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Abstract— Environmental micro-organisms include a large 

number of taxa and some species that are generally considered 

nonpathogenic, but can represent a risk in certain conditions, 

especially for elderly people and immunocompromised individuals. 

Chemotaxonomic identification techniques are powerful tools for 

environmental micro-organisms, and cellular fatty acid methyl esters 

(FAME) content is a powerful fingerprinting identification technique. 

A system based on an unsupervised artificial neural network (ANN) 

was set up using the fatty acid profiles of standard bacterial strains, 

obtained by gas-chromatography, used as learning data. We analysed 

45 certified strains belonging to Acinetobacter, Aeromonas, 

Alcaligenes, Aquaspirillum, Arthrobacter, Bacillus, Brevundimonas, 

Enterobacter, Flavobacterium, Micrococcus, Pseudomonas, Serratia, 

Shewanella and Vibrio genera. A set of 79 bacteria isolated from a 

drinking water line (AMGA, the major water supply system in 

Genoa) were used as an example for identification compared to 

standard MIDI method. The resulting ANN output map was found to 

be a very powerful tool to identify these fresh isolates. 

Keywords— cellular fatty acid methyl esters, environmental 

bacteria, gas-chromatography, unsupervised ANN.

I. INTRODUCTION

N many drinking water distribution systems microbiological 

quality control is limited to the identification of a few 

bacteria species. These are used as “indicators” of 

contamination, mostly coliform bacteria, whose identification 

is recommended [1], [2]. Heterotrophic bacterial count is 

mainly aimed to reduce interference with the detection of 

coliform bacteria. However, heterotrophic species that are 

normally considered nonpathogenic can increase risks in 
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certain conditions. There is a growing belief that the 

heterotrophic bacteria group may contain opportunistic 

pathogens especially dangerous for young children, elderly 

people and immunocompromised individuals [3], [4]. For this 

reason it would be important to detect the presence of these 

opportunistic species. 

Aquatic bacteria include a large number of taxa. 

Classification, that is the orderly arrangement of micro-

organisms into taxonomic groups based on similarity, and 

identification, that is the determination as to whether an 

unknown bacterium belongs to one of the units defined in 

classification, are difficult problems for most of 

environmental micro-organisms. Convenient and accurate 

diagnostic schemes are unavailable for environmental 

bacteria, taxonomy is continuously rearranged with frequent 

emendation of description and nomenclature corrections, and 

many novel groups are continuously proposed, which need to 

be considered for approval and characterised in greater detail. 

For identification purposes, traditional phenotypic and 

biochemical tests, e.g. API (Bio Merieux SA, Marcy-l’Etoile, 

France) and Biolog (Biolog, Inc., Hayward, Calif., USA) and 

systems are used by the majority of microbiological 

laboratories. However, the scarcity of phenotypic features in 

particular environmental bacterial groups often causes 

problems in identifying unknown strains. For these groups, 

alternative chemotaxonomic or genotypic methods can be 

useful [5]. 

Cellular fatty acid analysis by gas-chromatography is a 

rapid and reliable means for the identification of micro-

organisms, provided that strict standardised culture conditions 

are used. Fatty acids are the major constituents of the lipid 

bilayer of bacterial membranes and lipopolysaccharides. The 

composition of cellular fatty acids is a very stable genetic trait 

and it is highly conserved within a taxonomic group. A large 

number of fatty acids can be found in bacteria, due to the 

variability which is present in the cellular fatty acid structure, 

chain length, double-bond positions and substitutions, the 

whole cell fatty acid (WCFA) analysis is successfully and 

extensively used for bacteria classification and identification 

purposes [6]. The method is rapid, cheap, simple, highly 

automated and its application is within fingerprinting 

technology. Fatty acid analysis carries information mostly 

from genus to species level [5]. 
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Many laboratories that use fingerprinting technology, use 

computing facilities for storage and processing data. One of 

the most promising groups of classification methods is in the 

field of Artificial Intelligence, specifically artificial neural 

network (ANN), which are computational models of the brain 

that adapt their features during learning in order to reproduce 

the generalisation ability of the brain [7]-[8]. We have shown 

that ANN based programs are useful to classify and identify 

marine bacteria at genus level starting from the fatty acid 

profiles [9]-[11]. 

In the present work the performance of the unsupervised 

Kohonen neural network [12] for the automated identification 

of drinking water bacterial isolates was evaluated. The choice  

of this type of networks has been suggested by previous work 

of one author on biological data [7]. The identification was 

performed at genus level using the fatty acid profiles of 

standard strains, obtained by gas-chromatography, as learning 

data. The unsupervised ANN place the input patterns on a 2D 

finite plane divided into a finite number of areas (a square 

space, with an equal number of elements in rows and 

columns). Similar input examples are placed in the same 

output element, or in the very near elements. In this way, after 

learning, areas allocated to specific classes can be singled out. 

A pattern coming from an unclassified strain is classified 

according to the zone in which it is placed by the network. 

The identification system was tested for the study of the 

genera composition of the cultivable heterotrophic bacterial 

community of a drinking water line from AMGA S.p.A., the 

major water supply system in Genova (Italy). We compared 

our results to the ones obtained with one of the most similar 

identification system present on the market: the MIDI 

Microbial Identification System (MIS; Microbial ID Inc., 

Newark, Del., USA). 

II. MATERIALS AND METHODS

2.1 Strains and culture conditions

For this study 122 aerobic heterotrophic bacteria were used. 

To learn the ANN 45 certified standard strains, belonging to 

39 fresh water species and 14 genera among the most 

representative aerobic heterotrophic genera commonly found 

in fresh water, were used (Table 1). 

To test the identification ANN, we used 79 fresh water 

bacteria coming from a drinking water line from AMGA 

S.p.A., the major water supply system in Genova (Italy). Fresh 

water samples were collected by using sterile 500 ml bottles at 

different sites and times from a drinking water line. From each 

sample, 1 ml (or a convenient dilution) was plated on agar 

(yeast extract 3 g, peptone 5 g, NaCl 5 g, agar 15 g, distilled 

water 1 l, pH 7.4) and incubated at 22 °C. After two or three 

days, depending on the speed of growth of the bacteria present 

in the sample, colonies with different morphologies were 

selected and considered different strains. A total of 79 isolates 

were chosen for this study.  

For the WCFA analysis, growth temperature, cultivation 

medium and culture conditions were strictly standardised to 

assure reproducibility in the profile. Bacteria, both standard 

and environmental isolates, were grown as pure culture on 

nutrient agar at 22 °C: one single colony was inoculated in 

200 ml of nutrient broth (yeast extract 3 g, peptone 5 g, NaCl 

5 g, distilled water 1 l, pH 7.4) and incubated at 22 °C until 

the beginning of the stationary phase [13]. The bacteria were 

collected by centrifugation at 4,000 rpm for 20 min., washed 

twice with deionized water and freeze-dried. 

2.2 Cellular fatty acid extraction and analysis  

At least three analyses for each strain were performed for a 

total of 370 fatty acid analysed profiles. Fatty acid methyl 

esters (FAMEs) were extracted from freeze-dried bacteria by 

the standardised procedure described by Miller [14]. FAMEs 

were analysed by gas-liquid-chromatography (GLC) on a 

HP5890A gas chromatograph (Hewlett Packard) equipped 

with a flame ionization detector and an autosampler as 

previously described [9]. In short, the GLC settings were as 

follows: a fused silica capillary column (0.2 mm by 25 m; 

cross-linked 5 % methyl phenyl silicone; Hewlett Packard) 

and ultra high purity hydrogen (carrier gas) were used. The 

values of the other variables were: injector temperature, 250 

°C; detector temperature, 300 °C; initial column temperature, 

170 °C, increasing by 5 °C/min up to 270 °C in 20 min; 

carrier gas flow rate 50 ml/min; total analysis time 25 min; 

sample volume 1ml. The retention time data were used to 

calculate the equivalent chain length data. The fatty acids with 

a number of carbon atoms between 10 and 20 were identified 

by a HP 216 Personal Computer. A calibration mixture for 

capillary chromatography (Supelco Inc., Bellefonte, PA), 

containing a selection of methyl esters of the fatty acids 

commonly found in bacteria was used. 

2.3 WCFA data elaboration 

2.3.1 Artificial neural network based analysis  

A competitive unsupervised Kohonen ANN [10], [12] was 

used for the classification of FAME profiles aimed to bacteria 

identification.  

The learning set of FAME analyses has to contain non-

contradictory profiles, and has to be complete and represent 

all the considered taxa. It was therefore decided to use profiles 

from certified strains coming from international collections for 

the learning set (Table 1).

The unsupervised ANN elaboration of FAME data shows 

the outputs on a bidimensional square divided into areas 

(output neurons). However, for better understanding, the 

output of an unsupervised ANN is not a limited square but 

should be considered as having the opposite sides connected 

to form a toroidal surface.  

The number of output neurons should be of the same 

magnitude order of the input patterns in the learning phase. 

We chose to set the output neuron number to the first square 

number greater than the number of input patterns.  

Once the learning phase is completed the areas do not move 

any more. The identification of unknown patterns is 

performed independently from the number of patterns to be 
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identified, as they are placed on the output map one at a time. 

Specifically, the unsupervised ANN was implemented using 

Matlab 4.2 on a Pentium III with a learning phase of 5.000 

steps. The computer time was approximately 5 minutes. 

TABLE I

STANDARD STRAINS USED FOR ANN LEARNING

Genus Species Source (a)

Acinetobacter  calcoaceticus LMG 1046T

 junii  LMG 998T

Aeromonas  caviae LMG 3775T

 hydrophila  LMG 2844T

 media LMG 9073T

 salmonicida LMG 14900T

LMG 3782T

LMG 3780T

 sobria LMG 3783T

Alcaligenes latus LMG 3321T

 xylosoxidans LMG 1231 T

LMG 1863

Aquaspirillum  autotrophicum LMG 4326 

 dispar LMG 4329 

 delicatum LMG 4328 

 serpens LMG 3734 

Arthrobacter crystallopoietes LMG 3819 T

 globiformis LMG 3813 T

 histidinolovorans LMG 3813 T

 ureafaciens LMG 3812 T

Bacillus cereus LMG 6923 T

 licheniformis LMG 6933 T

 mycoides LMG 7128 T

Brevundimonas  diminuta LMG 2089T

 vesicularis LMG 2350T

Enterobacter  aerogenes LMG 2094T

Flavobacterium  ferrugineum LMG 4021T

 flevense NCIMB 12056T

 hydatis NCIMB 2215T

 johnsoniae LMG 1341T

 saccharophilum NCIMB 2072T

Micrococcus luteus LMG 4050 T

Pseudomonas  alcaligenes LMG 1224T

 mendocina  LMG 1223T

 pseudoalcaligenes  LMG 1225T

 putida LMG 2257T

NCIMB 12708 

NCIMB 12182 

Serratia  fonticola LMG 7882T

 marcescens LMG 2792T

 proteamaculans LMG 7884T

Shewanella  baltica LMG 2250T

 putrefaciens LMG 2268T

LMG 2263 

Vibrio ordalii NCIMB 2167 T

(a) LMG = Laboratorium Microbiologie Rijksuniversiteit Collection, Gent, Belgium; NCIMB = National Collection of Industrial and Marine Bacteria; T = 

Type strain. 

2.3.2 Microbial identification system MIDI 

The Microbial Identification System MIDI (MIS; Microbial 

ID Inc., Newark, Del., USA) is a fully automated, 

computerised, high resolution gas-chromatography system. 

The system gives the strain identification as a similarity index 

resulting from the best genus, species and subspecies match 

after the search in its microbial libraries. The system performs 

an automatic comparison of the fatty acid pattern of stored 

databases (“libraries”) using pattern recognition software 

(MIS Software version 3.2).  

The system we used in the present work had two libraries, 
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the TSBA (Rev. 3.2) and the CLIN (Rev. 3.2) libraries. We 

considered the TSBA library match as it is recommended for 

environmental bacteria, while the CLIN library is suited for 

clinical bacteria.

III. RESULTS

3.1 Standard strain classification by ANN 

The learning set consisted of all the standard strain profiles. 

All learning phase control parameters showed that the learning 

procedure was correct, that is all input patterns were correctly 

assigned to only one output neuron. The output was set as a 

square of 14 areas in 14 lines (196 areas) (Fig.1). More than 

one analysed standard strain was found to be located in the 

same area, the number is indicated inside the area with the 

first letter of the genus. Out of a total of 196 areas, 62 contain 

at least one standard analysis. The genera analysed are well 

separated and we can single out small or large zones 

corresponding to different genera. In “Fig.” 1 the zones where 

the ANN put bacteria are colored in grey: numbers correspond 

to different analyses together with the first letters of the 

corresponding genus. 

FIGURE 1: OUTPUT MAP OF THE ANN ELABORATION OF STANDARD STRAINS: ACI Acinetobacter; AER Aeromonas; ALC Alcaligenes; AQU Aquaspirillum; ART 

Arthrobacter; BAC Bacillus; BRE Brevundimonas, ENT Enterobacter; FLA Flavobacterium; MIC Micrococcus; PSE Pseudomonas; SER Serratia; SHE 

Shewanella; VIB Vibrio

3.2 Drinking water bacteria identification by ANN 

After the elaboration of the standard strain profiles, the 

same output map was used to allocate the drinking water 

isolate profiles (Fig.2). On a total of 196 areas 42 contain at 

least one bacteria analysis. The numbers in “Fig.” 2 indicate 

different strains allocated to the same area, with the first 

letters of the genus characterising the zone. Grey zones derive 

from the previous output map (Fig.1). The ANN used in the 

present work was found to be able to identify 70% of the 

strains analysed as sample, 55 out of 79 strains (Table 2). 
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FIGURE 2. ALLOCATION OF THE FRESH ISOLATES INTO THE ANN OUTPUT MAP: numbers correspond to different strains together with the first letters of the 

genus: ACI Acinetobacter; AER Aeromonas; ALC Alcaligenes; AQU Aquaspirillum; ART Arthrobacter; BAC Bacillus; BRE Brevundimonas, ENT 

Enterobacter; FLA Flavobacterium; MIC Micrococcus; PSE Pseudomonas; SER Serratia; SHE Shewanella; VIB Vibrio.

The identification for the ANN corresponds to the 

allocation of the analysis to a zone which corresponds to a 

specific genus. 

The majority of isolates belong to the Pseudomonas genus, 

14 strains. A good quantity of Flavobacterium and 

Arthrobacter were found as well (8 strains each). Five strains 

were identified as Aeromonas, and other 5 as Bacillus. Four 

strains were identified as Micrococcus and 3 strains as 

Aquaspirillum. A few strains were identified as Serratia,

Alcaligenes and Brevundimonas (2 strains each). Finally 1 

strain was identified as Shewanella, 1 strain as Enterobacter,

and no strains belonging to Vibrio and Acinetobacter were 

identified. 

The remaining 24 strains analysed were allocated outside 

the zones corresponding to genera, therefore it was not 

possible to obtain a satisfactory identification with the ANN. 

3.3 Drinking water bacteria identification by MIDI 

MIS identification with a similarity index (SI) > 0.500 were 

considered as a good match, while those with a SI ranging 

from 0.200 to 0.499 were considered as a low match. Four 

Aeromonas and 1 Arthrobacter strains were identified with a 

good SI (Tab. 2). One Aeromonas, 1 Hydrogenophaga, 6 

Arthrobacter, 2 Bacillus, and 2 Acidovorax were identified 

with a low SI. Strain number 1331 gave a very good SI with 

three genera, Enterobacter (0.835), Serratia (0.20) and 

Erwinia (0.800). Moreover, 33 strains gave SI below 0.200, 

and so it was not possible to obtain a satisfactory 

identification with the MIDI system. Finally, for 26 strains 

there was no match with the TSBA and CLIN libraries. 
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Strain N° ANN Identification MIDI Identification 

1297 Aeromonas Aeromonas 0.893 (a)

1251 Aeromonas Aeromonas 0.788 

1309 Aeromonas Aeromonas 0.662 

1306 Aeromonas Aeromonas 0.647 

1280 Aeromonas Aeromonas 0.398 

1317 Alcaligenes NM (b)

1335 Alcaligenes Enterococcus 0.017 

1301 Aquaspirillum Hydrogenophaga  0.329 

1300 Aquaspirillum Listonella 0.177 

1337 Aquaspirillum NM

1272 Arthrobacter Arthrobacter 0.565 

1313 Arthrobacter Arthrobacter 0.466 

1256 Arthrobacter Arthrobacter 0.371 

1259 Arthrobacter Arthrobacter 0.336 

1296 Arthrobacter Arthrobacter 0.291 

1321 Arthrobacter Arthrobacter 0.241 

1253 Arthrobacter Arthrobacter 0.208 

1279 Arthrobacter Bacillus 0.241 

1274 Bacillus Bacillus 0.257 

1328 Bacillus NM

1323 Bacillus NM

1271 Bacillus NM

1291 Bacillus NM

1326 Brevundimonas Enterococcus 0.031 

1342 Brevundimonas Pseudomonas 0.039 

1290 Enterococcus Enterococcus 0.254 

1281 Flavobacterium Cytophaga 0.139 

1307 Flavobacterium Cytophaga 0.135 

1252 Flavobacterium Cytophaga 0.033 

1310 Flavobacterium Cytophaga 0.085 

1273 Flavobacterium NM

1282 Flavobacterium Bacillus  0.097 

1322 Flavobacterium NM

1333 Flavobacterium NM

1303 Micrococcus Bacillus 0.047 

1327 Micrococcus Arthrobacter 0.072 

1254 Micrococcus Bacillus 0.126 

1270 Micrococcus Micrococcus 0.155 

1341 Pseudomonas Acidovorax  0.374 (Pseudomonas delafieldii)

1316 Pseudomonas Acidovorax 0.244 (Pseudomonas delafieldii)

1284 Pseudomonas Pseudomonas 0.149; SEA: Pseudomonas 0.029 

1314 Pseudomonas Acidovorax 0.120 (Pseudomonas delafieldii)

1320 Pseudomonas Pseudomonas 0.120; 

1292 Pseudomonas Acidovorax  0.075 (Pseudomonas delafieldii)

1308 Pseudomonas Pseudomonas 0.050 

1318 Pseudomonas NM

1330 Pseudomonas NM

1255 Pseudomonas NM

1258 Pseudomonas NM

1268 Pseudomonas NM

1336 Pseudomonas NM

1340 Pseudomonas NM

1331 Serratia 
Enterobacter 0.835, Serratia 0.820, Erwinia

0.800

TABLE II

IDENTIFICATION PERFORMED BY THE ANN COMPARED TO THE MIDI SYSTEM
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1285 Serratia Variovorax  0.073 (Alcaligenes paradoxus)

1332 Shewanella Sphingobacterium 0.011 

1294 UK (c) Gordona 0.022 

1289 UK NM 

1339 UK NM 

1343 UK Hydrogenophaga  0.049 

1269 UK Hydrogenophaga  0.161 

1275 UK Pseudomonas 0.174 

1266 UK Cytophaga 0.033 

1319 UK NM 

1329 UK Cytophaga 0.173 

1262 UK NM 

1325 UK NM 

1311 UK Arthrobacter 0.011 

1276 UK Arthrobacter 0.021 

1277 UK Bacillus 0.125 

1283 UK NM 

1295 UK Bacillus 0.013 

1298 UK NM 

1288 UK Streptoverticillium 0.079 

1312 UK NM 

1334 UK Enterococcus 0.037 

1338 UK NM 

1324 UK NM 

1286 UK NM 

1299 UK Pseudomonas 0.198 

(a) Identification similarity index (SI) obtained with the MIDI TSBA Database; (b) NM = no match with the MIDI TSBA or CLIN Database; (c) UK = unknown 

IV. DISCUSSION

Previous studies showed that FAME profiling can provide a 

useful tool for the identification of clinical and environmental 

bacteria [15], [16], and the MIDI system, present on the 

market for several years now, represents a powerful solution 

to perform this kind of analysis. To our knowledge, this is the 

first time that ANN has been applied to FAME classification 

for the identification of drinking water bacteria. 

The unsupervised ANN processing of FAME data has 

given a good classification of the certified strains analysed at 

the genus level (Fig. 1). In fact, there is no overlapping of 

areas corresponding to different genera, and the output map 

shows separate zones corresponding to different taxa.  

The identification power of the ANN was tested with a pool 

of 79 isolates coming from a water distribution line from 

AMGA, the major water supply system in Genova (Italy). It 

was possible to identify at genus level 70% of the isolates 

(Fig.2). The Enterobacteriaceae group of strains identified by 

the ANN, represent only 13 % of the fresh isolates analysed 

while the majority of strains belonged to other genera. In 

particular 16.6% Pseudomonas and 6% Aeromonas were 

found.

The remaining strains (about 30%) fell out of the zones 

corresponding to genera, however the position occupied by 

these strains can give useful information as well. For example, 

the strains allocated by the ANN in areas close to a genus, 

could belong to that genus. These strains could belong to a 

species not included in the set of bacteria used for the ANN 

learning. One of the prerequisites for the good performance of 

ANNs is that the learning set should be as complete as 

possible [17]. In this study, only 39 species belonging to 14 

genera were analysed, but more genera and strains would be 

necessary to improve the identification power of the net; in 

fact, the more species and genera that are used for the learning 

phase, the more accurate and complete the identification of 

fresh isolates is. 

Environmental microbiology is characterised by a 

continuous description of new species and genera and its 

subsequent rearrangement. Large amounts of data are likely to 

become available and analysis automation will increase its 

importance. FAME analysis carries information from genus to 

species level and nowadays has reached a high level of 

automation, so it is a fast method which allows the 

comparison and identification of large numbers of strains in a 

short period of time. Hence, suitable software development 

will be required to handle and process this large database.  

The results herein presented show that ANNs represent a 

successful tool for bacteria classification by means of their 

FAME analyses. They can become a solid basis for a 

comprehensive artificial intelligence based system for 

drinking water bacteria identification, with special reference 

to the detection of opportunistic pathogens.  

It would be worthwhile to build up a system of ANNs for 

identification of bacteria from genus to species. A 

comprehensive artificial intelligence based system for 

identification of drinking water bacteria coming from water 

treatment and supply systems consisting of multiple levels of 

ANNs that can be set up. In such a system, the first ANN 

could be like the one reported in the present study, i.e. for the 

identification at genus level, and the following connected 

networks, it could be specialised for each genus in order to 

identify at species and subspecies level. 
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