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TABLE I 
DEVICE STRUCTURE PARAMETERS FOR DGPNTFET 

Parameter Value 

Gate length (LG) 20nm 

Oxide Thickness(tox) 2nm 

Gate oxide and permittivity(ε) HfO2,22 

Silicon body thickness(tSi) 10nm 

P+ Source doping (NA) 1×1021 cm-3 

Si-pad doping 1×1017 cm-3 

Si-pad length(LSi-pad) 50nm 

 
TABLE ІІ 

SIMULATION RESULTS OF DGPNTFET WITH DIFFERENT DONOR 

CONCENTRATION 

ND 
(cm-3) 

IOFF(ATVDS=1, 
VGS=0V) 

ION(atVDS=1V,VGS=1.5V) ION/IOFF SS 

1×1015 3.28×10-17 8.96×10-5 2.73×1012 22.56 

1×1016 3.32×10-18 9.27×10-5 2.79×1013 21.64 

1×1017 3.64×10-19 9.70×10-5 2.66×1014 19.14 

 

 
 

 

Fig. 2 (a) Energy band diagram for OFF – state (VGS =0V, VDS=0V 
and VDS=1V). (b) Energy band diagram for ON – state (VGS=1V, 

VDS=1V) of DGPNTFET 

 

Fig. 3 Transfer characteristics of DGPNTFET and DGTFET [4] as a 
function of gate voltage. Here Si-pad donor doping (ND) (ND1=1×1015 

cm-3, ND2=1×1016 cm-3, ND3=1×1017 cm-3) 
 

In this basic gated PN diode design shown in Fig. 1, 
tunneling takes place between reverse biased p+- n interface. 
Probability of tunneling T(E) is minimum for grounded source 
and zero gate bias which has been derived in the study[15] as, 

 

∝
∗

| |ħ ∆
∆      (1) 

 
Here  is the bandgap, ∗ is the effective carrier mass, ∆  is 
the energy range over which tunneling can take place, , , 

,  are the oxide and silicon film thickness and dielectric 
constants, respectively. By applying drain voltage, the energy 
bands near drain contact moves down. As gate bias is not 
applied, Device remains in OFF-state and draws no tunneling 
current as shown as energy band diagram in Fig. 2 (a), with 
drain to source voltage VDS = 0V and VDS = 1V. As increasing 
positive gate voltage, energy bands under the gate controlled 
region are pushed down, narrowing the width of tunnel 
junction and allow tunneling current to flow. Corresponding 
energy band diagram for applied VGS = 1V and VDS = 1V is 
shown in Fig. 2 (b). 

III. RESULTS AND DISCUSSIONS 

Simulation results are carried out for proposed structure on 
the bases of the different donor concentration, gate length, 
temperature and gate dielectric and corresponding transfer 
characteristics and energy band diagrams are presented here. 

A. Donor Concentration 

The transfer characteristics of DGPNTFET with function of 
gate voltage and different Si- pad doping ND (ND=1×1015 cm-3, 
ND=1×1016 cm-3 and ND=1×1017 cm-3) is presented in Fig. 3. 
Here the crucial parameter for device operation is n-type 
doping which shows a wide variation in OFF state leakage 
current (IOFF). Simulated results for ON-to-OFF current ratio 
(ION/IOFF) and minimum point SS for different donor profile is 
presented in Table II (ION at 1.5V, IOFF at 0V). Thus, Si-pad 
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works as a channel and drain region making device free from 
extra drain doping. 

 

 

 

 

Fig. 4 (a) Band profile of DGPNTFET for gate length (LG) = 40nm at 
VDS=1v, VGS= -1.5V (b) Band profile of DGPNTFET for LG = 20nm 
at VDS=1v, VGS= -1.5V. (c) Transfer characteristics of DGPNTFET 
for different gate length (LG) (where ND1=1×1015 cm-3, ND2=1×1016 

cm-3, ND3=1×1017 cm-3) 

For the validation of our proposed device structure, well 
calibrated transfer characteristics with conventional double 
gate TFET (DGTFET) [4] is shown in Fig. 3. Considered 
device parameters for simulation are: HfO2 (ε = 22) as gate 
oxide with thickness (tox) = 2nm, silicon body thickness (tSi) 
=10nm, gate length (LG) = 20nm, p+ source doping (NA) = 
1×1021 cm-3. 

B. Gate Length (LG) 

The study of gate overlapping over drain doping [15] says 
that the OFF-state current at negative gate bias has major 
impact of gate overlapping. For DGPNTFET as shown in Fig. 
4, this ambipolar effect is presented with the help of energy 
band diagram and transfer characteristics. While having more 
gate overlapping on Si-pad (LG=40 nm), as negative gate 
voltage increases, the energy bands under gate controlled 
region are pulled up, which create a suitable situation for 
tunneling near drain. This tunneling or ambipolar effect is 
shown in Fig. 4 (a), with the help of energy band profile. 
Decreasing gate length, widened the tunnel junction, 
decreasing the probability of tunneling T(E) leads to lowering 
the OFF-state leakage current. The energy band diagram for a 
case with LG=20 nm is presented in Fig. 4 (b) at VDS=1V and 
VGS=- 1.5V. For LG=20 nm energy bands under gate 
controlled region moves up. But due to wider width of tunnel 
junction, probability of tunneling in negative gate bias is 
minimum. 

Ambipolar effect of conventional TFET for negative gate 
bias is useful for sensing biomolecules [13] whereas, for 
CMOS technology, where device is operated at both the 
positive and negative gate bias, tunneling during negative gate 
bias gives leakage current, which is a major drawback in 
circuit applications. In DGPNTFET, ambipolar effect not only 
depends on gate length or gate overlapping but also depends 
on Si-pad doping profile. Effect of Si-pad doping on 
ambipolarity is presented in Fig. 4 (c) with the help of transfer 
characteristics as a function of gate voltage and donor 
concentration. With similar gate length, and with different 
donor concentration in Si-pad, DGPNTFET gives different 
performance characteristics which are marked together and 
presented in Fig. 4 (c). 

C. High-κ Dielectric 

Careful choice of gate dielectric can give an even higher 
device performance in terms of higher ON-current and 
reduced SS. Transfer characteristics of our proposed structure 
with different gate dielectric are presented in Fig. 5 (b). 
Simulation is carried out for gate dielectric like SiO2 (ε=3.9), 
Si3N4 (ε=7.5), HfO2 (ε=22), TiO2 (ε=80) and corresponding 
variation in characteristic curve is shown in Fig. 5 (b). For 
TFETs, the improved coupling between the gate and the 
tunneling barrier has an exponential effect [14]. Similar to 
conventional TFET for DGPNTFET also this coupling is 
exponential in nature rather than linear one. Fig. 5 (b) shows 
that different gate oxide has no impact on device OFF-current. 
Improved ON-current and reduced SS is pure influence of 
higher control of gate over tunneling with high-κ gate 

‐2

‐1,5

‐1

‐0,5

0

0,5

1

1,5

0 0,02 0,04 0,06 0,08

En
e
rg
y 
[e
V
]

Distance [µm]

conduction band

valence band

P+ ‐ Si Si ‐ pad

VDS=1.0V,
VGS=‐1.5V,
LG=40nm

ambipolar
effect

(a)

‐2

‐1,5

‐1

‐0,5

0

0,5

1

1,5

0 0,02 0,04 0,06 0,08

En
e
rg
y 
[e
V
]

Distance [µm]

conduction band

valence band

P+ ‐ Si Si ‐ pad

VDS=1.0V,
VGS=‐1.5V,

(b)

1,E‐19

1,E‐17

1,E‐15

1,E‐13

1,E‐11

1,E‐09

1,E‐07

1,E‐05

1,E‐03

‐1,5 ‐1 ‐0,5 0 0,5 1 1,5

D
ra
in
 c
u
rr
e
n
t 
[A
/µ
m
]

Gate voltage [V]

ND1

ND2

ND3

LG=40nm

LG=30nm

LG=20nm

(c)



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:7, 2015

741

 

 

dielectric. Simulated transfer characteristics are carried out for 
2 nm of oxide thickness and gate work function of 4.5 eV. 
Corresponding value of ION (at VDS=1v, VGS=1.5V), IOFF (at 
VDS=1v, VGS=0V) and point SS is given in Table III. 

 
 TABLE ІІI 

SIMULATION RESULTS OF DGPNTFET WITH GATE OXIDES 

Gate oxide 
IOFF(AT VDS=1, 

VGS=0V) 
ION(atVDS=1V, 

VGS=1.5V) 
ION/IOFF 

SiO2(ε=3.9) 3.72×10-19 3.47×10—7 0.93×1012 

Si3N4(ε=7.5) 3.63×10-19 5.89×10-6 1.62×1013 

HfO2(ε=22) 3.52×10-19 9.70×10-5 2.75×1014 

TiO2(ε=80) 3.46×10-19 2.50×10-4 0.72×1015 

 

 

 

Fig. 5 Transfer characteristics of DGPNTFET for different 
parameters variations (a) temperature (b) Gate oxide dielectrics. 

D. Temperature 

Low OFF current in TFET is due to reverse biased junction. 
The generation of charge carriers increases with temperature, 
as a result the OFF state current increases. Furthermore, ON 
current in DGPNTFET is only dependent on tunneling at p+ - 
n interface, which has no impact of temperature as 
temperature study of TFET [8]. 

In this work, we carried out transfer characteristics for 
temperature T =250 K, T=300 K, T=350 K, and T= 400 K for 
DGPNTFET. Fig. 5(a) shows the OFF and ON state current 
variations with gate voltage as variable parameter and 
different temperature. 

IV. CONCLUSION 

This paper demonstrates the new design concept of 
DGTFET called DGPNTFET and confirmed through 
simulation. The novelty of this structure lies with the fact that 
it does not require any additional drain doping. This gated PN 
diode device is advantageous in case of typical fabrication 
process as additional drain doping is not required. The 
simulated result shows SS of 19.14 mV/decade and ION / IOFF 
of 2.66 × 1014 (at VDS = 1V, VGS = 1.5V). Moreover ambipolar 
effect in OFF-state is completely removed for gate length of 
20nm in DGPNTFET. However, currently studied techniques 
to improve ON-state current and SS could also be employed to 
DGPNTFET. This paper provides a guideline to explore new 
features and in depth analysis. 
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