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Abstract—In this paper, we propose a fuzzy aggregate 

production planning (APP) model for blending problem in a brass 
factory which is the problem of computing optimal amounts of raw 
materials for the total production of several types of brass in a 
period. The model has deterministic and imprecise parameters 
which follows triangular possibility distributions. The brass casting 
APP model can not always be solved by using common approaches 
used in the literature. Therefore a mathematical model is presented 
for solving this problem. In the proposed model, the Lai and 
Hwang’s fuzzy ranking concept is relaxed by using one constraint 
instead of three constraints. An application of the brass casting 
APP model in a brass factory shows that the proposed model 
successfully solves the multi-blend problem in casting process and 
determines the optimal raw material purchasing policies.  

 
Keywords—Aggregate production planning, Blending, brass 

casting, possibilistic programming.  
 

I.  INTRODUCTION 
RASS is an alloy of copper and zinc; it also includes 
small amounts of other metals such as tin, lead, nickel, 

iron, aluminum, antimony. There are several brass types 
corresponding to different ratios of the metals. A critical 
process in brass casting is blending of the raw materials in a 
furnace so that the specified metal ratios are satisfied; this is 
called the melting operation. The raw materials are mainly 
composed of low-cost scrap materials, each of which 
contains several metals; to meet the required specifications, 
pure metals are also used in blending. Therefore, the 
blending problem requires the determination of the cheapest 
blend of available raw materials to meet the specifications. 
Applications of LP blending models range from the oil 
industry, to the chemical industry, to the food industry; a 
literature overview was provided by Ashayeri, van Eijs and 
Nederstigt [1]. Also, there were applications to steel 
production; Kim and Lewis [2] developed a large scale 
linear programming model over a planning horizon.  

This model was recently modified by Rong and Lahdelma 
[3] to model uncertainty in raw material compositions by 
fuzzy chance constraints. On the other hand, there has been 
no application except Sakalli and Birgoren’s [4] study to 
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brass production in the scientific literature to our best 
knowledge. They proposed a multi-blend APP model for 
brass casting in the deterministic case. 

Aggregate production planning (APP) is concerned with 
determining production requirements of products to meet 
forecast demand in the medium term, often from 2 to 18 
months. A wide variety of APP techniques have been 
developed since the 1950. In real-world APP problems, 
input data or parameters frequently are imprecise owing to 
some information being incomplete or unobtainable. Zadeh 
[5] proposed the fuzzy set theory providing a highly 
effective means of handling with imprecise data. 
Zimmermann [6] first introduced fuzzy set theory into 
conventional LP problems. Since then, fuzzy mathematical 
programming has developed into several fuzzy optimization 
methods for solving APP problems [7]. The studies on fuzzy 
APP model are Lee [8], Tang, Wang, and Fung [9], Wang 
and Fang [10], Wang and Fang [11], Tang, Fung, and Yung 
[12]. 

Zadeh [13] presented the theory of possibility, which is 
related to the theory of fuzzy sets by defining the concept of 
a possibility distribution as a fuzzy restriction, which acts as 
an elastic constraint on the values that can be assigned to a 
variable. Buckley [14, 15] formulated and described a 
procedure for solving existing PLP problems. Lai and 
Hwang [16] developed an auxiliary multiple objective linear 
programming (MOLP) model for solving a PLP problem 
with imprecise objective and/or constraint coefficients [11]. 
The studies on PLP problems are Hsieh and Wu [17], Tang, 
Wang and Fung [18], Hsu and Wang [19], Wang and Liang 
[11] and Liang [20]. 

II.  BLENDING PROBLEM IN BRASS MELTING PROCESS 
Brass types are defined according to percent weights of 

metals in their compositions. A certain level of variability in 
the percentages is tolerable in terms of material properties, 
therefore the standards for a brass type is comprised of 
lower and/or upper specification limits. Brass is produced by 
melting pure materials such as pure copper and zinc and 
scraps materials such as scrap brass parts and scrap cables. 
Scrap materials are much cheaper than pure materials; using 
them allows a significant reduction in material costs, but 
also poses a challenge to meet specification limits, because 
scrap materials contain different metals with varying 
percentages. Brass melting process is presented in Fig. 1. 

 

B 
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Fig. 1 Brass melting process 

 
First, the foreman compute the amounts of scrap 

materials, and pure materials if necessary, to be melted 
together. This process is called “preparing charge”. Raw 
materials are blended and melted in a melting furnace; next 
a sample from the melt brass is tested in the lab to check 
violations of specification limits. If there is any violation, 
pure copper or zinc is added to the melt brass as a remedy 
for bringing in control of the percentages. When there is no 
violation, the melt brass is poured into the resting furnace. 

III. SOLVING LINEAR PROGRAMMING MODELS WITH 
IMPRECISE COEFFICIENTS 

Linear programming model with imprecise coefficients is 
given in Eq. 1: 

 

max

. . , 0s t Ax b and x
cx

≤ ≥��
�

                                    (1) 

where ,A b and c�� � are imprecise and have possibility 
distributions. We present Lai and Hwang approaches to 
solve Eq. 1 in Section III. A. 

A.. Lai and Hwang Approach 
The fuzzy objective function is fully defined by three 

corner points ( pC , 0), ( mC , 1) and ( oC , 0) geometrically. 
Lai and Hwang [21] suggested that maximizing the fuzzy 
objective can be obtained by pushing these three critical 
points in the direction of the right- hand side. Therefore the 
objective function in Eq. 1 is translated to the following 
form: 

 

( )max , ,m p oC x C x C x

x X∈
                                                     (2) 

 
Instead of maximizing these three objectives 

simultaneously, Lai and Hwang proposed to 
maximize mC x , minimize [ mC x - pC x ] and maximize 

[ oC x - mC x ]. This lead us the following auxiliary multi-
objective linear programming model of Eq. 3: 
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Lai and Hwang suggested using Zimmermann’s fuzzy 

programming method to convert the auxiliary multi-
objective linear programming model into an equivalent 
single-goal LP problem. First the positive ideal solutions 
(PIS) and negative ideal solutions (NIS) of the objective 
functions can be specified as follows [21, 22]:  
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The linear membership function of each objective 

function is defined as follows: 
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( )3 3f z  is similar to ( )2 2f z .  
 
Lai and Hwang used fuzzy ranking concepts for the 

constraints and combined it with their strategy for imprecise 
objective function. For a minimal acceptable possibility, β , 
the constraints of the Eq. 1 can be modeled as follows: 

 

, , , 0p pm m o oA x b A x b A x b xβ β β ββ β≤ ≤ ≤ ≥    (6) 

 
Finally, Zimmermann’s following equivalent single-

objective linear programming model is used to solve the 
model [23]. 

 

( )
max
. . , 1,2,3
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IV. THE APP MODEL FOR BRASS CASTING 
The blending problem, in brass casting, has two different 

aspects. One is the problem of computing the optimal blends 
for a daily or weekly production: this is formulated as a 
single-blend model to be used on operational level at the 
foundry. The other aspect is the problem of computing 
optimal amounts of raw materials for the total production of 
several types of brass in a period: this is formulated as a 
multi-blend model to be used by the planning department as 
an APP tool for determining optimal raw material 
purchasing policies.  

A. Problem Formulation 
The brass casting APP model is translated to a crisp 

model by using Lai and Hwang’s approach and given in Eq. 
8-20. Objective functions of the model are minimizing the 
most possible value of the imprecise total costs, maximizing 
the possibility of obtaining lower total costs and minimizing 
the risk of obtaining higher total costs.  

 
Model notation 
There are n number of raw material types, m number of 

ingredients, t number of products (brass type). 
i  raw material type,  1,...,i n=  
j   ingredient type (metals),  1,...,j m=  
k product (brass) type,  1,...,k t=  

iC�  cost of raw material i per kg in a planning period 
Pij percentage of ingredient j in material i in a planning 

period,    1,...,i h=  

ijR�  percentage of ingredient j in material i in a planning 

period,    , ...,i h n=  
Vi yield coefficient for material i 
Wj yield coefficient for ingredient j 
Ukj  upper limit on the percentage of ingredient j in 

product k 
Lkj  lower limit on the percentage of ingredient j in 

product k 

iMX
∼

 maximum quantity of material i to be procured in a 
planning period 

iMN
∼

 minimum quantity of material i to be procured in a 
planning period 

kD�  amount of product k to be produced in a planning 
period 

 
Decision variables 
Xik  amount of material i to be used for production of 

product k (kg) 
 
Mathematical model 
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In brass casting APP model, the maximum procurement 

amounts of material i ( iMX
∼

), the minimum procurement 

amounts of material i ( iMN
∼

), the amount of product k to be 

produced ( kD� ), the cost of raw material i per kg ( iC� ) and 

the percentages of the ingredients in scrap materials ( ijR� ) 

are all imprecise and have triangular possibility 
distributions. Fig. 2 represents the triangular possibility 
distribution of imprecise number iC� = ( p

iC , m
iC , o

iC ) 
All charge materials may or may not be utilized to their 

maximum available percentage Pij or ijR�  for example, 

utilization depends on the form of the material (ingots, 

turnings, etc.). The percent utilization of Pij or ijR� is 

represented by a material yield coefficient Vi. Also, a certain 
amount of some ingredients are lost since they become 
gaseous or they are trapped in the slag phase. The percent 
loss is modeled by an ingredient yield coefficient Wj. In 
brass production, the yield coefficients are close to 1, and 
sometimes can be approximated by 1. 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:4, 2009

418

 
Fig. 2 Triangular possibility distribution 

 
The raw materials are classified into two groups: first 

group includes pure materials and brass products return 
from other process to the casting process in the factory 
which is called work in process. The percentages of the 
ingredients in the pure materials are known and 
deterministic. However, works in process material’s 
ingredients percentages are not deterministic. When the lab 
test results were analyzed, it had been seen that the brass 
products are following normal distributions.  

For a single-blend model to be used on operational level, 
those probability distributions are very important to satisfy 
the metal ratios in the product. So the calculations of raw 
materials amounts to be added in charge must be done 
carefully considering the random variables.  

On the other hand, the random variables are not very 
important for a medium or long term planning. The 
percentages of the ingredients are approximate to the mean 
parameter of the distributions in a long term planning 
period; this is “the law of large numbers” in the statistics. 
Therefore, the percentages of the ingredients in the work in 
process raw materials are known and deterministic for APP 
models. So the ingredients percentages in the first group raw 
materials are deterministic and represented with Pij.    

The second group raw materials include scrap materials. 
The percentages of the ingredients in scrap materials are not 
known precisely because of that, they are modeled as 

possibilistic distributions and represented with ijR� . 

Eq. 11-16 ensure the percentage of ingredient j in product 
k between upper and lower specification limits. 

Eq. 17 is constructed to meet the demand. Not all 
materials are always available in the market, or they can be 
procured in limited amounts. The predicted maximum 
amount that can be procured in a period is expressed as MXi 
(Eq. 18). Also, there are contracts with raw material 
suppliers dictating procurement of certain raw materials; the 
minimum procurement amounts are MNi (Eq. 19). 

In Eq. 17, 18 and 19, only the right- hand sides are 
imprecise and have triangular possibility distributions. To 
obtain crisps right- hand side values, weighted average 
method is used which is proposed by Lai and Hwang [21] 
where w1 + w2 + w3 = 1.  w1, w2 and w3 represent the 
weights of the most pessimistic, most possible and most 
optimistic values of the imprecise right-hand side, 
respectively. This study applies the concept of the most 
likely values proposed by Lai and Hwang [21], assuming w2 
= 4/ 6 and w1 = w3 =1/6.  

 

B.  The Proposed APP Model  
The APP model of brass casting (Eq.8-20) does not 

produce feasible solutions every time based on possibility 
distributions of imprecise data. The reason of unfeasible 
solutions is absence of the decision variables satisfying Eq. 
11-16.  

Lai and Hwang convert the fuzzy inequalities to the crisp 
inequalities using the fuzzy ranking concepts. In this 
concept, a fuzzy number is greater than the other, if its 
pessimistic, possible and optimistic values are greater than 
the others pessimistic, possible and optimistic values, 
respectively. 

In real life, objects are often compared by their attributes. 
The comparison of each attribute is done based on a certain 
measurement to indicate the difference between objects. In 
common sense, one object is better/greater than the others, if 
the best value of its attribute is better/greater than the best 
value of the same attribute of the other objects. In another 
way, the worst value of the attribute may also be used to 
compare two objects [24]. The number of attributes and the 
compared attributes can change based on desired realization 
degree. Therefore, the fuzzy inequalities can be converted to 
the crisp inequalities using one attribute from the three 
attributes of possibilistic distribution (pessimistic, possible 
and optimistic) instead of using three of them. The selection 
of using one or two or three attributes must be done based 
on the problem structure. 

The APP model of the brass casting is suitable for using 
one attribute from the three attributes. Because the solutions 
of the APP model is not used for computing the optimal 
blends to meet the required specifications for a daily or 
weekly production on operational level; it is used for 
determining optimal raw material purchasing policies in a 
medium or long term planning. We can not prepare blend 
for a daily or weekly production using the APP solutions. 
Therefore, it is not absolutely necessary to satisfy Eq. 11, 12 
and 13 or Eq. 14, 15 and 16 simultaneously in brass casting 
APP model. 

In the proposed model, the fuzzy inequalities are 
converted to the crisp inequalities by using only Eq.13 and 
16. The percentage of ingredient j in product k is ensured 
between the minimum value of the lower bound and 
maximum value of the upper bound by using these 
constraints. Therefore, the proposed model is obtained by 
using Eq.8, 9, 10, 13, 16, 17, 18, 19 and 20.  

V.  AN APPLICATION OF APP MODEL FOR BRASS CASTING 
The application of APP model for brass casting is 

performed in MKEK Brass Factory in Kırıkkale, Turkey; it 
is the oldest brass factory with the largest production 
capacity in Turkey. The management wants to produce 
nineteen type of brass by using 40 different types of raw 
materials in a 10 months planning period. The percentages 
of metals in raw materials are ‘effective percentages’ which 
are Vi*Wj*Pij. In this particular application, loss of the 
ingredients for most of the raw materials has been 
considered insignificant by the factory engineers, thus yield 
coefficients are approximated by 1.  
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The proposed brass casting APP model is performed for 
minimum acceptable possibility (β =0.5).  The PIS and NIS 
values of the objective functions are found as (2660298, 
1554423), (9964426, 16533540) and (2563058, 4315143) 
for z1, z2 and z3 respectively. When the equivalent LP model 
of the auxiliary MOLP problem is solved, the total cost is 
obtained as a triangular possibility distribution with 
(10108831, 12363180, 15562512) which is given in Fig. 5 
and overall degree of DM satisfaction with multiple goal 
values is achieved at 0.633. 

 

 
Fig. 5 The triangular possibility distribution of the total cost 

 
The management of the factory is satisfied with those 

solutions and does not need to modify linear membership 
functions.   

VI.  CONCLUSION 
In this paper a possibilistic APP model for blending 

problem has been discussed in a brass factory. Demand 
quantities, percentages of the ingredients in some of the raw 
materials, cost coefficients and minimum and maximum 
procurement amounts are all imprecise and have triangular 
possibility distributions. 

The brass casting APP model can not be solved by using 
common approaches used in the literature every time. 
Therefore a mathematical model is proposed for solving this 
model. In the proposed model, the Lai and Hwang’s fuzzy 
ranking concept is relaxed by using one constraint instead of 
three constraints. 

An application of the proposed model is performed in 
brass factory in Turkey. The solution of the problem 
presents that the proposed model successfully solves the 
multi-blend problem in casting process and determines the 
optimal raw material purchasing policies for a medium or 
long term planning period. 
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