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Abstract—The most important process of the water treatment plant 

process is coagulation, which uses alum and poly aluminum chloride 
(PACL). Therefore, determining the dosage of alum and PACL is the 
most important factor to be prescribed. This research applies an 
artificial neural network (ANN), which uses the Levenberg–Marquardt 
algorithm to create a mathematical model (Soft Jar Test) for chemical 
dose prediction, as used for coagulation, such as alum and PACL, with 
input data consisting of turbidity, pH, alkalinity, conductivity, and, 
oxygen consumption (OC) of the Bangkhen Water Treatment Plant 
(BKWTP), under the authority of the Metropolitan Waterworks 
Authority of Thailand. The data were collected from 1 January 2019 
to 31 December 2019 in order to cover the changing seasons of 
Thailand. The input data of ANN are divided into three groups: 
training set, test set, and validation set. The coefficient of 
determination and the mean absolute errors of the alum model are 0.73, 
3.18 and the PACL model are 0.59, 3.21, respectively. 
 

Keywords—Soft jar test, jar test, water treatment plant process, 
artificial neural network.  

I. INTRODUCTION 
ATER supply is fed to Bangkok by three water treatment 
plants (WTP), namely BKWTP, Mahasawat Water 

Treatment Plant (MSWTP), and Samsen Water Treatment Plant 
(SSWTP). All three use raw water from the Chao Phraya River. 
In this research, BKWTP is set as a case study. With the largest 
production of 4,400,000 cubic meters per day, there are 18 
clarifiers equipped in two production lines with different 
chemicals (i.e., Alum and PACL) [1]. The giant BKWTP is a 
huge challenge in terms of operational cost-effectiveness. 
Optimal chemical dosages are required for optimum cost-
effectiveness.  

As a guideline for optimal chemical dosages, a traditional jar 
test has been used for a number of years, although there are a 
lot of disadvantages. Apparently, the behavior of being offline 
(labor process) among equipped online sensors (e.g., pH meter, 
flow meter) causes suboptimal operation since the operator 
cannot receive information on time, resulting in the so-called 
bottle-neck problem. In order to alleviate the offline problem, 
the virtual version of the Jar Test is proposed with the help of 
ANN modeling and the so-called Soft Jar Test (SJT).  

The primary goals of this research mainly are: (i) to set up 
ANN models (SJT) for chemical dosage prediction (i.e., alum 
and PACL based on Jar Test results; and (ii) to evaluate the 
performance and limitations of JST. 

II. WATER TREATMENT PROCESS: BKWTP CASE STUDY 
The BKWTP’s water treatment process is shown in Fig. 1. 

As shown in the figure, BKWTP receives raw water from Chao 
Phraya River at the Samlae pumping station and is conveyed 
through the 18-kilometer-long canal. The water is pumped into 
the filtration plant through a filter by rough and fine screens and 
then chlorine is added to kill germs and algae and to adjust the 
pH; this process is called the retreatment and pH adjustment 
process. After that, the water flows into the clarification 
process, Alum and PACL are added for the coagulation process 
to destabilize colloid and generate small floc. To increase floc 
concentration, a coagulation aid is included to form a large floc 
and it is able to precipitate (sedimentation) into the bottom of 
the clarifier. The water coming out of the clarifier tank is 
controlled for turbidity at no more than four Nephelometric 
Turbidity Units (NTU). The filtration process consists of two 
layers: coal and sand. The turbidity of the filtered water at this 
point is not more than 1 NTU. Finally, chlorine is added again 
to meet sanitation hygiene standards before pumping water to 
the public.  

A. The Conventional Jar Test 
Currently, at the BKWTP, the optimum dosage of alum and 

PACL is obtained by performing a traditional laboratory jar 
test. Fig. 2 illustrates the jar test equipment used in the method 
that has been in place since 1979. The objective of this 
procedure is to simulate three key processes: (1) coagulation; 
(2) flocculation; and (3) sedimentation. All these processes are 
physically demonstrated in one-liter containers with a varied set 
of agitation [2]. Optimal chemical dosage can be obtained by 
manually changing chemical doses and considering residual 
turbidity. In other words, it can be accounted as trial-error by 
an expert. In BKWTP, Jar testing is performed twice a day at 
approximately 8:00 a.m. and 4:00 p.m. 
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Fig. 1 Water treatment process [1] 
 

The Jar test is considered a labor-consuming process and 
requires a skilled operator to promptly respond to any changes. 
Obviously, the jar test did not respond to any changes in the raw 
water on a real-time basis. On the other hand, when the Jar test 
is offline, there is a time lag as the test takes approximately 16-
35 minutes, depending on the stirring speed of the water. 

 

 

Fig. 2 Jar test equipment 

B. Artificial Neural Network 
ANN consists of a large number of processors connected to 

each other, and called neurons, as they are similar to biological 
neurons in the brain. The neurons are connected together and 
transmit signals from one neuron to another with weight in the 
neurons. Weight is responsible for long-term memory [3]. ANN 
learns by repeatedly adjusting the weight to make decisions 
close to humans’ brains. ANN structure as shown in Fig. 3 
contains components as follows: 
(1) Input layer: The first layer of ANN consists of input 

neurons. This layer is the starting point for bringing input 
data into the system to the next layer of data processing.  

(2) Hidden layer: The middle layers of ANN lie between the 
input and output layers, receiving data from the previous 
layer, and processing the data. 

(3) Output layer: The last layer of ANN contains the output 
neurons, depending on the task of how many outputs there 
are. Usually, the output neurons are equal to the number of 
output variables used in the predictive model. 

 

Fig. 3 Neural network architecture 3 layers 
 

Our study proposes the SJT model using feed-forward back-
propagation neural networks. When the neural network receives 
data and goes into a hidden layer, each input is multiplied by its 
weight value and processed by an activation function such as 
the sigmoid or tanh function. After that, the output comes out, 
which has calculated the error value to be an adapted weight in 
the training network to reduce error in the next iteration.  

C. Data Collection & Filtration 
The data collected in BKWTP used in this research cover the 

period from January 1, 2019 to December 31, 2019. A one-year 
span of data is recorded to cover the effects of seasonal changes 
in Thailand (i.e., summer, winter, and rainy seasons). All data 
concerned with the Jar test are categorized into two groups: (i) 
raw water quality; and (ii) chemical dosages. Raw water quality 
data include pH, alkalinity, turbidity, conductivity, and OC and 
the chemicals used, including alum and PACL. Some of the 
data can be collected by the sensors and some of them have to 
be collected manually. All parameters used are described in 
Table I, while the data collection schedule is illustrated in Table 
II. Due to the offline process of BKWTP, it must be fully 
upgraded to factory automation, and therefore most of the 
sensors are online. The sensors are often clogged and disrupted 
by a large amount of water production per day and sensor 
calibrations are regularly required. Mostly, data error arises 
from the data collected during the calibration period. In order 
to alleviate data error, the data filtration threshold was set 
according to interviews with the operators, as shown in 
previous works [1] and illustrated in Table III. 
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D. Data Analysis 
All of the filtrated data were statistically analyzed and shown 

in Table IV. All the statistical parameters are within the 
expected range since errors are filtrated out. A plot of raw water 
turbidity, as graphically shown in Fig. 4, illustrated a change in 
raw water turbidity throughout the year. The highest turbidity 
was 126 NTU during the rainy season in September. The 
standard deviation and average turbidity were 14.86 and 27.42, 
respectively, indicating that there was a significant change in 
the turbidity of the raw water. In these situations, it is necessary 
to check the accurate predictions of the chemicals used in the 
plant more often, which is a limitation of the traditional jar test. 

 
TABLE I 

ALL PARAMETERS FOR THIS RESEARCH 
Order Parameter Online/Offline Description [4] 

1 pH Online Measure acid/base of water. 
2 Alkalinity 

(mg/L) 
Online Measure resistance changing aid of 

water. 
3 Raw water/ 

dosed water 
Turbidity 

(NTU) 

Online/Offline Measure of the purity of the water, 
which may be visible to the naked 

eye. Therefore, turbidity is an 
important measure of water quality. 

4 Conductivity 
(μs/cm) 

Online Measure electrical conductivity of 
the water. 

5 OC (mg/L) Online Measure Biological oxygen demand 
(BOD5), which is the amount of 
oxygen that bacteria and other 

microorganisms consume in a water 
sample during the period of 5 days at 
a temperature of 20°C to degrade the 

water contents aerobically. 
6 Alum dosage Offline The mean of the most and least 

amount of alum used from the jar test 
divided by 2. 

7 PACL 
dosage 

Offline The mean of the most and least 
amount of PACL used from the jar 

test divided by 2. 
 
 
 
 
 
 

TABLE II 
SCHEDULE TIME FOR MEASURE PARAMETERS AT BKWTP 

Parameter 
Time 

0:00 4.00 8.00 12.00 16.00 20.00 
Turbidity X X X X X X 

pH X X X X X X 
Conductivity X X X X X X 

Alkalinity X X X X X X 
OC X X X X X X 

 
TABLE III 

FILTER DATA AT BKWTP 
Parameter Criteria 

Turbidity (NTU) > 15 
pH 6.8-8.5 

Conductivity (μs/cm) > 90 
Alkalinity (mg/L) 35-125 

OC (mg/L) ≤ 5.5 
 

TABLE IV 
STATISTIC OF RAW WATER PARAMETERS 

Parameter Max Min Mean Median Range STD 
Turbidity 126 15 27.42 24 111 14.86 
Alkalinity 115 69 97.14 97 46 7.19 

pH 8.2 7.25 7.7 7.7 0.95 0.16 
Conductivity 3500 201 361.16 322 3299 237.1 

OC 5.42 1.62 3.67 3.62 3.8 0.74 
Alum 52.5 12.5 26.45 27.5 40 7.11 
PACL 29 0 11.23 13 29 6.61 

III. DATA RATIONALIZATION 
Figs. 5 and 6 show the correlation coefficient of water quality 

parameters with the content of alum and PACL, respectively. It 
shows that the relationship of water quality parameters with the 
content of alum and PACL was non-linear. We can make a 
preliminary analysis that if the turbidity is high, a large amount 
of alum and PACL is required. On the other hand, alkalinity 
and pH are inversely proportional to the amount of alum and 
PACL. 

 

 

Fig. 4 Daily raw water turbidity 
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Fig. 5 Correlation coefficient with the alum 
 

  

Fig. 6 Correlation coefficient with the PACL 
 

TABLE V 
INPUTS (I) AND OUTPUTS (O) FOR DEVELOPING ANN MODELS 

ANN 
model 

Raw water 
Alum PACL 

pH Alkalinity Turbidity Conductivity OC 
1 I I I I I O - 
2 I I I I I - O 

IV. SJT MODELLING  
The modeling process of SJT consists of data collection and 

preparation, data partitioning, model architectural optimization, 
and model performance evaluation as shown in Fig. 7. 

 

 

Fig. 7 Build SJT 

A. Data Collection and Preparation 
The process of data collection and preparation İS described 

in Section V, Operational Data and Section VI, Data Filtration.  
Since the timing of raw water parameter measurement and 

the Jar test are not the same, raw water parameter measurements 
were performed every 4 hours, while the Jar test was performed 
twice a day at 8:00 a.m. and 4:00 p.m. To build a model, we 
used the same frequency range, and thus, matched the data to 
the Jar test period at 8.00 a.m. and 4.00 p.m. This means that 
the Jar test results at 4.00 PM. were more influential than those 
of 8.00 a.m.  

B. Data Partitioning 
At this stage, the data were randomly divided into three 

groups: training set, test set, and validation set at ratios of 2/3, 
1/6, and 1/6 of the data respectively. The training set is for 
pattern recognition or learning. The comparisons between 
candidate models are conducted through a testing set. To 
prevent overfitting, the validation set is used with early 
stopping criteria [6].  

C. Model Architectural Optimization 
Optimal model architecture (i.e., number of layers and 
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number of hidden nodes) can be found using a systematic trial-
error approach [5]. The best candidate is the one that gives the 
largest coefficient of determination ( ) and the smallest Mean 
Absolute Error (MAE). In this research, no more than two 
hidden layers are investigated. On the other hand, [7] the trial-
error process is conducted through a systematic change via 
increment of the number of neural nodes in each hidden layer 
starting with five nodes and increasing by five nodes at a time 
through 100 nodes (i.e., a total of 20 values (5, 10, 15, ..., 100)). 
An example of a two-hidden layer neural network architecture 
is shown in Fig. 8. In this research, there are two ANN models: 
(i) an ANN model for prediction of the alum dosage and, (ii) an 
ANN model for PACL prediction. The inputs and output for 
each model are shown in Table V.  

 

 

Fig. 8 An example architecture of two hidden layers 

D. Model Architectural Optimization 
All candidate ANN models are evaluated using the 

coefficient of determination ( ) and Mean Absolute Error 
(MAE).  is a measurement used to explain how much 
variability of one factor can be caused by its relationship to 
another related factor. This correlation, known as the "goodness 
of fit," is represented as a value between 0.0 and 1.0. 

 
               

TSS
RSSR 12            (1) 

 
where RSS = Sum of the square of residuals; TSS = Total sum 
of square. 

MAE measures the average magnitude of the errors in a set 
of predictions. It is the average over the test sample of the 
absolute differences between prediction and actual observation. 

 

n
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where iy  = Prediction value; iy  = True value; n  = Total 
number of data points. 

 

 

(a) MAE 
 

 

(b) R  

Fig. 9 The alum prediction model with one hidden layer 
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(a) MAE 
 

 

(b) R  

Fig. 10 The PACL prediction model with one hidden layer 
 

 

(a) MAE 
 

 

(b) R  

Fig. 11 The model predicts alum with two hidden layers 
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(a) MAE 
 

 

(b) R  

Fig. 12 The model predicts PACL with two hidden layers 
 

 

Fig. 13 Prediction of alum in the test set 
 

V. RESULTS AND DISCUSSION 
The results of (a) MAE and (b)  of the models are shown 

in Figs. 9 and 10. It can be seen that the model predicted the 
amount of alum with the lowest (a) MAE of 3.18 mg/L and the 
largest (b)  value of 0.73 for the model using 25 nodes with 
one hidden layer shown in Fig. 9. On the other hand, Fig. 10 
shows that the model predicted the amount of PACL with the 

lowest (a) MAE of 3.21 mg/L and the highest (b)  value of 
0.59 for the model using five nodes with one hidden layer.  

For the two hidden layer type model, Fig. 11 illustrates a 
model performance evaluation for predicting the alum dosage, 
showing that the lowest (a) MAE was 2.94 mg/L and the largest 
(b)  was 0.66 for the model with 30 nodes in the first layer 
and 85 nodes in the second layer or 30-85 for short. Fig. 12 
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shows the evaluation of the PACL prediction model with the 
maximum (b)  of 0.57 and the lowest (a) MAE of 3.25 mg/L 
for the model (15-5). Figs. 13 and 14 illustrate the plots of the 

predicted and actual alum and PACL dosages on the test set, 
respectively. 

 

 

Fig. 14 Prediction of PACL in the test 
 

The results show that the best candidate model for alum 
prediction is from two hidden layer (30-85) with  = 0.66 and 
MAE = 2.94 mg/L. On the other hand, the best model for PACL 
was from five nodes with one hidden layer with  = 0.59 and 
MAE = 3.21 mg/L. 

From the performance evaluation, it was found that both 
ANN models were able to simulate the jar test; however, the 
alum model performed better than the PACL one. These models 
still need to be improved because of the relatively small  and 
large MAE. It can be seen that the MAE of alum is about 12 
percent compared to the actual mean of 26.45 mg/L as shown 
in Table IV and for PACL it is about 28% compared to the 
actual mean of 11.45 mg/L, as shown in Table IV. 

If a 10% error is set as a threshold [1] (i.e., the calibration 
error is about 10%), the alum model has failed slightly and the 
PACL model has failed entirely. This is because the data feed 
to the model was randomly divided into three groups: training 
set, test set, and validation set with a ratio of 2/3, 1/6, and 1/6, 
respectively. Even though the training group is the largest one 
with random selection, there is no guarantee that all test and 
validation sets are subsets of the training set (i.e., the range of 
training set covers all that of test and validation sets). In general, 
the ANN model promises better performance in interpolation 
which is more preferable to the extrapolation range [1]. These 
random selection results in small  and large MAE of alum 
models and even worse in the narrow range of the inputs PACL 
models. Therefore, using the ANN model to replace the 
traditional Jar test requires a larger range of training set in order 
to fully educate the model. The larger the range of the training 
set can ensure that the prediction mode works in a corrected 
fashion. 

VI. CONCLUSION 
Using the ANN model instead of the traditional Jar test still 

has several aspects to explore and improve. It is found that the 

predictive errors are about 12% and marginally fail to meet the 
threshold of 10%. However, if the errors of the predicted 
models are tolerated, the SJT model can be put into action.  

Additionally, this approach is worthwhile for further 
development. The model can be optimized using clustering 
techniques to ensure that the ANN model operates in the range 
called interpolation or using multiple models in predictions. 
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