
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3064

Abstract—Web applications have become very complex and

crucial, especially when combined with areas such as CRM

(Customer Relationship Management) and BPR (Business Process

Reengineering), the scientific community has focused attention to
Web applications design, development, analysis, and testing, by

studying and proposing methodologies and tools. This paper

proposes an approach to automatic multi-dimensional concern
mining for Web Applications, based on concepts analysis, impact

analysis, and token-based concern identification. This approach lets

the user to analyse and traverse Web software relevant to a particular
concern (concept, goal, purpose, etc.) via multi-dimensional

separation of concerns, to document, understand and test Web

applications. This technique was developed in the context of WAAT
(Web Applications Analysis and Testing) project. A semi-automatic

tool to support this technique is currently under development.

Keywords— Aspect Mining, Concepts Analysis, Concerns

Mining, Multi-Dimensional Separation of Concerns, Impact

Analysis.

I. INTRODUCTION

EB applications quality, reliability and functionality

are important factors because software glitches could

block entire businesses and determine strong embarrassments.

These factors have increased the need for methodologies, tools

and models to improve Web applications (design, analysis,

testing, and so on).

This paper focuses on legacy Web applications where

business logic is embedded into Web pages. Analyzed

applications are composed by Web documents (static, active or

dynamic) and Web objects [6]. This paper describes an

approach to help application developers to document,

understand and test Web software. Our goal is to describe a

Web application Object-Oriented model, and then define a set

of application/design slices (“points of view”) to analyze and

test the application itself, e.g., to generate a set of test cases

specific for these points of view. Several Object-Oriented Web

modeling methodologies are presented in literature (see

Section II). Web OO diagrams (such as Conallen UML [12])

used to describe applications may be very complex, large, and

rich of information. Models (above all generated ones) may

Manuscript received March 12, 2005.

Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini are with

Information and Comunication Department, University of Milan. Via

Comelico 39, 20135 Milan, Italy.

{Carlo.Bellettini, Alessandro.Marchetto, Andrea.Trentini}@unimi.it

be difficult to read and comprehend, so that they may not be

much usable as core information to document, analyze and test

applications. Our approach may be useful to slice or traverse

models for software analysis. For example, it may be very

interesting to test or reuse single components or tasks or

properties, but it may be very complex to spot the relevant

details within the whole design documentation. Software

concerns are pieces of software that are responsible for a

particular task, concept, goal, etc; while “separation of

concerns” refers to the ability to identify, encapsulate and

manipulate those software parts relevant to a particular

concern.

This paper describes a semi-automatic approach to help the

user to document, understand and test Web software by slicing

applications diagrams. Application model slicing is based on

concerns identification and grouping. Our approach describes

a set of guidelines to analyze application evolution under

different “points of view” (i.e., slices). In particular we would

like to define a concern-mining process to help the user to

generate application test cases and/or to verify their coverage

measure. Our approach is useful to identify multi-dimensional

concerns (MDSOC, [20],[36]) in design applications, it uses

the MDSOC “dimensions of Hyperspace” concept to describe

application slices in Web software. “Hyperspace” is the

concept underlying MDSOC, it provides a powerful

composition mechanism that facilitates non-invasive software

integration and adaptation. In Hyperspaces, concerns are space

dimensions. Our concerns mining approach is based on:

concepts analysis1 [17] (as unit-base to identify concerns);

impact analysis [2] (to limit software analysis); and token-

based concerns identification (to search identified information

relationship). This technique is part of the WAAT (Web

Application Analysis and Testing) project [6],[5].

This paper is organized as follows. Section II describes

related works. Section III describes applications modeling.

Section VI introduces our reverse engineering techniques to

model recovery. Section V presents some background. Section

VI describes our concerns mining approach. Section VII

presents a sample. Section VIII Section IX analyses a case

study. Finally, Section X presents conclusions.

1 Concept analysis is “traditionally” used to show all possible software

modularizations in a concise lattice structure

An Approach to Concerns and Aspects Mining

for Web Applications

Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3065

II. RELATED WORKS

Several Web applications modeling approach are presented

in literature [6]. RMM [21] is a method based on Entity-

Relationship diagrams, and is specialized in applications based

on databases. WebML [11] enables the description of a Web

site under distinct orthogonal dimensions (such as structural,

composition, and so on). [28] introduces a Web application

simulation model framework that was designed to be

compatible with some existing modeling languages. Often,

these web methodologies are extensions of traditional

methodologies, such as OOHDM [33] for Object Oriented

ones. It uses OO models to define: conceptual, navigational

and user interface structure of applications. Moreover, some of

these are UML based. WARE [14] and Rational Rose Web

Modeler [30] are tools for reverse engineering supporting

Conallen’s extensions [12]. Both tools perform essentially

static analyses to generate model. Our WebUml [6] is tool to

reverse engineering Web application through static and

dynamic analysis. These OO modeling approach derived are

related to our concerns mining technique.

Some currently available Web testing tools (e.g. [25]) are

usually classifiable as syntax validators, HTML/XML

validators, link checkers, load/stress testing tools, and

regression testing tools, i.e., they are focused on low-level

(implementation bound) or non-functional aspects. Some of

these tools are often based on capturing user gestures and

replay them through testing scripts. These tools cannot provide

structural or behavioral test artifacts. Moreover, they represent

a good compromise when a formal model is not available and

the only implicit model is the user itself.

Other existing tools, such as xUnit (e.g, [19]), propose a

different approach, based on unit/functional testing. Other

approaches based on functional, structural and behavioral OO

model testing, are: [14], [5], [24], [32]. [14] proposes a

strategy to build functional unit-integration testing based on

WARE described model. [24] proposes an OO Test Model

that captures artifacts representing objects, behaviors, and

structure aspects. From this model, structural and behavioural

test cases may be derived to support the test process. [32]

describes tools: ReWeb, performing several traditional source

code analysis, to reverse engineering Web applications into

UML model; TestWeb, that uses ReWeb models to test

applications through Web site validation paths. [5] describes

TestUml tool for XML-based test cases generation derived

from WebUml extracted model. [22] defines statistical testing

based on usage model described from log files and then

analysed with Unified Markov Models.

More details about Aspect Oriented programming are in

[23], while [3] presents the AspectJ famous software.

[20],[36] describe the MDSOC and HyperJ tool, while [27]

studies the relations between quality factors and MDSOC,

while [35] the relations between MDSOC and testing. [32]

describes our approach to apply Multi-Dimensional Separation

of Concerns (MDSOC) theory at Web applications. [31]

describes SOC used to reduce the complexity of Web

applications. [18] presents an approach to separate Web

navigation concerns and application structure. [9] evaluates

AOSD code quality influence and presents an approach for

reverse engineering aspects, based on concern verification and

aspect construction. [10] evaluates the suitability of clone

detection as a technique for the identification of crosscutting

concerns via manual concern identification. [13] introduces

aspect mining and identification in OO. [8],[37] show an

approach to aspect mining based on dynamic analysis

technique via program traces investigation, to search recurring

execution relations. [26] applies three different separation of

concerns (SOC) mechanisms (HyperJ, AspectJ, and a

lightweight lexically based approach) to separate features in

the two software packages. This paper studies effects that

various mechanisms have on code-base structure and on

restructuring process required while performing separations.

Figure 1: UML Class diagrams Meta-Model

III. WEB APPLICATIONS MODELING

In the WAAT project Web applications are modelled via

UML diagrams [6]. The UML model used is based on class

and state diagrams. We have defined a UML meta-model

(Figure 1: UML Class diagrams Meta-Model), a Web

application model is an instance of this meta-model. Class

diagrams are used to describe application structure and

components (i.e., forms, frames, Java applets, HTML input

fields, session elements, cookies, scripts, and embedded

objects). State diagrams are used to represent behaviour and

navigational structures composed by client-server pages,

navigation links, frames sets, form inputs, scripting code flow

control, and so on.

The OO application model let us define a mapping between

traditional Web application concepts (such as static-dynamic

pages, forms, Web objects, and so on) and the MDSOC

concepts. This map let us apply separation of concerns

methodologies in the Web context, for example to analyse or

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3066

test specific assets of existing software. Our approach may be

used to “slice” application models by “points of view”. This

approach is useful with our Web modelling technique, but it

may be useful with every other OO modelling techniques

applied to Web software (such as presented in previous

Section).

IV. MODEL RECOVERY

Our approach ([6],[7]) to model recovery is composed by:

application behavior analysis, application model building,

and model validation.

Application behavior analysis is performed through static

and dynamic analysis. Static and dynamic analyses treat static

and dynamic application components using source code and

on-line interactions with the Web server. For example, for

static pages, we use traditional source code analysis based on a

language parser. While, for a single server page generating

multiple client pages, we apply dynamic analysis to try to

determine a meaningful number of client pages (through

mutation analysis and application executions). Then, the

dynamically generated client–side pages are analyzed (with

traditional source code analysis) to build diagrams. More

generally, for every dynamic Web document, we use mutation

analysis to define mutants (for example changing the control–

flow structure of original source code page) to be fed into

session navigation simulations, in which every mutant replaces

the original source code and the simulation performs generated

interactions. This simulation is used to send input values and

page requests to the Web server, and saving responses that are

analyzed later.

Mutation analysis is based on mutant operators applied to

source code, and in particular to control–flow source code

fragments (e.g., “if-then else”, “while”, etc.), such as logic or

Boolean operators, conditions or check operators, and so on.

For example, the “=” operator can be mutated into “<>”, the

“>” operator can be mutated into “≤” or “<”, the “AND”

operator can be mutated into “OR”, etc. The aim of mutation is

to automatically follow relevant execution paths in the Web

application, to cover as many navigation paths as possible.

This approach does not need knowledge about the language,

only a simple map of mutant operators, deployable with easy

to program parsers and with low computational complexity.

Model building; with the information extracted by the

previous phase we build an application OO model (such as

described in the previous section) using UML class and state

diagrams.

Model Validation; The “mutation” generated model may

contain more information than what is needed. In particular, it

may contain “Not-Valid” information, such as not valid

dynamically generated client-side pages. A client-page is

“Valid” if it is reachable in the original application (without

mutants) via an execution path. Since mutation may define a

model with a super-set of behaviors we need a pruning

technique. Our proposed technique is essentially based on

Web server log files analysis validation and “Visual

Navigation validation” with the user help.

In particular we analyze the Web server log files (e.g., the

Apache Web server log files in Figure 2: Fragment of Web

Server Log File) and we replay every Web request (for

dynamic pages) to analyse the server response. We match

these responses with pages in model (introduced using

mutation analysis). The set of matched pages are the

“Verified” pages. Every “Verified” page exists in original

application. For every “Not-Verified” page we ask the user

help to validate it. Via model analysis we may define a set of

paths containing the “Not-Verified” pages (every ones for a

path). User may mark “Valid” a page in a path, if the page is

reachable through that path in the original application (without

mutants).

127.0.0.1 – [26/May/2004:18:04:02 +0200]

 “GET /website/index.html HTTP/1.1” 200 1560

127.0.0.1 – [26/May/2004:18:05:52 +0200]

 “GET /website/dynamicP.asp?code=056978&name=Alex

 HTTP/1.1” 200 1802

127.0.0.1 – [26/May/2004:18:7:26 +0200]

 “GET /website/clientP2.html HTTP/1.1” 200 1727

127.0.0.1 – [26/May/2004:18:7:59 +0200]

 “GET /website/index.asp HTTP/1.1” 200 700

127.0.0.1 – [26/May/2004:19:02:10 +0200]

 “GET /website/pageResource.html HTTP/1.1” 200 2563

Figure 2: Fragment of Web Server Log File

The proposed approach is useful to describe existing Web

applications via a UML model built in is semi-automatic way.

Model construction is automated via mutation analysis, while

model validation is quite user dependent. Traditional ways to

analyze existing Web software focus on application source

code analysis of control-flow expressions to identify

representative inputs values. Inputs values are used to define

feasible application behaviors. In this conventional approach

user must know the application language and must know the

control-flow concepts and condition control analysis. The use

of mutation analysis decreases user interactions needed to

build application models, because mutation changes the

analysis perspective, from source code analysis to application

analysis. The model may contain spurious information and

must be pruned and validate (via Model Validation approach).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3067

V. BACKGROUND

Our proposed approach to concerns mining is based on

MDSOC and Concept Analysis. In this section we briefly

introduce these theories.

MDSOC (Multi-Dimensional Separation of Concerns) is an

approach to implement separation of concerns (SOC) by IBM.

IBM implemented a tool named Hyper/J to support MDSOC

in Java software. Separation of concerns refers to the ability to

identify, encapsulate, and manipulate software fragments

relevant to a particular concern (concept, goal, purpose, etc.).

Concerns are the primary motivation for organizing and

decomposing software into manageable and comprehensible

parts. MDSOC lets the user model applications via multi-

dimensional structure (named Hyperspace), instead of other

OO-techniques that model applications by only one dimension

(“tyranny of the dominant decomposition”).

Moreover MDSOC encapsulates many kinds of concerns at

the same time, and models overlapped concerns and concerns

interaction. MDSOC is very useful for on-demand software re-

modularization.

Figure 3: MDSOC hyperspaces sample

Figure 3: MDSOC hyperspaces sample, (see [29]) shows

Hyperspace samples for an example personnel software

system, these Hyperspaces are composed by two dimensions,

axes are software Class (e.g., Employee, Research, Sales,

Secretary) and interesting Functionality (Payroll, Personnel),

while points in space are software units, such as class methods

(or statements). In case of “dominant tyranny” (OO or Aspect

modelling [36]) only one concern type is encapsulated (e.g.,

first/second plane in Figure 3, where only class or functionality

are encapsulated). Instead, MDSOC supports clean separation

of multiple, overlapped and interlaced concerns

simultaneously, and on-demand re-modularization (e.g., the

third plane in Figure 3: MDSOC hyperspaces sample, shows

the on-demand re-modularization for system class and

functionality).

Formal Concept Analysis (FCA, [15]) is a theory of data

analysis which identifies conceptual structures among data

sets. Concept Analysis is applied to many fields, such as

medicine and psychology, musicology, linguistic databases,

library and information science, software re-engineering, civil

engineering, ecology, and others.

Concept Analysis important capability is the graphical

visualization of these structures among data via the concept-

lattice. Lattices may be interpreted as classification systems.

For example in software engineering, FCA may be useful to

show all possible software modularizations in only one

concept-lattice or to re-modularize software (e.g., introducing

“aspects” in OO existing software).

Concept analysis provides a way to identify grouping of

objects that have common attributes. Given a context=(O, A,

R), where: O=objects, A=attributes, R=binary relation

between O and A, we may use the concept-analysis grouping

algorithm to define concepts. Concepts are “the maximal

collection of objects sharing common attributes”.

Figure 4: Context-Matrix sample

For example (see [34]), Figure 4: Context-Matrix sample,

shows a generic context matrix with couples of “object-

attribute”, where objects are living beings, while attributes are

five of their possible characteristics. For example:

({cats, dogs}, {four-legged, hair covered}) is a concept.
({cats, chimpanzees}, {hair covered}) is not a concept.

Then, we may define a relationship via hierarchical

organization of the defined concepts by describing the relative

concept-lattice (in Figure 5: Concept-Lattice sample). Last, by

applying the FCA algorithm the concepts table (see Table I) is

built.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3068

TABLE I

CONCEPTS SAMPLE

top ({..all..}, ø)

C5 ({chimpanzees, dolphins, humans, whales}, {intelligent})

C4 ({cats, chimpanzees, dogs}, {hair-covered})

C3 ({chimpanzees, humans}, {intelligent, thumbed})

C2 ({dolphins, whales}, {intelligent, marine})

C1 ({chimpanzees}, {hair-covered, intelligent, thumbed})

C0 ({cats, dogs}, {hair-covered, four-legged})

bot (ø, {..all.. })

Figure 5: Concept-Lattice sample

VI. CONCERNS DEFINITION ALGORITHM

MDSOC technique is used to build application slices, where

every concern (or concerns composition) may be used to

define a software code/design slice. MDSOC is realized

through Hyperspaces: concerns space organized in multi-

dimensional structure. In this structure every dimension is a set

of disjoint concerns (i.e., they have no software units in

common). We define a semi-automatic concerns mining

approach, so concerns identification must be limited to

information extracted from applications models or source

code. For example, software functionality identification is a

semi-automatic task, because the user helps to identify

software components. We may lower user interactions by only

applying MDSOC to concerns that are automatically extracted.

When functionality information cannot be automatically

identified, than we use: variables, functions, class, Web

documents/objects, links, input-variables, and so on.

Our approach is composed by: Application Modeling

(AM, model definition), Concerns Elaboration (CE,

Hyperspaces definition through model and source code

analysis, and Hyperspaces use to reduce models and code

taken into account), Testing (T, the extracted and reduced

information may be used to define/refine test cases).

In next Section we present a simple case study useful to

describe the proposed approach.

Application Modeling (AM) consists in application model

definition. We use reverse engineering techniques to define

UML diagrams for existing applications. Moreover, diagrams

may also be manually refined by the user.

Concerns Elaboration (CE) to identify, define, and extract

concerns based on application model or source code analysis,

subdivide in:

• Artifacts extraction: from application model we extract

some interesting artifacts such as class, association, variables,

methods, links, Web pages (e.g., static, dynamic, dynamically

generated), objects (e.g., database, files, reused code), and so

on. We use this knowledge to identify concerns (it may be a

limitation, i.e., concerns about functionality cannot be

completely defined without user know-how).

• Objects-attributes selection: from the selected artifacts

we define “object-attribute”2[17] couples to use in concept

analysis. We may limit the number of couples by asking user

help. Generally speaking, example of couples may be:

variables-classes, instance variables-classes, variables-

functions, instance variables-functions, and so on. To select

couples user may know concerns/aspects theory, and how

define a concern/aspect using classes, variables, functions, and

so on. To this task we have defined a set of rules, such as, to

define aspect in OO software we may analyze the instance

variables used by software functions, and if a function uses

variables defined in more than one class, this is a candidate to

define a crosscutting concerns (aspects).

• Impact matrix definition: from the application model we

define a matrix I = [class x class]. ∀ ik,m ∈ I = 1 if ∃ class

relationship (i.e. association in class diagram between classk

and classm), 0 otherwise. The matrix is then used to decrease

analysis computational cost.

• Context matrix definition: for every couple defined we

build an objects-attributes matrix C = [object x attribute]. ∀

ck,m ∈ C = 1 if there is a def-use relationship between objectk

and attributem, 0 otherwise.

• Concept definition/visualization: we define concepts

through the C contexts matrix. We analyze this matrix

grouping the maximum number of objects that have common

attributes (by concept definition in concept-analysis). To

visualize the defined concepts we may use the concept-lattice

[17] structure, and in particular we may use existing software

such as ToscanaJ [38] or Galicia [16].

• Concerns identification: we may identify concerns by the

concepts defined in the concept lattice structure. Every node in

the lattice is a concept (by concept-analysis definition). Every

concept is a concern. Concept is groups of “objects” (in

concept analysis sense) that sharing “attributes” (in concept

2 where “objects-attributes” is defined in concept-analysis theory

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3069

analysis sense). For example, for the “object-attribute” couple

“variables-classes”, concepts are groups of variables that

sharing definition or use classes. In this example, code

fragments using a common set of variables may represent

candidates to identify software behaviors.

• Concerns composition: to compose the defined concerns

we must analyze the concerns dependencies to define

autonomous behaviors or behaviors dependencies. To this aim

we propose two ways. With the first approach we may traverse

the lattice structure based on the concepts dependencies

(associations between nodes in lattice structure). For example,

from bottom to top nodes to identify concept-objects

dependencies, while from top to bottom nodes to identify

concept-attributes dependencies. With the other approach we

identify concerns by iteratively grouping previously defined

concepts. We define a new “attributes-concepts” matrix3 A = [

attribute x concept]. ∀ ak,m ∈A = 1 if attribute is contained

in concept. By recursively applying the “attributes-concepts”

matrix, at each step we build supersets of concepts (grouping

concepts that share attributes) that are used as concepts as well

in the next step. In this way is possible to group

concept/concerns that share information. Every information-

sharing between concerns represents a concerns dependencies

candidate.

Testing (T): to slice applications. The defined concerns

may be useful to slice application models or source code. In

particular, we would like to use extracted information

(application slices) to define test cases and to compute

application coverage level for a set of already available test-

cases. For example, we may define test cases from a UML

model (e.g., from a statechart, see Section III) via traditional

OO techniques and then use the reduced diagram to verify test-

cases coverage (e.g., uniformly coverage or specialized one).

Otherwise we may define test-cases directly from the reduced

diagrams, because they represent sets of application features

(software fragment with potentially independent behavior).

VII. SAMPLE

“MiniLogin” (Figure 6: MiniLogin application Home-Page)

is a simple Web application composed by some PHP/HTML

files, and its main functionality is to control reserved login-

password Web area.

Figure 6: MiniLogin application Home-Page

3 where attribute is from the C matrix, and concept was defined in the

previous “Concept definition” step

Application Modeling (AM): we reverse engineer (through

the approach proposed in Section IV) the application UML

model, composed by class and state diagrams. Figure 7:

MiniLogin UML Class diagram, shows the generated

application class diagram (meta-model instance).

Figure 7: MiniLogin UML Class diagram

Concerns Elaboration (CE): defines MiniLogin concerns.

Artifacts extraction: we extract MiniLogin artifacts, lists of:

classes, variables, functions, links, and so on.

• Objects-attributes selection: we manually select couples

of objects attributes to use in concept analysis. E.g., variables-

class (named “case-A”), variables-functions, and so on.

• Impact matrix definition (due to lack of space we

exemplify only a couple of entries): “form” is related to

“member.php”, while “form” is not related to “C2.html”.

• Context matrix definition (due to lack of space we

exemplify only a couple of entries): for “case-A”

“$errorpage” is related to “member.php”, “username” is

related to “form”, and “username” is related to “member.php”,

while “username” is not related to “C2.htm”

Figure 8: Concept Lattice for MiniLogin “case-A”

• Concept definition/visualization: we use the context

matrix to define concepts as defined in formal concept-analysis

[9]. We may use existing tools (such as ToscanaJ [38], to

define and visualize concepts through concept-lattice). Figure

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3070

8: Concept Lattice for MiniLogin “case-A”, shows the concept

lattice for “case-A” concepts.

• Concerns identification: we identify concerns based on

the defined concepts. Every lattice node is a concern. Table II

shows “case-A” concepts.

• Concerns composition: we compose concerns via

concepts grouping. We build the attributes-concepts matrix,

with attributes used (rows) and concepts (columns). A cell is =

1 if the attribute is related to the concept (see Table III). Then

we group concepts by looking for attributes sharing (in our

“case-A”, variables). E.g., for “case-A” we group concepts

into Z0-to-Z4 groups. Where Z0={C0,C1}; Z1={C0,C2}; and

Z2/3/4={C0,C2,C3}.

Now we repeat the attributes-concepts matrix definition,

using the same attributes list, but with the newly-grouped

concepts (Z0-to-Z4) and then we group these concepts

attributes-based defining other new concepts (called ZZ0-to-

ZZ4). Then we stop because these concepts are completely

overlapped. Finally, we may define the set of composed

concerns, where every Cx, Zx and ZZx is a good candidate

(usable for our testing task). To reduce the number of

candidates we delete overlapped concerns (see Table IV).

Every defined concern represents a clearly defined software

behavior candidate. We use these concerns to describe the

Hyperspace slicing our application, and define the reduced

diagrams.

Testing (T): from the reduced diagrams we may

automatically define test cases or we may use these diagrams

to verify coverage measures of already available test cases

(such as in the user metrics driven test cases definition process

[5]).

VIII. CASE STUDY

Figure 9: Home-Page MiniWP application, shows the case

study application selected for experiment. This application is

mini Web portal that functions as news reader, images viewer,

and Web reserved area control. MiniWP is composed by

twenty PHP/HTML files and few TXT “database” files. Figure

10: MiniWP Class Diagram, shows the MiniWP class diagram

recoved by our reverse engineering approach.

Figure 9: Home-Page MiniWP application

TABLE IV

CASE-A, CONCERNS ENCAPSULATION, ALL ITERATIONS

Concept Object Attribute

C3 {username, password,

$errorpage, $combine,

$username, $password}

{member.php, Client_Page,

c1.htm}

C2 {username, password,

$combine, $username,

$password }

{member.php, Client_Page,

c2.htm, c1.htm }

C1 {username, password,

submit, reset}

{form }

C0 {username, password} {form, member.php,

Client_Page,

c1.htm, c2.htm }

Z2 {username, password,

$errorpage, $combine,

$username, $password}

{form, member.php,

Client_Page, c1.htm, c2.htm}

Z0 {username, password,

submit, reset}

{form, member.php,

Client_Page, c1.htm, c2.htm }

ZZ0 {username, password,

$errorpage, $combine,

$username, $password,

submit, reset}

{form, member.php,

Client_Page, c1.htm, c2.htm }

TABLE II

CASE-A, CONCEPTS

Concept Object Attribute

Top …all… -

C3 {username, password,

$errorpage, $combine,

$username, $password}

{member.php, Client_Page,

c1.htm}

C2 {username, password,

$combine, $username,

$password }

{member.php, Client_Page,

c2.htm, c1.htm }

C1 {username, password,

submit, reset}

{form }

C0 {username, password} {form, member.php,

Client_Page,

c1.htm, c2.htm }

Bottom - …all…

TABLE III

CASE-A, “ATTRIBUTES-CONCEPTS” MATRIX

Attribute

C0

C1

C2 C3

index.html

form 1 1

member.php 1 1 1

Client_Page 1 1 1

c1.htm 1 1 1

c2.htm 1 1

img

access.html

error.html

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3071

Figure 10: MiniWP Class Diagram

To apply our concerns mining technique, we select variable-

class as meta-couple of “object-attribute” (to define class level

crosscutting concerns). Then we complete the related Context-

Matrix, where every cell is 1 if exist def-use relationship

between variable and class (if variable is used or defined in

class). Then we build the concept lattice related to our selected

meta-couple. Figure 11: MiniWP “variable-class” concept

lattice, shows the concept-lattice for MiniWP variable-class

meta-couple. Based on this lattice we may define the 27

concepts for variable-class meta-couple. These are the defined

concerns for our case. Then we may define the “attributes-

concepts” matrix, we may perform attribute grouping

operation, and we may iterate these two last steps to compose

the concerns (Figure 12: MiniWP “variable-class” concerns,

shows the iteration last step).

Figure 13: MiniWP Class Diagram “marked”, shows the class

diagram marked with concerns composed that let us slice the

model.

.

Figure 11: MiniWP “variables-class” concept lattice

 0 1 2 3 4

index.html

show_php 1

Client_Page(show_php) 1

img(show_php) 1

template.txt 1

Web (Package)

Iframe

counter_php 1

counter_txt 1

color_php 1

Client_Page(counter_php) 1

news_php 1

Client_Page(news_php) 1

news_txt

form 1

member_php 1

Client_Page(member_php) 1

Client_1(member_php) 1

Client_2(member_php) 1

access_html

img(access_html)

error_html

lin.php 1

Lin 1

Adr 1

Scr 1

Browser 1

Client_Page(lin_php) 1

Client_1(lin_php) 1

Client_2(lin_php) 1

Figure 12: MiniWP “variables-class” iterated concerns

IX. CONCLUSIONS

 We proposed a semi-automatic multi dimensional concerns

mining approach based on: concept analysis combined with a

grouping technique. This approach may help the user in slicing

applications via model analysis, and it may be used to semi-

automatically define application test cases, or test coverage

measures or also to understand software evolution. We are

currently investigating efficient pruning techniques to reduce

the number of concerns generated by our approach. We are

also working on a tool to integrate our approach in the WAAT

project.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3072

Figure 13: MiniWP Class Diagram “marked”

REFERENCES

[1] Apache Web Server – log file, http://httpd.apache.org/docs/logs.html

[2] T. Apiwattanapong, A. Orso and M.J. Harrold, “Efficient and Precise

Dynamic Impact Analysis Using Execute-After Sequences” 27th IEEE

and ACM SIGSOFT International Conference on Software Engineering

(ICSE 2005). USA. 2005

[3] Aspectj. http://eclipse.org/aspectj

[4] C. Bellettini, A. Marchetto, and A. Trentini, “Applying MDSOC to Web

Applications” Accepted for publication – 9th World Multi-Conference

on Systemics, Cybernetics and Informatics. Orlando, Florida, USA.

July 2005

[5] C. Bellettini C., A. Marchetto, and A. Trentini, “TestUml: User-Metrics

Driven Web Applications Testing” 20th ACM Symposium on Applied

Computing. USA 2005

[6] C. Bellettini C., A. Marchetto, and A. Trentini, “WebUml: Reverse

Engineering of Web Applications”. 19th ACM Symposium on Applied

Computing (SAC 2004), Nicosia, Cyprus. March 2004

[7] C. Bellettini C., A.Marchetto, and A. Trentini, “Validation of Reverse

Engineeered Web Application Model.” 2th World Enformatika

Conference (WEC 2005). Istanbul, Turkey. February 2005

[8] S. Breu and J. Krinke. “Aspect Mining Using Event Traces”. 19th.

Conference on Automated Software Engineering 2004 (ASE 04), Linz,

Austria. September 2004

[9] M. Bruntink, A. van Deursen, and T. Tourwè “An Initial Experiment in

Reverse Engineering Aspects from Existing Applications”. 11th IEEE

Working Conference on Reverse Engineering (WCRE 04), Netherlands.

November 2004

[10] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwè, “An

Evaluation of Clone Detection Techniques for Identifying Cross-Cutting

Concerns”. IEEE International Conference on Software Maintenance

(ICSM 04), 2004

[11] S. Ceri, P. Fraternali, and A. Bongio. “Web Modeling Language

(WebML): a modeling language for designing Web sites.” Ninth

International World Wide Web Conference (WWW9), Amsterdam,

Netherlands. May, 2000

[12] J. Conallen. Building Web Applications with UML. Addison-Wesley,

2000

[13] A. Deursen, M. Marin, and L. Moonen, “Aspect Mining and

Refactoring”. First International Workshop on REFactoring:

Achievements, Challenges, Effects (REFACE03), Canada. November

2003

[14] G. A. Di Lucca, A. Fasolino, F. Faralli, and U. De Carlini, “Testing web

applications”. International Conference on Software aintenance

(ICSM’02), Montreal, Canada. October 2002

[15] Formal Concept Analysis, http://www.upriss.org.uk/fca/fca.html

[16] Galicia, http://www.iro.umontreal.ca/~galicia

[17] B. Ganter and R.Wille, “Formal Concept Analysis”. Springer-Verlag,

Berlin, Heidelberg, New York, 1996

[18] M. Han and C. Hofmeister, “Separating and Representing Navigation

Concerns in Web Applications”. Lehigh University, Technical Reports,

2004

[19] Httpunit. http://httpunit.sourceforge.net

[20] Hyperj. http://www.research.ibm.com/hyperspace

[21] T. Isakowitz, E. A. Stohr, and P. Balasubranian. “RMM: A

Methodology for Structured Hypermedia Design.” Communications of

the ACM, August 1995

[22] C. Kallepalli and J. Tian. “Measuring and Modeling Usage and

Reliability for Statistical Web Testing.” Ieee Transactions on Software

Engineering, November 2001

[23] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.

Loingtier, and J. Irwin, “Aspect-Oriented Programming”. 11th

Europeen Conf. Object-Oriented Programming, Springer Verlag. 1997.

[24] D. C. Kung, P. Hsia, and J. Gao. “Testing Object-Oriented.” Software.

Wiley-IEEE Press, 2002

[25] Mercury interactive. http://www.merc–int.com

[26] G. Murphy, A. Lai, R. Walker, and M. Robillard,. “Separating Features

in Source Code: An Exploratory Study”. 23rd International Conference

on Software Engineering, Toronto, Canada. May, 2001

[27] N. Noda and T. Kishi, “On Aspect-Oriented Design Applying Multi-

Dimensional Separation of Concerns on Designing Quality Attributes”.

First Workshop on Multi-Dimensional Separation of Concerns in

Object-oriented Systems (OOPSLA’99), November 1999

[28] P. Peixoto, K. Fung, and D. Lowe. “A Framework for the Simulation of

Web Applications.” Fourth International Conference on Web

Engineering (ICWE 2004), M¨unchen, Germany. July 2004

[29] B. Pekilis. “Multi-Dimensional Separation of Concerns and IBM

Hyper/J.” Technical Research Report, University of Waterloo, Canada.

January 2002

[30] Rational Rose Web Modeler, http://www.rational.com

[31] A. Reina, J. Torres, and M. Toro, “Aspect-Oriented Web Development

vs. Non Aspect-Oriented Web Development”. Workshop of nalysis of

Aspect-Oriented Software (AAOS 2003), University of Darmstadt,

Germany. July 2003

[32] F. Ricca and P. Tonella, “Building a Tool for the Analysis and Testing

of Web Applications: Problems and Solutions”. Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’200), Genova,

Italy. April 2001

[33] D. Schwabe, R. Pontes, and I. Moura. “OOHDM-Web: An Environment

for Implementation of Hypermedia Applications in the WWW.”

SigWEB Newsletter, 8, June 1999

[34] M. Siff and T. Reps, “Identifying modules via concept analysis.” In M.

J. Harrold and G. Visaggio, editors, Proc. IEEE Intl. Conf. on Software

Maintenance, Bari, Italy, 1997. IEEE Comp. Soc. Press.

[35] J. Stanley and M. Sutton “Multiple Dimensions of Concern in Software

Testing”. First Workshop on Multi-Dimensional Separation of

Concerns in Object-oriented Systems (OOPSLA’99), November 1999

[36] P. Tarr, H. Ossher, W. Harrison, J. Stanley, and M. Sutton, “N-degrees

of separation: Multi-Dimensional Separation of Concerns”. 21st

International Conference on SoftwareEngineering, IEEE Computer

Society Press, 1999

[37] P. Tonella and M. Ceccato, “Aspect Mining through the Formal

Concept Analysis of Execution Traces”. 11th IEEE Working

Conference on Reverse Engineering (WCRE 04), Netherlands.

November 2004

[38] ToscanaJ, http://toscanaj.sourceforge.net

