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An Agent Based Simulation for Network Formation

with Heterogeneous Agents
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Abstract—We investigate an asymmetric connections model with a
dynamic network formation process, using an agent based simulation.
We permit heterogeneity of agents’ value. Valuable persons seem
to have many links on real social networks. We focus on this
point of view, and examine whether valuable agents change the
structures of the terminal networks. Simulation reveals that valuable
agents diversify the terminal networks. We can not find evidence that
valuable agents increase the possibility that star networks survive the
dynamic process. We find that valuable agents disperse the degrees
of agents in each terminal network on an average.

Keywords—network formation, agent based simulation, connec-
tions model.

I. INTRODUCTION

N
ETWORKS play a significant role in social or eco-

nomic activities. For example, many people get their

jobs having help from their acquaintance or friend network.

Their friends may give them information on vacancy. The

information may originated from the friends or friends of

the friends. Social networks deliver information and bring

members in utility either directly or indirectly. A research in

Massachusetts reported that many of surveyed residents got

their jobs through social network [4], [5].

Agents - including individuals, firms, countries, and so on

- creates or sever social links on their own initiatives. The

connections model is a helpful device to seek properties social

network structures have [6]. Consider a situation that a number

of agents can create and can sever links to other agents.

Agents obtain benefits from other agents through paths on the

network to which they belong. Agents obtain benefits from

not only directly linked agents but also indirectly connected

agents, however, the benefits diminishes to the distance of the

path. Since maintaining links is costly for involved agents,

agents use their own discretion in creating and severing links

to maximize their net benefit. It is known that if agents are

homogeneous and parameters are in some range then star

networks (say in other words, hub and spoke network) can

be stable [6]. The form of star networks is characteristic. One

hub agent connects all of other agents directly, although all

of agents on the periphery do not have direct links which

connect each other. The hub agent has many links and each

of other agents has only a link which connect the agent to the

hub agent. It is remarkable that the symmetric connections

model shows a possibility that this characteristic structure is

realizable in society.
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Stability means that no agent has incentive to create new di-

rect links or sever existing direct links, and this is a static con-

cept.1 Consider a simple dynamic network formation process.

Two agents are randomly picked up in every period and they

make a decision on having the link between them. All agents

are so myopic that they consider whether the link increases

their current utility. In the symmetric connections model with

the dynamic network formation process, it is known that the

probability that process converges to star networks goes to

0, as the number of agents goes to infinity [7]. A simulation

research showed that it is hard that star networks survive the

dynamic process [1]. These studies revealed that star networks

can hardly realize in reality even if the probability is not zero.

We explore dynamic results of network formation process

using an agent based simulation. We permit heterogeneity of

values of agents which spill to other agents over network.

VIPs, for example, ministers or secretaries, executives of major

companies and so on, seem to have many links in real society.

They might be so valuable for other persons that many people

wish to link to VIPs. We focus on this point of view. If

there exist VIPs, the dynamic process might converge to star

networks more frequently.

An operation of simulation is started from the initial state

where no one has any link. After the dynamic network

formation process converges, the network should arrive at an

stable network, i.e., no agent has incentive to make any new

links and to sever any existing links. We repeat sufficiently

many operations and explore properties of terminal networks.

The shape of terminal network is not unique generally as well

as stable network is not unique. Simulation data reveals the

frequency of networks which realize as a terminal network. We

show several effects that VIPs affect terminal networks. In the

next section, we formulate an asymmetric connections model

with a dynamic network formation process and established

basic results are shown [6], [7]. Section 3 provides the results

of simulation. Section 4 provides concluding remarks.

II. MODEL

A. The connections model

Consider a set of agents N = {1, 2, . . . , n}. Let ij := {i, j}
represents a link between agents i and j and it means that i

and j is directly connected. A network g is a list of links. We

consider only non-directed graphs. Each agent i ∈ N receives

a payoff ui(g) from other agents over network g. The payoff

1Exact definition of stable networks are detailed later.
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function of i is defined as:

ui(g) =
∑

j 6=i

δs(ij)vj − di(g)c. (1)

The first term of the right hand side of equation (1)

represents benefits that agent i receives from other agents over

network g. Let vj > 0 represent agent j’s value which benefits

others who linked to j. Let δ ∈ (0, 1) be a discount factor.

Let s(ij) be the length of the shortest paths between agents

i and j.2 Since δ < 1, agent i receives more benefit from

a closer agent than a distant agent. For example, if δ = δ

and agents i and j are linked directly, i receives 0.8vj . If j

is reachable from i by just two steps, i receives δ2vj . For

the convenience, if agents i and j are not connected (neither

directly nor indirectly), then δs(ij) = 0. Specially, if vi = vj
for all i and j, we say that the model is symmetric, otherwise

asymmetric.

The second term of the right hand side of equation (1)

represents costs of maintaining each links which i has. Note

that all agents faces same link costs. Let c > 0 be link costs.

Each agent pays c per involved direct link. Let di(g) be the

degree of i in network g, that is the number of links i has. For

example, agent i on the left network g in Fig. 1 links to agent

j, k and l. We say that i has three links, or di(g) = 3. The

degree dj(g) of agent j on the right network g in Fig. 1 is

two. Agent i receives the payoff of ui(g) = 3δ, since i links

to all of other agents on g. Agent j on g receives the payoff

of uj(g) = 2δ+ δ2, since j links to l by just two steps. Agent

l on the right network g′ receives the payoff of uj(g
′) = 0,

since l does not connected to any agents (neither directly nor

indirectly).

i j

network g network g′

kl

i j

kl

Fig. 1. Examples of networks when n = 4.

B. Pairwise stability

Generally speaking, a network is stable if and only if there

is no pressure to change the structure. In social networks, the

vertexes are agents face decision makings about linkages to

other agents. A very plausible formulation for network stability

is as follows [6]. A network g is pairwise stable if and only

if for all agents i and j, (i) ui(g) ≥ ui(g− ij) and (ii) ui(g+
ij) > ui(g) → uj(g + ij) < uj(g). This means that no

agents in network g have incentives to sever existing links

(condition (i)) or to create new links (condition (ii)). Condition

(i) presumes that agents can sever involved links on their own

2The length of a path is the number of links included in the path.

initiative, however, condition (ii) presume that agents cannot

create new links without agreements with their opponents.

A well-known static property of stable networks in the

symmetric connections model is as follows [6].

Theorem 1 (Jackson and Wolinsky (1996)). Suppose a sym-

metric connections model. For all n, δ ∈ (0, 1) and c > 0,

there exists a pairwise stable network such that:

(i) if δ ≤ c then the empty network is pairwise stable,3

(ii) if δ−δ2 ≤ c ≤ δ then a star network is pairwise stable,

(iii) if c < δ then the complete network is pairwise stable

uniquely.4

The structure of star networks is remarkable. A hub agent

links to all of other agents and peripheral agents do not link

each other. The hub agent connects from a peripheral agent

to another by just two steps, and star networks is a class

of the least linked network within connected networks.5 In

practice, many social linkage seem to have such characteristics

of structure. Theorem 1 showed a possibility that hub and

spoke structure is realizable as a stable network in society.

C. Dynamic process

Consider discrete periods t = 1, 2, . . . . In each period t,

nature chooses a pair (i, j) of agents with uniform probability,

and matched agents make decisions against severing existing

links or creating a new link or staying status quo. They make

decisions independently. Let g(t−1) be the network decided in

period t−1 and the network g(t) in current period results from

their current decision. If i and j are already linked directly,

they decide to sever the link or to stay status quo. If one of

them want to sever the link then the link vanishes, and in this

case, the network in the period is g(t) = g(t − 1) − ij.6 If i

and j are not linked directly, they decide to have new link or

stay status quo. If both of them want to have the link then the

link is created, and in this case, the network in the period is

g(t) = g(t−1)+ij. Shortly, each agent can sever links on her

own authority although she cannot create new links without

the partners’ agreement. We assume initial state of network is

the empty network, g(0) = ∅.

Pairwise stability is a static concept and Theorem 1 is a

static result. From a dynamic point of view, there is a negative

result against Theorem 1 [7].

Theorem 2 (Watts (2001)). Suppose 3 < n < ∞ and δ−δ2 ≤
c ≤ δ in a symmetric connections model. The probability that

the network formation process will converge to a star goes to

0, as n goes to infinity.

A simulation research revealed that even if the size of agent

set is small, we cannot virtually expect that star networks

realize as a terminal of network formation process [1]. The

processes converge only three times in 6000 trials if n = 7
and none in 6000 trials if n = 8. Theoretically, it is possible

3All agents have no link in the empty network.
4all agents are linked directly each other in the complete network.
5A network is connected if there exists a path between all pair of agents.

A path between agents i and j in network g is a sequence k1k2 . . . kl of
agents such that k1 = i, kl = j and khkh+1 ∈ g for h = 1, 2, . . . , l − 1.

6For a notational convenience, g−ij := g\{i, j} and g+ij := g∪{i, j}.
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that star networks realize as a terminal of network formation

process, however, it is not possible practically.

VIPs, for example, ministers or secretaries, executives of

major companies and so on, seem to have many links in real

society. We focus on this point of view. Does the terminal

networks tend to be a star form if there exist VIPs? We explore

an asymmetric connections model with a dynamic network

formation process by making use of simulation.7

D. Simulation algorithm

The network structure is decided by agents’ decision mak-

ings in each period. In period t, the network g(t − 1) which

is decided in period t − 1 is given and is the status quo

in the current period. If agents want to stay status quo

then g(t) = g(t − 1), otherwise g(t) = g(t − 1) + ij or

g(t) = g(t − 1) − ij. The simulation algorithm in the tth

period is as follows.

Step 1 A pair (i, j) of agents is picked up randomly by

nature. All pairs are chosen with same probability.

Step 2 If ij ∈ g(t − 1), i and j decides independently

whether to sever the link. If at least one of them

want to sever the link, g(t) = g(t− 1)− ij.

Step 3 If ij 6∈ g(t−1), i and j decides whether to create new

link between them. If both of them want to create the

link, g(t) = g(t− 1) + ij.

If a network is maintained consecutively over previous many

periods, an operation is terminated. We are unable to escape

from the error that the terminal network is not pairwise stable

in simulation. However, we can reduce the probability of the

error to almost 0. The condition a operation ends is shown

in Table I. For example, an operation is terminated when a

network maintained over consecutive 260 periods, if n = 8.

When 1000 times of operations are finished, the expected value

of the number of errors is less than 0.1, since the probability

of the error is at most 0.00783%.8

TABLE I

n termination condition probability of error

4 60 0.00177%
5 90 0.00762%
6 140 0.00638%
7 190 0.00942%
8 260 0.00783%

1000 times of operations are carried out for each set

of the values of parameters. Parameters we manipulate is

summarized in Table II. We fix δ to 0.8, the value of a agent

who is not a VIP to 1, and the value of a VIP to 5. 45000

times of operations are carried out in all, since the number of

cases is 45 (=5× 3× 3). 9000 times of operations are carried

out for each n.

7There is a theoretical work that extends the symmetric connections model
by allowing heterogeneities of both agents’ values and link costs [3].

8If n = 8, the number of combinations of a pair is 28, i.e., 8C2 = 28. If
the number of pairs which members have incentives to cerate or to sever the
link between them is unfortunately only one, the probability the pair is not
picked up in a random matching is 27/28. The probability that the pair is not
picked up over consecutive 260 periods is ( 27

28
)260 = 0.0000783. At worst,

the probability that the terminal network is not pairwise stable is 0.00783%.

TABLE II

parameters values

n 4 or 5or 6 or 7 or 8
δ 0.8
c 0.3 or 0.5 or 0.7
the number of VIPs 0 or 1 or 2
value of a agent 1
value of a VIP 5

III. RESULTS

A. The case of n = 4

A network is characterized by corresponding degree se-

quence in this paper.9 The degree di of agent i is the number

of links that i has.10 A network is represented by ascending

ordered degrees of all agents. For example, network g in Fig.

1 is represented by 1223, and g′ is represented by 0112.

Table III shows the results of simulation. When n = 4,

c = 0.3 and agents are homogeneous (see the column of “VIPs

= 0” in Table III), the frequency that the terminal network has

degree sequence 1122 is 737 times in 1000 times of operations.

The exact shape of the network with degree sequence 1122 is

described in FIg. 2. The degree sequence 1113 represents a star

network. Table III reveals that VIPs do not change the form

of terminal networks. For example, suppose c = 0.7. If there

is no VIP then the probability that star networks realize as a

terminal network is 27.1%. If there is a VIP, the probability is

25.8%. If there are two VIPs, the probability is 26.6%. There

is no apparent tendency to realize star networks as the number

of VIPs increases.

degree sequence 1122 degree sequence 1113
Fig. 2. The terminal networks when n = 4.

B. The case of n ≥ 5

Table III reveals that VIPs diversify the terminal networks.

For example, suppose that n = 8 and c = 0.3. The cumulative

probability of the seven terminal degree sequences with the

highest occurrence probability is 80.2% if there are two VIPs.

If there is one VIP, the cumulative probability is 96.0%, and

if there is no VIP then the cumulative probability is 99.5%.

However, there is no apparent tendency to realize star networks

as the number of VIPs increases.

The trend concerning which degree sequence tends to be

terminals is almost same in spite of the number of VIPs. For

example, suppose that n = 6 and c = 0.5. The three terminal

degree sequences with the highest occurrence probability are

same in spite of the number of VIPs.

9The shapes of networks are not corresponds with degree sequence exactly.
Generally, a degree sequence corresponds with many networks.

10Large degree means that the agent plays central role in the network.
Degree centrality and other centrality concepts are discussed in [2]
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Tables IV-VIII shows the expected values of variances of

degrees in a terminal network. For example, suppose n = 5,

c = 0.3 and there is no VIP. The terminal degree sequences are

11123 with probability 0.497, 22222 with probability 0.469

and 11114 with probability 0.034. The expected value of

variance is 0.46 which is the weighted sum of the variance of

degrees of agents belongs to each terminal network. Tables IV-

VIII reveals that VIPs increase the expected variance. Large

expected variance means that the distribution of agents’ degree

is biased on an average in a terminal network. VIPs lead the

structures of terminal networks to be biased.

TABLE IV
EXPECTED VARIANCES WHEN n = 4

c VIPs=0 VIPs=1 VIP=2

0.3 0.51 0.53 0.52
0.5 0.51 0.51 0.53
0.7 0.51 0.51 0.51

TABLE V
EXPECTED VARIANCES WHEN n = 5

c VIPs=0 VIPs=1 VIP=2

0.3 0.46 0.59 0.65
0.5 0.50 0.54 0.54
0.7 0.63 0.60 0.63

TABLE VI
EXPECTED VARIANCES WHEN n = 6

c VIPs=0 VIPs=1 VIP=2

0.3 0.58 0.66 0.80
0.5 0.56 0.60 0.66
0.7 0.64 0.71 0.74

TABLE VII
EXPECTED VARIANCES WHEN n = 7

c VIPs=0 VIPs=1 VIP=2

0.3 0.66 0.70 0.87
0.5 0.59 0.67 0.68
0.7 0.66 0.75 0.74

TABLE VIII
EXPECTED VARIANCES WHEN n = 8

c VIPs=0 VIPs=1 VIP=2

0.3 0.66 0.76 0.89
0.5 0.59 0.68 0.72
0.7 0.68 0.77 0.85

IV. CONCLUDING REMARKS

We investigate asymmetric connections model with a dy-

namic process by making use of simulation. Obtained data

reveals that VIPs do not change overall trend of terminal net-

works dramatically, however, diversify the terminal networks.

When there are VIPs, more networks can survive a dynamic

network formation process.

VIPs also disperse the degrees of agents in a network.

Agents wish to link VIPs, since VIPs are valuable to another

agents. The agents who link to VIPs is valuable to another

agents, since the value of VIPs spills to the linked agents.

Agents wish to link to not only VIPs but also the agents who

link to VIPs. This increases the possibility of realization of

the biased distribution of agents’ links.
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