
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:9, 2010

1426

Abstract—Since Network-on-Chip (NoC) uses network

interfaces (NIs) to improve the design productivity, by now, there
have been a few papers addressing the design and implementation of a
NI module. However, none of them considered the difference of
address encoding methods between NoC and the traditional
bus-shared architecture. On the basis of this difference, in the paper,
we introduce a transmit mechanism to solve such a problem for global
asynchronous locally synchronous (GALS) NoC. Furthermore, we
give the concrete implementation of the NI module in this transmit
mechanism. Finally, we evaluate its performance and area overhead
by a VHDL-based cycle-accurate RTL model and simulation results
confirm the validity of this address-oriented transmit mechanism.

Keywords—Network-on-Chip, Network Interface, Open Core
Protocol, Address.

I. INTRODUCTION
HE traditional bus-shared architecture tends to cause the
bottleneck effect in the high-performance SoC(System on

Chip). To solve this problem, NoC (Network on Chip) was
proposed as a new interconnection architecture [1], [2], [3].
NoC is comprised of three fundamental components: network
interfaces (NIs), routing nodes and links, respectively. Network
interfaces implement the interface by which IP cores connect to
the NoC. Their function is to decouple computation from
communication. In this way, designs of IP cores and NoC can
be made separately, and consequently, the design productivity
can be improved. Until now, a few papers have addressed
problems particular to the design of a NI module [4], [5]. But
only [4] presented a NI structure in detail. The paper didn’t
consider the difference of address encoding methods between
NoC and the traditional Bus-shared architecture. To emphasize
this difference, this paper proposes a transmit mechanism in
order to implement the better compatibility with the IP cores
which are designed for the bus-shared architecture. Since the
Open core Protocol (OCP) delivers an only non-proprietary,
openly licensed, core-centric protocol which comprehensively
describes the system-level integration requirements of IP cores,
we consider the condition in which OCP is used in all IP cores.

 The rest of the paper is organized as follows. In Section II,

The authors are all with State Key Laboratory on Microwave and Digital
Communications, Tsinghua National Laboratory for Information Science and
Technology, Department of Electronic Engineering, Tsinghua University,
Beijing 100084, China

E-mail: zhangyuanyuan07@mails.tsinghua.edu.cn.
This work is supported by the National High Technology Research and

Development Program with No.2008AA01Z107

we introduce the principle of the address-oriented transmit
mechanism. Then, in Section III, we show the structure of the
corresponding NI and the address converter. In Section IV, we
give the simulation results to confirm the validity of our
mechanism. Finally, we conclude the work in Section V.

II. THE ADDRESS-ORIENTED TRANSMIT MECHANISM
In the bus-shared architecture, each address corresponds to

the memory space uniquely, namely, different memories have
different addresses, called memory address in this paper
whereas, in NoC, there are two parts of each address. One part
is the address of IP cores in NoC, called network address, and
another part is the address of the memory space of the
corresponding IP core, namely memory address. Thus, we need
a mechanism to implement the address transformation between
the traditional bus-shared architecture and NoC.

OCP defines a point-to-point interface between two
communicating entities. One entity acts as the master of the
OCP instance, and the other as the slave. Note that only the
master can present commands and is the controlling entity. The
slave responds to commands presented to it, either by receiving
data from the master, or presenting data to the master. So for
two entities to communicate in a peer-to-peer fashion, there
need to be two instances of the OCP connecting them - one
where the first entity is a master, and one where the first entity
is a slave [6]. Hence, by using OCP, NoC connects IP cores in
the way, as shown in Fig. 1.

Fig. 1 The interconnection architecture by using OCP

As shown in Fig. 1, the characteristics of IP cores determine

whether the core needs master, slave, or both of them. And a NI
must have the module which acts as the complementary side of
the OCP for each connected entity.

In this paper, we only consider the IP cores which represent

An Address-Oriented Transmit Mechanism for
GALS NoC

Yuanyuan Zhang, Guang Sun, Li Su, Depeng Jin and Lieguang Zeng

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:9, 2010

1427

CPUs or memories. The request signals are stored in NIs in flit
form which is the minimum flow control digit. Moreover, each
packet is comprised of flits. Specifically, there are three kinds
of flit, respectively head flit, data flit and tail flit. The head flit
indicates the start of a new packet, the data flit indicates the
continuation of a packet and the tail flit indicates the end of a
packet. They consist of the subfields, as shown in Fig. 2.

(a) Head flit

(b) Data or tail flit

Fig. 2 The formation of flits

As shown in Fig. 2, M indicates the kind of flits. It uses two

bits to mark them. In particular, “00” indicates the head flit,
“01” indicates the data flit and “10” indicates the tail flit.
Addr_s indicates the source IP core’s network address; Addr_d
indicates the destination IP core’s network address; Wr
indicates the two operations, i.e., read or write; DA indicates
the memory address to operate in the destination IP core;
Data_m indicates the read or written data.

In the paper, we only consider the cases in which only simple
write and read operations are executed. When a processor
needs to write or read some data with the memories, the
corresponding NI must convert the address from IP cores to the
address required by NoC. One feasible way is to store the
necessary information in each NI but this approach needs lots
of memory spaces and leads to much area overhead. Thus,
instead of this method, we store all the necessary information in
the address converter, and we employ the transit mechanism in
which, when a processor needs to write or read some data with
the memories, the corresponding NI sends the memory address
to the address converter at first. Then, on the basis of the
original memory address, the address converter finds the
corresponding network address, and sends it back to the NI.
Next, the NI adds the network address to the head flit, and then
executes the write or read operation between the corresponding
IP cores. When a CPU wants to take a read operation, due to
the characteristic of OCP, the corresponding NI must wait, and
can’t execute any other operation until the CPU receives the
data that aim to read.

Fig. 3 The interconnection architecture in this paper

From the description of the mechanism, it is found that an

address converter interface only requires an OCP slave. From
Ref. [6], we can conclude that a CPU interface usually only
requires an OCP master, and a memory interface usually only
requires an OCP slave, so the IP cores in this paper are
interconnected by the way shown in Fig. 3.

III. THE STRUCTURE
According to the transmit mechanism, the structure of NI is

shown in Fig. 4. We use asynchronous FIFOs in NIs for the
global asynchronous locally synchronous (GALS) NoC’s
requirement.

(a) The way that NI connects to CPU

(b) The way that NI connects to memory/address converter

Fig. 4 The NI structure

The signals used in Fig. 4 are explained in detail as below:
(i) The signals between IP cores and NIs:
MCmd: Transfer command, indicating write/read operation,
MAddr: Destination IP core’s memory address,
MData: Data to write,
SCmdAccept: Slave accepts a transfer,
SData: Data to read,
SResp: Transfer response,
(ii) The signals in NIs:
Wr: The type of operation, including write and read,
Req: Transfer requirement,
Addr: Memory address, the same with MAddr,
Data: Data to write,
Resp: Transfer response,
Data_r: Data to read,
Resp_r: Read response,
The signals between network and NIs:
Data: Transfer data,
Req: Transfer requirement,
Resp: Transfer response.
The address converter has the same interface as memories

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:9, 2010

1428

and it stores the mapping between memory addresses and
network addresses.

IV. SIMULATION RESULTS
We use a VHDL-based cycle-accurate RTL model to

evaluate the performance of the proposed mechanism. For
simplicity, we connect a CPU, a memory and an address
converter together by a routing node simply. The routing node
implements the interconnection among them, and routes
messages according to their network address.

(a) Signals at the source IP core

(b) Signals at the destination IP core

Fig. 5 Write operation

As shown in Fig. 5, the source IP core executes a write
operation, and from Fig. 5 (b), it is observed that the destination
IP core receives the data sent to the corresponding memory
space correctly.

As shown in Fig. 6, the source IP core executes a read
operation, and from the figure, it is observed that the source IP
core receives the read data from the corresponding memory
space correctly.

We evaluate the performance by operation time that refers to
the time interval between the moment when the source IP core
sends a requirement and the moment when the corresponding
IP core receives the corresponding data. From the simulations,
it is found that, without blocking, a write operation occupies 39
clock cycles and a read operation occupies 61 clock cycles.

(a) Signals at the destination IP core

(b) Signals at the source IP core

Fig. 6 Read operation

We use the device Stratix EP1S80F1508I7 on the Quartus II
platform to synthesize them. It is found that, if the flit is 19 bit
width and the FIFOs in NIs can store five flits at most, then the
NI occupies 867 logic unites for CPUs and meanwhile 802
logic units for memories and address converters.

V. CONCLUSION
In this paper, we proposed an address-oriented transmit

mechanism to implement the NoC’s compatibility with the
traditional IP cores used in the traditional bus-shared
architecture. The structure of NIs and the address converter in
this mechanism was well designed and finally, its validity is
confirmed via the evaluation of the performance and area
overhead by a VHDL-based cycle-accurate model.

REFERENCES
[1] W.J. Dally and B. Towles, “Route packets, not wires: On-chip

interconnection networks,” in Proceeding of the 38th Design Automation
Conference (DAC01), vol.1, pp.684-689, 2001.

[2] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance
evaluation and design trade-offs for network-on-chip interconnect
architectures,” IEEE Trans. Comput.., vol 54, no. 8, pp. 1025-1040, 2005.

[3] R. Marculescu, U.Y. Ogras, L.S. Peh, N.E. Jerger and Y. Hoskote,
“Keynote Paper Outstanding Research Problems in NoC Design: System,
Microarchitecture, and Circuit Perspectives,” IEEE Trans on
compuer-aided design of integrated circuits and systems, vol. 28, no. 1, pp.
3-21, 2009.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:9, 2010

1429

[4] A. Radulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wielage,
“An efficient on-chip network interface offering guaranteed services,
shared-memory abstraction, and flexible network configuration,” in
Proceeding of the 2004 Design, Automation and Test in Europe
Conference (DATE04), 2004.

[5] T. Bjerregaard, S. Mahadevan, R. G. Olsen, and J. Sparsø, An OCP
compliant network adapter for GALS-based SoC design using MANGO
network-on-chip,” in Proceedings of International Symposium on
System-on-Chip (SOC05), pp, 171-174, 2005.

[6] http://www.ocpip.org/

