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Abstract—In this study, a new reliable technique use to handle 

the foam drainage equation. This new method is resulted from VIM 
by a simple modification that is Reconstruction of Variational 
Iteration Method (RVIM). The drainage of liquid foams involves the 
interplay of gravity, surface tension, and viscous forces. Foaming 
occurs in many distillation and absorption processes. Results are 
compared with those of Adomian’s decomposition method 
(ADM).The comparisons show that the Reconstruction of Variational 
Iteration Method is very effective and overcome the difficulty of 
traditional methods and quite accurate to systems of non-linear 
partial differential equations. 
 

Keywords—Reconstruction of Variational Iteration Method 
(RVIM), Foam drainage; nonlinear partial differential equation.  

I. INTRODUCTION 
OAMS [1,2] are a prime example of a multiphase “soft 
condensed matter” system. They have important 

applications in the food and chemical industries, firefighting, 
mineral processing, and structural material science [2], and 
their properties are subject of intensive studies from both 
practical and scientific points of view [3]. Foams are common 
in personal care products such as creams and lotions, and 
foams often occur, even when not desired, during cleaning 
(clothes, dishes, scrubbing) and dispensing processes (c.f. 
[4]). They have important applications in the food and 
chemical industries, firefighting, mineral processing, and 
structural material science (c.f. [5]). Less obviously they 
appear in acoustic cladding, lightweight mechanical 
components, and impact absorbing parts on cars, heat 
exchangers and textured wallpapers (incorporated as foaming 
inks) and even have an analogy in cosmology. History 
connects foams with a number of eminent scientists, and 
foams continue to excite imaginations [6].although there are 
now many applications of polymeric foams [7] and more 
recently metallic foams, which are foams made out of metals 
such as aluminum [8]. In addition, industrial applications of 
polymeric foams and porous metals include their use for 
structural purposes and as heat exchange media analogous to 
common “finned” structures [9]. Recent research in foams and 
emulsions has centered on three topics which are often treated 
separately, but are in fact interdependent: drainage, 
coarsening, and rheology; see Fig. 1. We focus here on a 
quantitative description of the coupling of drainage and 
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coarsening. The flow of liquid relative to the bubbles is called 
drainage. Drainage plays an important role in foam stability: 
indeed, when foam dries, its structure becomes more fragile; 
the liquid films between adjacent bubbles being thinner, then 
can break, leading to foam collapse. In the case of aqueous 
foams, surfactant is added in to water and it adsorbs at the 
surface of the films, protecting them against rupture (c.f. 
[10]). 

Foam drainage is the flow of liquid through channels 
(Plateau borders) and nodes (intersections of four channels) 
between the bubbles, driven by gravity and capillarity [11-13] 

The foam drainage equation models the dynamics of the 
liquid volume fraction e in the foam on length scales larger 
than the bubble size Generally drainage is driven by gravity 
and/or capillary (surface tension) forces and is resisted by 
viscous forces (c.f. [5]). 

Recent theoretical studies by Verbist and Weaire describe 
the main features of both free drainage [14, 15], where liquid 
drains out of a foam due to gravity, and forced drainage [16], 
where liquid is introduced to the top of a column of foam 
Forced foam drainage may well be the best prototype or 
certain general phenomena described by non-linear 
differential equations, particularly the type of solitary wave 
which is most familiar in tidal bores. 

The aim of current study is analytically investigation non-
linear foam drainage equation in the form of Eq. (1), using 
Reconstruction of Variational Iteration Method (RVIM). In 
recent years, several such techniques have drawn special 
attention, such as Hirota's bilinear method [17], the 
homogeneous balance method [18], inverse scattering method 
[19], Adomian's decomposition method ADM [20], the 
variational iteration method [21] and the δ-expansion method 
[22], Variational iteration method VIM [23, 24], Energy 
Balance Method [25], as well as Homotopy analysis method 
(HAM).After that, many types of nonlinear problems were 
solved by the HAM by others [26-28]. 
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Fig. 1 Schematic of the interdependence of drainage, coarsening, and rheology of foams [6]. 

 
In this paper, we will apply new algorithm that is a 

powerful and efficient technique in finding the approximate 
solutions for the following foam drainage equation: 
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where x and t are scaled position and time coordinates 
respectively. 

In the case of forced drainage, the solution can be expressed 
as [29]: 

 

))((tanh),( 2 ctxcctxA −=                 (2) 
 
where c is the velocity of the wave front [16]. 

II. BASIC CONCEPT OF RVIM 
In the following section, an alternative method for finding 

the optimal value of the Lagrange multiplier by the use of the 
Laplace transform [30],[31] will be investigated a large of 
problems in science and engineering involve the solution of 
partial differential equations. Suppose x, t are two independent 
variables; consider t as the principal variable and x as the 
secondary variable. If u(x,t) is a function of two variables x 
and t , when the Laplace transform is applied with t as a 
variable, definition of Laplace transform is       
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where                                                                                        

    ]);,([),( stxusxU l=                        (6)                   
 
We often come across functions which are not the 

transform of some known function, but then, they can possibly 
be as a product of two functions, each of which is the 
transform of a known function. Thus we may be able to write 
the given function as U(x,s),V(x,s) where U(s) and V(s) are 
known to the transform of the functions u( x,t),v(x,t) 
respectively. The convolution of u(x,t) and v(x,t) is written 
u(x,t)*v(x,t).  It is defined as the integral of the product of the 
two functions after one is reversed and shifted.                                           

Convolution Theorem: if  U(x,s),V(x,s)  are the Laplace 
transform of  u( x,t),v(x,t), when the Laplace transform is 
applied to t as a variable, respectively; then U(x,t).V(x,t)  is the 

Laplace Transform of ∫ −
t

dxvtxu
0
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To facilitate our discussion of Reconstruction of Variational 

Iteration Method, introducing the new linear or nonlinear 
function )),((),()),(( xtuNxtfxtuh −= and considering 

the new equation, rewrite )),((),()),(( xtuNxtfxtuh −=  
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as                                                                                                  
        ),,()),(( uxthtxuL =                         (8)                 

 
Now, for implementation the correctional function of VIM 

based on new idea of Laplace transform, applying Laplace 
Transform to both sides of the above equation so that we 
introduce artificial initial conditions to zero for main problem, 
then left hand side of equation after transformation is featured 
as 

{ } )(),(]),([ spsxUtxuL =l                       (9) 
 
where P(s) is polynomial with the degree of the highest order 
derivative of the selected linear operator. 
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Taking the inverse Laplace transform on both side of eq. (12) 
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Thus the following reconstructed method of variational 

iteration formula can be obtained     
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And ),(0 txu  is initial solution with or without unknown 

parameters. In absence of unknown parameters,  ),(0 txu  
should satisfy initial/ boundary conditions.   

III. APPLICATION OF RVIM 
In this section, we will apply the RVIM to solve foam 

drainage equation. 
Foam drainage equation (1) can be written as [29]: 
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with initial conditions 
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The exact solution for this problem is  
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At first rewrite eq. (17) based on selective linear operator as  
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Now Laplace transform is implemented with respect to 

independent variable x on both sides of eq. (18) and by using 
the new artificial initial condition (which all of them are zero) 
we have  
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and whereas Laplace inverse transform of 1/s is as follows  
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Therefore by using the Laplace inverse transform and 

convolution theorem it is concluded that 
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Hence, we arrive at the following iterative formula for the 

approximate solution of subject to the initial condition (16). 
So, in exchange with applying recursive algorithm, 

following relations are achieved 
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Now we start with an arbitrary initial approximation 

)3(tanh3),( 2
0 xtxu =  that satisfies the initial condition 
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and by using the RVIM iteration formula (23), we have the 
following successive approximation 
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whereas, the RVIM method admits the use of 
 

nn ulimu ∞→=  
Tables I, II, and III investigated comparison between errors 

of ADM [29]. 
 

TABLE I 
COMPARISON BETWEEN ERRORS OF ADM AND RVIM FOR T=0.1 AND C=3. 

X uexact-uADM uexact-uRVIM 
0 1.42109E-14 0 
-2 1.40941E-11 0 
-4 1.43842E-8 -5E-9 
-6 0.00000146727 -4.527E-6 
-8 0.0064218 -4.59239E-3 
-10 -3.71367 0.68374 

 
TABLE II 

COMPARISON BETWEEN ERRORS OF ADM AND RVIM FOR T=0.01 AND C=3. 
X uexact-uADM uexact-uRVIM 
0 -1.77636E-15 0 
-2 -1.86962E-12 0 
-4 -1.9087E9 0 
-6 -1.94811E-6 0 
-8 -0.00197296 -6.0881E-0.5 

-10 0.00051592 8.8544E-3 
 

 
TABLE III 

COMPARISON BETWEEN ERRORS OF ADM AND RVIM FOR T=0.001 AND C=3. 
X uexact-uADM uexact-uRVIM 
0 4.44089E-16 0 
-2 2.24265E-13 0 
-4 -2.29754E-10 0 
-6 -2.34498E-7 0 
-8 -0.000236656 0 

-10 5.2479E-8 0 

IV. CONCLUSION 
In this paper, an explicit analytical solution is obtained for 

foam drainage equation by means of the Reconstruction of 
Variational Iteration Method (RVIM), which is a powerful 
mathematical tool in dealing with nonlinear equations. 
Comparison of results in tables proved that RVIM can be used 
in applied mathematics as a trustworthy and explicit method. 

The accuracy of the method is acceptable and the resulting 
solutions are close to the numerical solutions that are shown in 
tables.  
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