
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1974

Abstract—This paper presents an algebraic approach to optimize

queries in domain-specific database management system
for protein structure data. The approach involves the introduction of
several protein structure specific algebraic operators to query the
complex data stored in an object-oriented database system. The
Protein Algebra provides an extensible set of high-level Genomic
Data Types and Protein Data Types along with a comprehensive
collection of appropriate genomic and protein functions. The paper
also presents a query translator that converts high-level query
specifications in algebra into low-level query specifications in
Protein-QL, a query language designed to query protein structure
data. The query transformation process uses a Protein Ontology that
serves the purpose of a dictionary.

Keywords—Domain-Specific Data Management, Protein
Algebra, Protein Ontology, Protein Structure Data.

I. INTRODUCTION
N the past decade, protein data has been growing rapidly
due to more and more advanced experimental techniques.

The flood of protein data, their high heterogeneity, their multi-
structure, multi-format, multi-access method, mismatch of low
level treatment and high level nature and the complexity make
it much more important and challenging in biology [3].
Therefore, the problem how to efficiently store, retrieve,
analyze and modify protein data is becoming an important
issue for most protein scientists and computer scientists. In
order to solve this problem, a Domain Specific Object
Oriented DataBase Management System (DSOODBMS) is
designed to manipulate Protein Data. In this DSOODBMS,
Protein Query Language (Protein-QL) and Protein Object-
Oriented DataBase (Protein-OODB) are provided to deal with
the queries in protein domain which can be easily extended
into other biological domains. In this application system, two
ways are designed to match Protein-QL to Protein-OODB.
One is to directly interpret Protein-QL syntax to Protein-
OODB, the other uses Protein Algebra Architecture to connect
them that can optimize the queries which is very important for
complex queries and large dataset to provide better
performance for protein data management.

In this paper, an architecture called Protein Algebra
architecture is described, which connects Protein-QL and

Yanchao Wang is with The IRMACS Centre, Simon Fraser University,

8888 University Drive, Burnaby, BC V5T 1S6, Canada (corresponding author
to provide phone: 778-782-7078; fax: 778-782-7065; e-mail:
yanchao_wang@yahoo.com).

Rajshekhar Sunderraman is with Computer Science Department, Georgia
State University, 34 Peachtree Street, Atlanta, GA 30303 USA (e-mail:
raj@cs.gsu.edu).

Protein-OODB and optimizes protein data queries. It has three
components, Protein Ontology, Protein Algebra and Protein
Wrapper. The Protein Algebra provides an extensible set of
high-level genomics data types (GDTs) (e.g., genome, gene,
chromosome, protein) and protein data types (PDTs) (e.g.
primary, secondary, tertiary, protein) together with a
comprehensive collection of appropriate genomic functions
(e.g., translate, transcribe, decode) and protein functions (e.g.,
sequence, getPrimary, nearestNeighbour), it also provides
genomics and protein operations to deal with protein domain
specific object queries. Protein Ontology which is designed as
a dictionary is used to map Protein Algebra to Protein-QL.
Protein Wrapper connects Protein Algebra and Protein-OODB
which makes Protein Algebra independent of Protein-OODB.

The rest of this paper is organized as follows: section II
describes the current architecture for protein domain specific
object oriented database management system. Section III
presents protein algebra architecture. Related work is
discussed in section IV. The conclusion and future work will
be shown in section V.

II. CURRENT ARCHITECTURE OF PROTEIN DOMAIN SPECIFIC
OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEM

The overall architecture of protein domain specific object-
oriented database management system for protein structure
data called Protein-OODBMS is a three-layer architecture that
consists of the following components: a client API,
Middleware (including a RMI server, a query language for
protein structures (Protein-QL), and an object-oriented
database for protein structures (Protein-OODB)), and Data
Server layer.

The current architecture of protein domain specific object-
oriented database management system (DSOODBMS) in Fig.
1 illustrates the details of Protein-OODBMS. This system
extends the object-oriented database (OODB) system by
adding two additional layers Protein-QL and Protein-OODB
above OODB, it is designed specifically for protein domain,
but it is a first step in building a general Bio-OODBMS for
biological applications.

The clients can use this system to send domain specific
requests and manage the database. The Client writes simple
domain specific queries according to Protein-QL and sends
them to the Server. The Server receives the queries and
communicates with Protein-QL and checks the grammar of
queries according to the syntax of Protein-QL. Then system
converts queries into EYEDB queries. Finally EYEDB sends
the results back to the server. This system provides clients
convenient access and is easily mastered [2].

An Algebra for Protein Structure Data
Yanchao Wang, and Rajshekhar Sunderraman

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1975

The following part shows detail of this new architecture of
DSOODBMS for protein structure data:

1. Client API can have multiple types such as Java Client
Application, PQL Plus Client, Data Browser, Visualization
and PDB Expert shown in Fig. 1.
• Java Client API [2] can easily be viewed and mastered

by any user who knows requested parameter without
much computer background. Clients can be able to
formulate Protein-QL queries and have them sent to the
server for execution. This API also provide help
functions to help the clients send queries, display
results in a domain friendly manner.

• PQL Plus Client [2] is much like SQL Plus interaction
that allows clients to send protein-QL queries directly
to Protein-QL without any java code.

• Data Browser [2] provides clients to view protein data
in PDB format or object format.

• Visualization Client [2] is like Rasmol tool that allows
clients to view protein data structure and functions. It
also supports linking the protein to RCSB PDB to get
3D view.

• PDB Experts [6] also can be considered as Client API
which is designed to provide the possible ways to
curate data and improve the PDB (most protein data
are stored in PDB format) data quality. PDB Experts
input PDB file from here, system deals with the PDB
data clean such as data identification, data errors, data

redundancy, data ambiguity, data heterogeneity, data
consistency, conflict data and obsolete data [5].

2. Server/Listener provides the basic services of the system.
The users should be able to know the types of parameters,
results and functions from Server/Listener which hides
the details of implementation.
• Protein-QL is designed as domain specific high-level

query language and be able to provide convenience
for users to store, retrieve, and modify data. It defines
some basic operations such as SELECT, INSERT,
DELETE, UPDATE that can be executed on basic
data types as well as on protein data types. Protein-
QL defines a list of queries in protein terms (such as
nearest neighbors, subparts of protein and so on)
which enables domain scientists to query information
in their own language without much syntactical
restriction. For example, the query
sequence(proteinName) should return the
sequence of protein named “proteinName” shown in
Fig. 2.

• Protein-OODB can provide possible method to solve
some protein data sources’ problems and is used to
connect Protein-QL and OODB which makes
Middleware independent of the underlying OODB.
In addition, in order to simplify the queries in
Protein-QL, the protein, primary, secondary and
tertiary protein structures are defined as internal data

Protein Algebra
Architecture

PDB files

Protein Algebra

Protein Wrapper

OODB

Protein-QL

Protein-OODB

Middleware

Server/Listener

(Dictionary)
Protein Ontology

PDB Data Curation

PQL Plus Client Java Client Application Visualization Data Browser

Data Server

Data

PDB Experts

Optimizer

Client API

Fig. 1 The architecture of DSOODBMS for protein structure data

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1976

 types such that domain scientists can easily
formulate complex requests for data without much of
a learning curve.

• Mapping Protein-QL to Protein-OODB can be
finished in two ways, one is direct mapping which
was done in the system and the other is to use Protein
Algebra Architecture mapping. Since direct mapping
does not provide any query optimization, the Protein
Algebra Architecture mapping is designed with query
optimization to provide better performance on
protein data management.

Fig. 2 The result of sequence("HIV-1")

3. In Data Server layer, OODB will provide users basic
operations. EYEDB is used as the underlying OODB.
Data storage will hold the protein data.

III. PROTEIN ALGEBRA ARCHITECTURE
The formalization of the Protein Algebra is as follows:

sorts
 GDTs/PDTs | normal data types (such as
 string, int…)
ops
genomics/protein operators
Genomics operators can be translate, transcribe and splice.

And protein operators in [2] such as sequence, getPrimary and
so on which have already been implemented in the Protein-
OODBMS. By using this format, the Protein Algebra can
easily query on genomics and protein domain data. For
example:
sorts
 Protein, Sequence
ops
 sequence: Protein Sequence
 This simple algebra contains two PDTs for Protein and
amino acid Sequence of protein primary structure as well as
one operator sequence which returns its amino acid Sequence
for a given Protein. This algebra can be syntactically
expressed as sequence(Protein).

A. Protein Algebra Data Types and Operations
Protein Algebra supports an extensible set of high-level

genomics data types (GDTs) [1] (e.g. genome, gene, protein)
and provides protein data types (PDTs) and collection of
appropriate genomics and protein operations or functions
such as transcribe, splice, sequence, getPrimary,
nearestNeighbour and so on.

Firstly, this algebra designed new sorts called Protein Data

Types (PDTs) (e.g. Protein, Primary, Secondary, Tertiary) and
ops (protein operations, e.g. sequence, getPrimary,
noOfChain, nearestNeighbor) which have same format as
sorts and operators (ops) of GenAlg [1]. The following shows
some examples of sorts and ops:
i. sorts
 Protein, Sequence, length
 ops
 sequence: Protein Sequence
 lengthOfSequence: Sequence length
ii. sorts
 Protein, Primary
 ops
 getPrimary: Protein Primary
iii. sorts
 Protein, ChainNumber
 ops
 noOfChain: Protein ChainNumber
iv. sorts
 Protein, nearestNeighbour
 ops
 nearestNeighbour3D:Protein Protein

Secondly, the algebra extends Genomics Data Types
(GDTs) and Genomics Operations of GenAlg [1] to protein’s
structures in order to get more detailed information by
providing more sorts and ops on protein data types (PDT) and
protein operations. For example, it can extend sorts and ops of
GenAlg as follows:
sorts
 Gene, PrimarymRNA, mRNA, Protein,
 Primary, Sequence
ops
 transcribe: Gene PrimarymRNA
 splice: PrimarymRNA mRNA
 translate: mRNA Protein
 getPrimary: Protein Primary
 sequence: Primary Sequence

Thirdly, the algebra can return multiple types in the same
queries instead of single returned type result of GenAlg as
following examples shown.

Example 1. Gets type and function of protein “HIV-1”.
(“HIV-1” is an abbreviation of “HIV-1 Protease”)
sorts
 Protein, String union String
ops
 getTypes: Protein String
 union
 getFunctions: Protein String

Type and function can be returned in one query even
though they are strings in different formats.

Example 2. Gets sequence and secondary structure of
protein “HIV-1”.
sorts
 Protein, Sequence union Secondary
ops
 sequence: Protein Sequence
 union
 getSecondary: Protein Secondary
 In the Protein-OODBMS, Sequence is string and
secondary is an object.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1977

Finally, it can have some conditions or constraints on sort
and ops which are very important for queries.

Example 3. Gets sub-sequence from position 0 to position
50 of protein.
sorts
 Protein, subSequence
ops
 subSequence: Protein subSequence(0, 50)
 Example 4. Gets sequence of protein which has the same
sub-sequence as protein “HIV-1”.
sorts
 Protein, Sequence
ops
 sequence : Protein(location
 (Protein.proteinName,
 subSequence(“HIV-1”,5,20))>=0) Sequence

B. Protein Algebra Optimization
The Protein Algebra provides query optimization for large

database and complex queries to provide system much better
performance. The basic idea of the optimization is as follows:
Suppose that the query contains several constraints, Protein
Algebra checks them starting from the most inner one, it will
stop query if present condition does not pass the checking,
which saves time and optimizes queries. The following
examples 5 and 6 illustrate how Protein Algebra optimizes the
complex queries by using optimizer inside of Protein Algebra.

Example 5. Gets sequence of protein which the length is
greater than the length of protein “HIV-1” and has the same
sub-sequence as protein “HIV-1”.
sorts
 Protein, Sequence
ops
 sequence:
 Protein(lengthOfSequence(Protein.
 proteinName)>lengthOfSequence(“HIV-1”),
 location(Protein.proteinName,
 subSequence(“HIV-1”,5,20))>=0) Sequence

Protein Algebra decides whether checking will go through
next condition depending on the first condition
lengthOfSequence(Protein.proteinName) >
lengthOfSequence(“HIV-1”) is true or not. Example 6
is similar as this one.

Example 6. Gets type of protein which has the same
number of helix as protein “HIV-1” and the number of chain
is greater than protein “HIV-1”.
sorts
 Protein, String
ops
 getTypes:
Protein(noOfHelix(Protein.proteinName)==
 noOfHelix(“HIV-1”),
 noOfChain(Protein.proteinName)>
 noOfChain(“HIV-1”)) String

C. Protein Ontology
Ontology is a controlled vocabulary to describe the

functions, process and components for specific domains and
used by people, databases, and applications to share domain
information [9]. In the computer world, ontology is known as

a machine-readable vocabulary that is specified with enough
precision to allow differing terms to be precisely related [9].
Ontology enables users to share data, reuse and analyze
domain data, especially for complicated biological data. But
due to different goals and/or shortcomings of existing
ontologies, this paper designed an ontology called Protein
Ontology to resolve syntactic, terminological and semantic
differences that are induced by multiple protein data sources.
The Protein Ontology is capable of defining and identifying
genomics and protein data objects, data operations and
terminologies. It is also able to solve the problems of
identical protein information represented differently in
different data sources and same name used in the distinct
concepts in different research to remove protein data
ambiguity, incompatibility and inconsistency.

The Protein Ontology is designed as a dictionary to map
Protein-QL [2] to Protein Algebra. The following examples
show how it works.

Example 7. Gets primary structure of protein “HIV-1”.
Protein-QL query is:
(Protein.primary)(Protein.proteinName=“HIV
-1”);

Protein Ontology will map it into Protein Algebra as
follows:
sorts
 Protein, Primary
ops
 getPrimary: Protein Primary
 Example 8. Gets type and function of protein “HIV-1”.
Protein-QL query is:
(Protein.types,Protein.functions)(Protein.
proteinName= “HIV-1”);

It will be translated by Protein Ontology into Protein
Algebra as follows:
sorts
 Protein, String union String
ops
 getTypes: Protein String
 union
 getFunctions: Protein String
 Example 9. Gets sequence of protein which the length is
greater than the length of protein “HIV-1” and has the same
sub-sequence as protein “HIV-1”.

Protein-QL query is as follows:
(sequence(Protein.proteinName))(lengthOfSe
quence(Protein. proteinName)
 >lengthOfSequence(“HIV-1”), location
(Protein.proteinName,subSequence(“HIV-
1”,5,20))>=0)

It should be mapped to Protein Algebra as follows:
sorts
 Protein, Sequence
ops
sequence:Protein(lengthOfSequence(Protein.
proteinName)>lengthOfSequence(“HIV-1”),
location(Protein.proteinName,
subSequence(“HIV-1”, 5, 20))>=0) Sequence

 The Protein Ontology has two important goals. The first
one is to identify the objects in genomics and protein domains.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1978

The second one is to interpret Protein-QL queries to Protein
Algebra and remove the data ambiguity, incompatibility and
inconsistency by defining genomics and protein domain
specific terminologies to describe the syntax and semantics.

D. Protein Wrapper
The Protein Wrapper capsulate the knowledge of Protein-

OODB except for providing a pathway from Protein Algebra
to Protein-OODB, which makes the Protein Algebra
independent of underlying database. Thus the users only need
to recode the Protein Wrapper without changing Protein
Algebra if Protein Algebra is integrated into other data
sources. In addition, Protein Wrapper can interpret Protein
Algebra with query optimization to Protein-OODB.

Example 10. Gets primary structure of protein “HIV-1”.
sorts
 Protein, Primary
ops
 getPrimary: Protein Primary
 This algebra contains two PDTs -- Protein and Primary as
well as one operator getPrimary. It is translated into Protein-
OODB as follows:
select p.Primary from Protein p where
p.proteinName=“HIV-1”;
 Example 11. Gets type and function of protein “HIV-1”.
sorts
 Protein, String union String
ops
 getTypes: Protein String
 union
 getFunctions: Protein String
 This algebra can be translated into Protein-OODB as
follows:
select p.types, p.functions from Protein p
where p.proteinName=“HIV-1”;
 Examples 10 and 11 show a general format that Protein
Wrapper translates Protein Algebra to Protein-OODB. The
following examples 12 and 13 will illustrate how Protein
Wrapper interprets Protein Algebra optimization queries to
Protein-OODB queries. In these two examples, Protein
Wrapper will interpret and at the same time check the
conditions. It will continue to check next condition if present
one is satisfied. Otherwise Protein Wrapper will stop
translation and send result back to Protein Algebra.
 Example 12. Gets sequence of protein which the length is
greater than the length of protein “HIV-1” and has the same
sub-sequence as protein “HIV-1”.
sorts
 Protein, Sequence
ops
sequence:Protein(lengthOfSequence(Protein.
proteinName)>lengthOfSequence(“HIV-1”),
location(Protein.proteinName,
subSequence(“HIV-1”, 5, 20))>=0) Sequence
 This query can be translated into Protein-OODB as follows:
select sequence(p.proteinName)
from (select p.proteinName
 from Protein p
 where(lengthOfSequence(p.proteinName)>
 lengthOfSequence(“HIV-1”))

where location(p.proteinName,
 subSequence(“HIV-1”,5,20)>=0);
 If the condition
lengthOfSequence(p.proteinName) >
lengthOfSequence(“HIV-1”) is true, then the
translation will go through following conditions. Otherwise
the translation will stop for this protein and start next
translation for another protein. Example 13 has similar syntax.

Example 13. Gets type of protein which has the same
number of helix as the one of protein “HIV-1” and the number
of chain is greater than protein “HIV-1”.
sorts
 Protein, String
ops
getTypes:Protein(noOfHelix(Protein.protein
Name)==noOfHelix(“HIV-1”),
noOfChain(Protein.proteinName)>
noOfChain(“HIV-1”)) String
 This algebra will be translated into Protein-OODB as
follows:
select p.types
from (select p
 from Protein p
 where (noOfHelix(p.proteinName)>
 noOfHelix(“HIV-1”))
where noOfChain(p.proteinName)>
 noOfChain(“HIV-1”);

Protein Wrapper translates algebra according to the order of
Protein Algebra constraints without losing any optimization of
Protein Algebra. And the detail of translation from Protein
Algebra to Protein-OODB will be done automatically by the
system to make this design easily be understood.

IV. RELATED WORK
In [7], authors talk about PO ontology algebra that allows

multiple diverse sources stored in the protein ontology for
future information retrieval. The PO approach provides
semantic relationships among multiple sources. This approach
allows the users to exploit protein information from different
sources, which makes protein data sources integration more
scalable.

PRONTO [8] constructs a protein ontology that mines the
literature and the data sources. It only represents relationship
among protein literatures and does not formalize knowledge
about protein process.

In [4], authors introduce a system called Periscope/SQ,
which is based on an extension of relational algebra. They
define new physical operators and make use of the effective
optimization for selectivity estimation of string pattern
matching of complex sequence queries.

Genomics Algebra (GenAlg) [1] proposes an approach to
expressing complex genomics operations through Genomics
Algebra. That approach builds a completely new expressive
algebra to present biological operations such as transcribe,
translate etc. But there is a still further need to extract protein
data information from Genomics Algebra based on data types
and operations. Therefore, the algebra in this paper creates
new operators and sorts based on GenAlg [1], and apply them

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1979

into the protein DSOODBMS to map Protein-QL to Protein-
OODB such that it can take advantage of OODB and algebraic
optimization to make queries easier and faster.

V. CONCLUSION AND FUTURE WORK
The paper presents an algebra architecture that is protein

domain specific and provides query optimization. It is three-
component architecture, Protein Ontology, Protein Algebra
and Protein Wrapper. Protein ontology as a dictionary maps
Protein-QL queries to Protein Algebra queries. Protein
Algebra extends Genomics Algebra to protein domain and
optimizes queries. Protein Wrapper is designed to connect
Protein Algebra and Protein-OODB and makes Protein
Algebra independent of Protein-OODB.

For the future work, the goal is to make all the mappings
and translation in Protein-DSOODBMS be automatically done
by using suitable algorithms so that users can easily use the
system without any difficult learning. In addition, the Domain
Specific Object Oriented DataBase Management System
(DSOODBMS) is presently implemented in protein domain, it
will be extended to other biological domains such as DNA,
RNA and so on including adding other algebras such as DNA
algebra, RNA algebra into the Bio-OODBMS. It is also a plan
to extend the Protein Domain Specific OODB Management
System (Protein-DSOODBMS)
to provide wider services shown in Fig 3 by formulating
Protein-OODB into XML format such that the system not only
allows users to input and output XML queries, but also
provides a few databases for users to choose for their queries

which makes it independent of underlying database, therefore
users request protein data in object oriented format, but data
can be stored in multiple formats such as OODB (such as
EYEDB), relational DB (such as MySQL), XML DB or other
data storages.

REFERENCES
[1] J. Hammer and M. Schneider, “The GenAlg project: developing a new

integrating data model, language, and tool for managing and querying
genomic information,” ACM SIGMOD, vol. 33, pp. 45-50.

[2] Y. Wang, R. Sunderraman, and P. Phoungphol, “A high level
programming environment for protein structure data,” 2007
International Symposium on Bioinformatics Research and Applications
(ISBRA 2007), pp. 215-226.

[3] J. Hammer and M. Schneider, “Genomics Algebra: A new, integrating
data model, language, and tool for processing and querying genomic
information,” First Biennial Conference on Innovative Data Systems
Research, pp. 176-187.

[4] S. Tata, W. Lang, and J.M. Patel, “Periscope/SQ: interactive exploration
of biological sequence databases,” Proceedings of the 33rd international
conference on Very large databases, VLDB ‘07, 007, pp. 1406-1409.

[5] Y. Wang and R. Sunderraman, “PDB data curation,” Engineering in
Medicine and Biology Society, 2006. EMBS '06. 28th Annual
International Conference of the IEEE, 2006, pp. 4221 - 4224.

[6] Y. Wang and R. Sunderraman, “Database management system for
protein structure data,” Innovations and Advanced Techniques in
Systems, Computing Sciences and Software Engineering, pp.526-531,
2008.

[7] A.S. Sidhu, T.D. Dillon, and E. Chang, “Ontology algebra for
composition of protein data sources,” IEEE 2007, pp.144-140

[8] I. Mani, Z. Hu, and W. Hu, “PRONTO: a large-scale machine-induced
protein ontology,” 2nd Standards and Ontologies for Functional
Genomics Conference (SOFG 2004), UK.

[9] http://www.alphaworks.ibm.com/contentnr/semanticsfaqs

RMI
Server

Client
API

Protein-
OODB

Protein-
QL

Middleware

EYEDB

MySQL

XML DB

Other DB

Data Storage

Protein
Algebra
Architecture

Fig. 3 The architecture of DBMS for protein structure data

