variance was previously calculated from
sample variance of the original signal and set value of SNR.
The formula for SNR used in these calculations is

SNR =101og10%, (10)
[

where X and ® are original (speech) signal and generated
noise, respectively, and V operator represents unbiased sample
variance estimate (9). Simulation was performed for a range of
values of SNR on the same original recording, as well as for

470



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:10, No:3, 2016

different multiplicative noise on the same recording and SNR. O
Multiplicative noise was also pseudorandom generated from ok
zero-mean Gaussian distribution. Variance of this noise is set |t %
in range 0.001 to 1 with step 0.01. o1z} -
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B. Simulation Results

Noise variance estimation was performed with proposed
method and AR method on signals a and b for a set of SNR
values. Vector of SNRs ranges from -2dB to 2dB with step of
0.2dB. The results can be observed on Figs. 2 and 3 for signals
aand b, respectively.

Values yielded by MNVE are marked on graphs with
asterisks and values yielded by AR modeling are marked with
diamonds. “Real” values of noise variance, i.e. unbiased
sample variance estimates of generated noise sequences are
marked with circles.

In order to make a comparison between applied methods, a
graph representing absolute errors of variance estimates is
shown in Fig. 4. Two plots, upper and lower, correspond to
signals a and b, respectively, whereas solid line denotes error
of AR modeling method, and dotted line error of the MNVE.

Estimation procedure was repeated for 20 times on signal b
for SNR equal to 1dB so that consistency of MNVE method
could be checked. Results can be seen in Fig. 5. Again,
asterisks mark MNVE estimates, diamonds AR estimates,
whereas straight line denotes real value of noise variance.

Fig. 3 Values of noise variance estimate on noised signal b using
MNVE method (asterisks), AR method (diamonds), and unbiased
noise estimate of generated noise signal (circles)
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Fig. 4 (a) Absolute errors of noise variance estimates on noised signal
a for AR method (solid line) and proposed method (dotted line) (b)
Absolute errors of noise variance estimates on noised signal b for AR
method (solid line) and proposed method (dotted line)
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V.DISCUSSION

Results of the simulation show the performance of the
algorithm. It is clear that the noise variance estimate due to
proposed method is closer to the real value than the estimate
acquired by AR modeling. This is confirmed with absolute
error values in Fig. 4. The only case where error of AR
method (0.0152) is less is when SNR equals to 1dB, but it is
not much smaller than the error of proposed method, which
equals 0.0155. It was calculated that mean errors for signal a
of MNVE and AR are 0.0097 and 0.0178, respectively, for the
SNR range from -2dB to 2dB. For signal b, these are 0.66-10
and 2.1-107. Therefore, high precision is attributed to MNVE
as the most promising feature.
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Fig. 5 Noise variance estimates on noised signals b with 20 different
noise sequences at same SNR (1 dB) for AR method (diamonds) and
MNVE (asterisks), and real variance value (line)

As opposed to AR method it can be observed that MNVE
gives dispersed results. More linear correlation is present
between AR estimates and real variances in Figs. 1 and 2 than
between MNVE and real variances. These values were
detrended to remove the influence of linear change of SNR,
after which standard deviation is calculated on residuals.
Results show 0.0018 deviation for AR, and 0.0051 for MNVE,
for signal a, whereas for signal bin case of AR, deviation is
0.186-107, and in case of MNVE 0.416-10. In both cases the
measure of dispersion of estimate is close to two times greater
in MNVE. This can also be observed in Fig. 5 where MNVE
was applied multiple times on the same noisy signal. Standard
deviation of AR estimates is 1.78-10'®, what can be
considered a computational error, and deviation of MNVE
estimates is 0.59-1073, which is considerably high comparing
to real variance value of 7.6:107. This denotes the fact that
MNVE is not consistent in calculations. The explanation can
be found in pseudorandom generation of multiplicative noise.
Each generated sequence in repeated estimation algorithm can
be different, which affects the product signal variance
function. Surrogate signals also make a difference since the
algorithm generates 50 of them in each execution and there
exist much greater number of them (factorial of length of the

signal — in case of signals a and b 1000!). However, this is not
considered a major drawback because the accuracy of the
method is still greater. It can even be enhanced by taking the
mean of all results. In the case of simulation in Fig. 5, the
overall noise variance estimate would be 8.5-1073.

If multiple randomizations of surrogate generation are taken
into account, it can be inferred that execution of MNVE
algorithm requires much time, which was confirmed during
simulations in this paper. What can also be slowing down the
estimation is repeating the algorithm to decrease the effect of
estimation inconsistency. On the other hand, AR model
technique is much faster. In order to find a tradeoff between
speed and accuracy, number of surrogates and optionally
number of repetitions in the MNVE algorithm must be chosen
with great care.

VI. CONCLUSIONS AND FUTURE WORK

In this paper it was shown that the proposed algorithm
works well on speech signals. However, two facts should be
emphasized in given analysis. First, speech signals are
considered to consist of a deterministic and a stochastic part.
Pure stochastic signals should also be checked for noise
recognition by MNVE, such as stock market signals,
biomedical signals, etc. The method was also proven to work
with some biomedical signals but the corresponding results
were not included in this paper due to difficulties of acquiring
permission for publishing the usage of particular medical data.

Further work can be aimed towards improving the
algorithm in the matter of speed. Particularly, more
sophisticated algorithm for surrogate generation could be
applied, or another method of removing error term in (6) may
be derived. Also, different real background noise signal should
be acquired for variance estimation.
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