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Almost periodic sequence solutions of a discrete
cooperation system with feedback controls

Ziping Li and Yongkun Li

Abstract—In this paper, we consider the almost periodic solutions
of a discrete cooperation system with feedback controls. Assuming
that the coefficients in the system are almost periodic sequences, we
obtain the existence and uniqueness of the almost periodic solution
which is uniformly asymptotically stable.

Keywords—Discrete cooperation model; Almost periodic solution;
Feedback control; Lyapunov function.

I. INTRODUCTION

IN Ref. [1], Cui and Chen studied the following continuous
cooperation model:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇ = r1(t)u
[
1 − u

a1(t) + b1(t)v
− c1(t)u

]
,

v̇ = r2(t)v
[
1 − v

a2(t) + b2(t)u
− c2(t)v

]
,

(1)

where ri(t), ai(t), bi(t), ci(t)(i = 1, 2) are continuous func-
tions bounded above and below by positive constants. They
investigated the asymptotic behavior of system (1). Also,
under the assumption that ri(t), ai(t), bi(t), ci(t)(i = 1, 2) are
all continuous T -periodic functions, they obtained sufficient
conditions which guarantee the existence of a unique globally
asymptotically stable strictly positive periodic solution of
system (1).

Since many authors (see for e.g. [2], [3]) have argued that
the discrete time models governed by difference equations
are more appropriate than the continuous ones when the
populations have nonoverlapping generations, then, discrete-
timemodels can provide efficient computational types of con-
tinuous models for numerical simulations. It is reasonable to
study discrete-time population models governed by difference
equations.

In Ref. [4], Bai, Fan and Wang studied the existence
of periodic solutions of the following discrete cooperation
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system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = x1(k) exp
{
r1(k)

[
1 − x1(k)

a1(k) + b1(k)x2(k)

−c1(k)x1(k)
]}
,

x2(k + 1) = x2(k) exp
{
r2(k)

[
1 − x2(k)

a2(k) + b2(k)x1(k)

−c2(k)x2(k)
]}
.

Feedback control is the basic mechanism by which systems,
whether mechanical, electrical, or biological, maintain their
equilibrium or homeostasis. During the last decade, a series
of mathematical models have been established to describe the
dynamics of feedback control systems ([5], [6], [7], [8]).

In this paper, we are concerned with the following discrete
cooperation system with feedback controls:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = x1(k) exp
{
r1(k)

[
1 − x1(k)

a1(k) + b1(k)x2(k)
−c1(k)x1(k)

]− d1(k)u1(k)
}
,

x2(k + 1) = x2(k) exp
{
r2(k)

[
1 − x2(k)

a2(k) + b2(k)x1(k)
−c2(k)x2(k)

]− d2(k)u2(k)
}
,

Δu1(k) = −f1(k)u1(k) + g1(k)x1(k),
Δu2(k) = −f2(k)u2(k) + g2(k)x2(k),

(2)

where xi(k) (i = 1, 2) is the density of cooperation species i
at the nth generation, ri(k) denotes the intrinsic growth rate of
species i and ui(k)(i = 1, 2) is the control variables (see [1,2]
and the references cited therein). Under the assumptions of
almost periodicity of coefficients of system (2), we will discuss
the existence and uniqueness of almost periodic solutions for
system (2).

For any bounded sequence {r(k)}, we denote

ru = sup
k∈N

{r(k)}, rl = inf
k∈N

{r(k)}.

Throughout this paper, we assume that
(H) {ri(k)}, {ai(k)}, {bi(k)}, {ci(k)}, {di(k)}, {fi(n)} and

{gi(n)}(i = 1, 2) are bounded non-negative almost
periodic sequences such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < rli ≤ ri(k) ≤ rui ,
0 < ali ≤ ai(k) ≤ aui ,
0 < bli ≤ bi(k) ≤ bui ,
0 < cli ≤ ci(k) ≤ cui ,
0 < dli ≤ di(k) ≤ dui ,
0 < f li ≤ fi(k) ≤ fui < 1,
0 < gli ≤ gi(k) ≤ gui .

(3)
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By the biological meaning, we focus our discussion on the
positive solutions of the system (2). Hence, it is assumed that
the initial conditions of (2) are of the form

xi(0) > 0, ui(0) > 0, i = 1, 2. (4)

One can easily show that the solutions of (2) with the initial
condition (4) are defined and remain positive for all k ∈ Z+ =
{0, 1, 2, . . .}.

II. PRELIMINARIES

In this section, we will introduce two definitions and some
useful lemmas.

Definition 1. [9] A sequence x : Z −→ Rk is called an
almost periodic sequence if the ε-translation set of x

E{ε, x} := {τ ∈ Z : |x(k + τ) − x(k)| < ε}
for all k ∈ Z is a relatively dense set in Z for all ε > 0, that
is, for any given ε > 0, there exists an integer l(ε) > 0 such
that each discrete interval of length l(ε) contains an integer
τ = τ(ε) ∈ E{ε, x} such that

|x(k + τ) − x(k)| < ε

for all k ∈ Z, τ is called the ε-translation number of x(k).

Definition 2. [9] Let f : Z × D −→ Rk, where D is an
open set in Rk, f(k, x) is said to be almost periodic in k
uniformly for x ∈ D, or uniformly almost periodic for short,
if for any ε > 0 and any compact set S in D, there exists a
positive integer l(ε, S) such that any interval of length l(ε, S)
contains an integer τ for which

|f(k + τ, x) − f(k, x)| < ε

for all k ∈ Z and x ∈ S. τ is called the ε-translation number
of f(k, x).

Lemma 1. [9] If {x(k)} is an almost periodic sequence, then
{x(k)} is bounded.

Lemma 2. [9] {x(k)} is an almost periodic sequence if and
only if for sequence {h′k} ⊂ Z, there exists a subsequence
{hk} ⊂ {h′k},such that {x(k + hk)} converges uniformly on
x ∈ S as k → ∞. Furthermore, the limit sequence is also an
almost periodic sequence.

Lemma 3. [9] Let k ∈ N+
k0

= {k0, k0 + 1, . . . , k0 + r, . . .},
r ≥ 0. For any fixed k, g(k, r) is a non-decreasing function
with respect to r, and for k ≥ k0, the following inequalities
hold: y(k+1) ≤ g(k, y(k)), u(k+1) ≤ g(k, u(k)). If y(k0) ≤
u(k0), then y(k) ≤ u(k) for all k ≥ k0.

Now let us consider the following single species discrete
model:

N(k + 1) = N(k) exp{a(k) − b(k)N(k)},
where {a(k)} and {b(k)} are strictly positive sequences of real
numbers defined for k ∈ N = {0, 1, 2, . . .} and 0 < al < au,
0 < bl < bu.

Lemma 4. [10] If {x(k)} with initial condition x(k) > 0 and
for all k ∈ N satisfies

x(k + 1) ≤ x(k) exp{a(k) − b(k)x(k)},
then

lim
k→+∞

supx(k) ≤M,

where a(k) and b(k) are nonnegative sequences with positive
bounded below, M = 1

bl exp{au − 1}.

Lemma 5. [10] If {x(k)} satisfies

x(k + 1) ≥ x(k) exp{a(k) − b(k)x(k)}, k ≥ N0

and

lim
k→+∞

supx(k) ≤M,
bu

al
M > 1, x(N0) > 0,

then

lim
k→+∞

inf x(k) ≥ m,

where a(k) and b(k) are nonnegative sequences with positive
bounded below, m = al

bu exp{al − buM}.

III. PERSISTENCE

In this section, we establish a persistence result for model
(2).

Theorem 1. Assume that (3) and (4) hold, furthermore,
(H1) rli − dui u

∗
i > 0, i = 1, 2

is satisfied. Then for any positive solution
(x1(k), x2(k), u1(k), u2(k)) of (2), we have

xi∗ ≤ lim
k→+∞

inf x(k) ≤ lim
k→+∞

supx(k) ≤ x∗i ,

ui∗ ≤ lim
k→+∞

inf u(k) ≤ lim
k→+∞

supu(k) ≤ u∗i ,
(5)

where

x∗i =
1
rlic

l
i

exp{rui − 1},

xi∗ =
rli − dui u

∗
i(

rl
i

al
i

+ rlic
u
i

) exp
{
rli − dui u

∗
i −

(
rli
ali

+ rlic
u
i

)
x∗i

}
.

u∗i =
gui x

∗
i

f li
, ui∗ =

glixi∗
fui

.

Proof: We first prove that

lim
k→+∞

supxi(k) ≤ x∗i , i = 1, 2.

By the first equation of system (2), we have

x1(k + 1) ≤ x1(k) exp{r1(k)[1 − c1(k)x1(k)]}
= x1(k) exp{r1(k) − r1(k)c1(k)x1(k)}.

By applying Lemma 4, we have

lim
k→+∞

supx1(k) ≤ 1
rl1c

l
1

exp{ru1 − 1} � x∗1. (6)
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By using the second equation of system (2), similar to the
above analysis, we can obtain

lim
k→+∞

supx2(k) ≤ 1
rl2c

l
2

exp{ru2 − 1} � x∗2. (7)

Therefore, for each ε > 0, there exists a large enough integer
k0 such that

xi(k) ≤ x∗i + ε, i = 1, 2, whenever k ≥ k0.

Now we prove that

lim
k→+∞

supui(k) ≤ u∗i , i = 1, 2.

By the third equation of system (2), we can get that

u1(k) =
k−1∏
i=0

(1 − f1(i))
[
u1(0) +

k−1∑
i=0

g1(i)x1(i)
i∏

j=0

(1 − f1(j))

]

≤ (1 − f l1)
k(u1(0) + v1)

+gu1 (x∗1 + ε)
k−1∑
i=k0

k−1∏
j=i+1

(1 − f1(j))

≤ (1 − f l1)
k(u1(0) + v1)

+gu1 (x∗1 + ε)
k−1∑
i=k0

(1 − f l1)
k−i−1,

where v1 =
k−1∑
i=0

g1(i)x1(i)
i∏

j=0
(1−f1(j))

. Since 0 < f l1 < 1, we can find

a positive number d such that 1 − f l1 = e−d, then, by Stolz’s
theorem, we have

k−1∑
i=k0

(1 − f l1)
k−i−1

=

∑k−1
i=k0

ed(i+1)

edk
→ 1

1 − e−d
=

1
f l1
, (k → ∞).

Thus
lim

k→+∞
supu1(k) ≤ gu1x

∗
1

f l1
� u∗1. (8)

In the similar way, we can prove that

lim
k→+∞

supu2(k) ≤ gu2x
∗
2

f l2
� u∗2. (9)

Therefore, for each ε > 0, there exists k0 ∈ N such that

ui(k) ≤ u∗i + ε, i = 1, 2.

Next, we prove that

lim
k→+∞

inf xi(k) ≥ xi∗, i = 1, 2.

By the first equation of system (2), we have

x1(k + 1) ≥ x1(k) exp
{
r1(k)

[
1 − x1(k)

al1
− cu1x1(k)

]

−du1 (u∗1 + ε)
}

≥ x1(k) exp
{

[rl1 − du1 (u
∗
1 + ε)]

−
(
rl1
al1

+ rl1c
u
1

)
x1(k)

}
.

By Lemma 5, we have

lim
k→+∞

inf x1(k) ≥ rl1 − du1 (u
∗
1 + ε)(

rl
1
al
1

+ rl1c
u
1

) exp
{
rl1 − du1 (u

∗
1 + ε)

−
(
rl1
al1

+ rl1c
u
1

)
x∗1

}
.

Let ε→ 0, it follows that

lim
k→+∞

inf x1(k) ≥ rl1 − du1u
∗
1(

rl
1
al
1

+ rl1c
u
1

) exp
{
rl1 − du1u

∗
1

−
(
rl1
al1

+ rl1c
u
1

)
x∗1

}
� x1∗. (10)

In the similar way, we can prove that

lim
k→+∞

inf x2(k) ≥ rl2 − du2u
∗
2(

rl
2
al
2

+ rl2c
u
2

) exp
{
rl2 − du2u

∗
2

−
(
rl2
al2

+ rl2c
u
2

)
x∗2

}
� x2∗. (11)

Therefore, for each ε > 0, there exists a large enough integer
k0 such that

xi(k) > xi∗ − ε, i = 1, 2.

Finally, we prove that

lim
k→+∞

inf ui(k) ≥ ui∗, i = 1, 2.

By the third equation of system (2), we can get that

u1(k) =
k−1∏
i=0

(1 − f1(i))
[
u1(0) +

k−1∑
i=0

g1(i)x1(i)
i∏

j=0

(1 − f1(j))

]

≥ (1 − fu1 )k(u1(0) + v1)

+gl1(x1∗ − ε)
k−1∑
i=k0

k−1∏
j=i+1

(1 − f1(j))

≥ (1 − fu1 )k(u1(0) + v1)

+gl1(x1∗ − ε)
k−1∑
i=k0

(1 − fu1 )k−i−1,

where v1 =
k−1∑
i=0

g1(i)x1(i)
i∏

j=0
(1−f1(j))

. Since 0 < fu1 < 1, we can find

a positive number d such that 1− fu1 = e−d, then, by Stolz’s
theorem, we have

k−1∑
i=k0

(1 − fu1 )k−i−1

=

∑k−1
i=k0

ed(i+1)

edk
→ 1

1 − e−d
=

1
fu1
, (k → ∞).



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:8, 2011

1287

Thus

lim
k→+∞

inf u1(k) ≥ gl1x1∗
fu1

� u1∗. (12)

In the similar way, we can prove that

lim
k→+∞

inf u2(k) ≥ gl2x2∗
fu2

� u2∗. (13)

Hence, from (5)-(13), we can get that

xi∗ ≤ lim
k→+∞

inf x(k) ≤ lim
k→+∞

supx(k) ≤ x∗i ,

ui∗ ≤ lim
k→+∞

inf u(k) ≤ lim
k→+∞

supu(k) ≤ u∗i ,

where i = 1, 2. This completes the proof of Theorem 1.

IV. MAIN RESULTS

Consider the following almost periodic difference system

x(n+ 1) = f(n, x(n)), n ∈ Z+, (14)

where f : Z × SB → Rk, SB = {x ∈ Rk : ‖x‖ < B}, and
f(n, x) is almost periodic in n uniformly for x ∈ SB and is
continuous in x. The product system of (14) is as follows:

x(n+ 1) = f(n, x(n)), y(n+ 1) = f(n, y(n)). (15)

Lemma 6. [11] Suppose that there exists a Lyapunov func-
tional V (n, x, y) defined for n ∈ N , ‖x‖ < B, ‖y‖ < B
satisfying the following conditions:

(i) a(‖x − y‖) ≤ V (n, x, y) ≤ b(‖x − y‖),where a, b ∈
K, with K = {a ∈ C(R+, R+) : a(0) = 0} and a is
increasing;

(ii) |V (n, x1, y1)−V (n, x2, y2)| ≤ L(‖x1−x2‖+‖y1−y2‖),
where L > 0 is a constant;

(iii) ΔV(15)(n, x, y) ≤ −aV (n, x, y), where 0 < a < 1 is a
constant and

ΔV(15)(n, x, y) = V (n+ 1, f(n, x), f(n, y)) − V (n, x, y).

Moreover, if there exists a solution ϕ(n) of (14) such that
‖ϕ(n)‖ ≤ B∗ < B, for n ∈ Z+, then there exists a unique
uniformly asymptotically stable almost periodic solution p(n)
of system (14) which is bounded by B∗. In particular, if f(n, x)
is periodic of period ω, then there exists a unique uniformly
asymptotically stable periodic solution of (14) of period ω.

According to Lemma 6, we first prove that there exists a
bounded solution of (2), then construct an adaptive Lyapunov
functional for (2).

We denote by Ω the set of all solutions X(k) =
(x1(k), x2(k), u1(k), u2(k)) of system (2) satisfying xi∗ ≤
xi(k) ≤ x∗i , ui∗ ≤ ui(k) ≤ u∗i , i = 1, 2 for all k ∈ Z+.

Lemma 7. Assume that (H) and the conditions of Theorem
1 hold, then Ω 	= ∅.

Proof: It is now possible to show by an inductive argu-
ment that the system (2) leads to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k) = x1(0) exp
k−1∑
l=0

{
r1(l)

[
1 − x1(l)

a1(l) + b1(l)x2(l)

−c1(l)x1(l)
]
− d1(l)u1(l)

}
,

x2(k) = x2(0) exp
k−1∑
l=0

{
r2(l)

[
1 − x2(l)

a2(l) + b2(l)x1(l)

−c2(l)x2(l)
]
− d2(l)u2(l)

}
,

u1(k) = u1(0) −
k−1∑
l=0

{
f1(l)u1(l) − g1(l)x1(l)

}
,

u2(k) = u2(0) −
k−1∑
l=0

{
f2(l)u2(l) − g2(l)x2(l)

}
.

From Theorem 1, for any solution X(k) = (x1(k), x2(k),
u1(k), u2(k)) of system (2) with initial condition (4) satisfy
(5). Hence, for any ε > 0, there exist k0, if k0 is sufficiently
large, we have

xi∗ − ε ≤ xi(k) ≤ x∗i + ε, ui∗ − ε ≤ ui(k) ≤ u∗i + ε, i = 1, 2.

Let {τα} be any integer valued sequence such that τα → ∞
as α→ ∞, we claim that there exists a subsequence of {τα},
we still denote it by {τα}, such that

xi(k + τα) → x∗i (k)

uniformly in n on any finite subset B of Z as α→ ∞, where
B = {a1, a2, . . . , am}, ah ∈ Z, h = (1, 2, . . . ,m) and m is a
finite number.

In fact, for any finite subset B ⊂ Z, when α is large enough,
τα + ah > k0, h = 1, 2, . . . ,m. So

xi∗ − ε ≤ xi(k + τα) ≤ x∗i + ε, i = 1, 2,
ui∗ − ε ≤ ui(k + τα) ≤ u∗i + ε, i = 1, 2.

That is, {xi(k + τα), ui(k + τα)} are uniformly bounded for
large enough α.

Now, for a1 ∈ B, we can choose a subsequence {τ (1)α }
of {τα} such that {xi(a1 + τ

(1)
α ), ui(a1 + τ

(1)
α )} uniformly

converges on Z+ for α large enough.
Similarly, for a2 ∈ B, we can choose a subsequence {τ (2)α }

of {τ (1)α } such that {xi(a2 + τ
(2)
α ), ui(a2 + τ

(2)
α )} uniformly

converges on Z+ for α large enough.
Repeating this procedure, for am ∈ B, we can choose

a subsequence {τ (m−1)
α } of {τ (m)α } such that {xi(am +

τ
(m)
α ), ui(am+τ (m)α )} uniformly converges on Z+ for α large

enough.
Now pick the sequence {τ (m)α } which is a subsequence of

{τα}, we still denote it as {τα} then for all k ∈ B, we have

{xi(k + τα) → x∗i , ui(k + τα) → u∗i }
uniformly in k ∈ B as α→ ∞.

By the arbitrary of B, the conclusion is valid.
Since {ri(k)}, {ai(k)}, {bi(k)}, {ci(k)}, {di(k)}, {fi(k)}

and {gi(k)} are almost periodic sequence, for above sequence
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{τα}, τα → ∞ as α → ∞, there exists a subsequence still
denote it by {τα} (if necessary, we take subsequence), such
that

ri(k + τα) → ri(k), ai(k + τα) → ai(k),
bi(k + τα) → bi(k), ci(k + τα) → ci(k),
di(k + τα) → di(k), fi(k + τα) → fi(k),
gi(k + τα) → gi(k),

as α→ ∞ uniformly on Z+.
For any δ ∈ Z, we can assume that τα+ δ ≥ k0 for δ large

enough. Let k ≥ 0 and k ∈ Z, by an inductive argument of
(2) from τα + δ to k + τα + δ leads to

xi(k + τα + δ)

= xi(τα + δ) exp
k+τα+δ−1∑
l=τα+δ

{
ri(l)

[
1 − xi(l)

ai(l) + bi(l)xj(l)

−ci(l)xi(l)
]
− di(l)ui(l)

}
,

ui(k + τα + δ)

= ui(τα + δ) −
k+τα+δ−1∑
l=τα+δ

{
fi(l)ui(l) − gi(l)xi(l)

}
.

Then, for i, j = 1, 2, i 	= j, we have

xi(k + τα + δ)

= xi(τα + δ) exp
k+δ−1∑
l=δ

{
ri(l + τα)

[
1

− xi(l + τα)
ai(l + τα) + bi(l + τα)xj(l + τα)

−ci(l + τα)xi(l + τα)
]
− di(l + τα)ui(l + τα)

}
,

ui(k + τα + δ)

= ui(τα + δ) −
k+δ−1∑
l=δ

{fi(l + τα)ui(l + τα)

−gi(l + τα)xi(l + τα)}.
Let α→ ∞, for any k ≥ 0,

x∗i (k + δ) = x∗i (δ) exp
k+δ−1∑
l=δ

{
ri(l)

[
1 − x∗i (l)

ai(l) + bi(l)x∗j (l)

−ci(l)x∗i (l)
]
− di(l)u∗i (l)

}
,

u∗i (k + δ) = u∗i (δ) −
k+δ−1∑
l=δ

{
fi(l)u∗i (l) − gi(l)x∗i (l)

}
.

By the arbitrariness of δ, X∗(k) = (x∗1(k), x
∗
2(k), u

∗
1(k),

u∗2(k)) is a solution of system (2) on Z+. It is clear that

0 < xi∗ ≤ x∗i (k) ≤ x∗i , 0 < ui∗ ≤ u∗i (k) ≤ u∗i , k ∈ Z+.

So Ω 	= Φ. Lemma 7 is valid.

Theorem 2. Suppose the conditions of Lemma 7 are satisfied,
moreover, 0 < β < 1, where

β = min{rij , r∗ij},

rij =
2rlixi∗

aui + bui x
∗
j

+ 2clir
l
ixi∗ −

ru
2

i ξ
u2

i

(ali + blixj∗)2
− ru

2

i c
u2

i x
∗2
i

−2ru
2

i c
u
i x

∗2

i − gu
2

i x∗
2

i − ru
2

i b
u
i x

∗2

i x
∗
j

(ali + blixj∗)3

− r∗
2

i c
u
i b
u
i x

∗
i x

∗
j

(ali + blixj∗)2
− rui b

u
i x

∗2

i x
∗2

j

(ali + blixj∗)2
− rui d

u
i x

∗
i

ali + blixj∗

−rui cui dui x∗i − (1 − f li )x
∗
i + dli −

bu
2

j x
∗2

j x
∗2

i

(alj + bljxi∗)4

− ru
2

j b
u
j x

∗2

j x
∗
i

(alj + bljxi∗)3
− r∗

2

j c
u
j b
u
j x

∗
jx

∗
i

(alj + bljxi∗)2
− ruj b

u
j x

∗2

j x
∗2

i

(alj + bljxi∗)2

− ruj b
u
j d
u
j x

∗
jx

∗
i

(alj + bljxi∗)2
,

r∗ij = 2f li −
rui d

u
i x

∗
i

ali + blixj∗
− rui c

u
i d
u
i x

∗
i − (1 − f li )x

∗
i + dli

− rui b
u
i d
u
i x

∗
i x

∗
j

(ali + blixj∗)2
− du

2

i − fu
2

i ,

for i, j = 1, 2, i 	= j. Then there exists a unique uni-
formly asymptotically stable almost periodic solution X(k) =
(x1(k), x2(k), u1(k), u2(k)) of (2) which is bounded by Ω for
all k ∈ Z+.

Proof: Let pi(k) = lnxi(k), from system (2), we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
pi(k + 1) = pi(k) + ri(k)

[
1 − exp{pi(k)}

ai(k) + bi(k) exp{pj(k)}
−ci(k) exp{pi(k)}

]
− di(k)ui(k),

Δui(k) = −fi(k)ui(k) + gi(k) exp{pi(k)},
(16)

where i, j = 1, 2, i 	= j. From Lemma 7, we know that system
(16) has a bounded solution Y (k) = (p1(k), p2(k), u1(k),
u2(k)) satisfying

lnxi∗ ≤ pi(k) ≤ lnx∗i , ui∗ ≤ ui(k) ≤ u∗i , i = 1, 2, k ∈ Z+.

Hence, |pi(k)| ≤ Ai, |ui(k)| ≤ Bi, Ai = max{| lnxi∗|,
| lnx∗i |}, Bi = max{ui∗u∗i }, i = 1, 2.

For (X,U) ∈ R2+2, we define the norm ‖(X,U)‖ =∑2
i=1 |xi| +

∑2
i=1 |ui|.

Consider the product system of system (16)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi(k + 1) = pi(k) + ri(k)
[
1 − exp{pi(k)}

ai(k)+bi(k) exp{pj(k)}

−ci(k) exp{pi(k)}
]
− di(k)ui(k),

Δui(k) = −fi(k)ui(k) + gi(k) exp{pi(k)},
qi(k + 1) = qi(k) + ri(k)

[
1 − exp{qi(k)}

ai(k)+bi(k) exp{qj(k)}

−ci(k) exp{qi(k)}
]
− di(k)ωi(k),

Δωi(k) = −fi(k)ωi(k) + gi(k) exp{qi(k)}.
(17)

Suppose that Z = (p1(k), p2(k), u1(k), u2(k)),W =
(q1(k), q2(k), ω1(k), ω2(k)) are any two solutions of sys-
tem (16) defined on Z+ × S∗ × S∗, then ‖Z‖ ≤
B‖, ‖W‖ ≤ B, where B =

2∑
i=1

{Ai + Bi}, S∗ =
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{(p1(k), p2(k), u1(k), u2(k))| lnxi∗ ≤ pi(k) ≤ lnx∗i , ui∗ ≤
ui(k) ≤ u∗i , i = 1, 2, k ∈ Z+}.

Consider a Lyapunov function defined on Z+×S∗×S∗ as
follows

V (k, Z,W ) =
2∑
i=1

{(pi(k) − qi(k))2 + (ui(k) − ωi(k))2}.

It is easy to see that the norm

‖Z −W‖ =
2∑
i=1

{| pi(k) − qi(k) | + | ui(k) − ωi(k) |}

and the norm

‖Z −W‖∗ =
{ 2∑
i=1

{(pi(k) − qi(k))2 + (ui(k) − ωi(k))2}
} 1

2

are equivalent. That is, there exist two constants C1 > 0,
C2 > 0, such that

C1‖Z −W‖ ≤ ‖Z −W‖∗ ≤ C2‖Z −W‖,
then

(C1‖Z −W‖)2 ≤ V (k, Z,W ) ≤ (C2‖Z −W‖)2.
Let a ∈ C(R+, R+), a(x) = C2

1x
2, b ∈ C(R+, R+), b(x) =

C2
2x

2, thus the condition (i) in Lemma 6 is satisfied.
In addition,

|V (n,Z,W ) − V (n, Z̃, W̃ )|

=
∣∣∣∣

2∑
i=1

{
(pi(n) − qi(n))2 + (ui(n) − wi(n))2

}

−
2∑
i=1

{
(p̃i(n) − q̃i(n))2 + (ũi(n) − w̃i(n))2

}∣∣∣∣
≤

2∑
i=1

∣∣∣∣(pi(n) − qi(n))2 − (p̃i(n) − q̃i(n))2
∣∣∣∣

+
2∑
i=1

∣∣∣∣(ui(n) − wi(n))2 − (ũi(n) − w̃i(n))2
∣∣∣∣

=
2∑
i=1

{
|(pi(n) − qi(n)) + (p̃i(n) − q̃i(n))|

×|(pi(n) − qi(n)) − (p̃i(n) − q̃i(n))|
}

+
2∑
i=1

{
|(ui(n) − wi(n)) + (ũi(n) − w̃i(n))|

×|(ui(n) − wi(n)) − (ũi(n) − w̃i(n))|
}

≤
2∑
i=1

{
(|pi(n)| + |qi(n)| + |p̃i(n)| + |q̃i(n)|)

×(|(pi(n)| + |qi(n)| + |p̃i(n)| + |q̃i(n)|)
}

+
2∑
i=1

{
(|ui(n)| + |wi(n)| + |ũi(n)| + |w̃i(n)|)

×(|(ui(n)| + |wi(n)| + |ũi(n)| + |w̃i(n)|)
}

≤ L{
2∑
i=1

{|pi(n) − p̃i(n)| + |ui(n) − ũi(n)|}

+
2∑
i=1

{|qi(n) − q̃i(n)| + |wi(n) − w̃i(n)|}}

= L{‖Z − Z̃‖ + ‖‖W − W̃‖},
where L = 4 max{Ai, Bi}(i = 1, 2). Hence, the condition
(ii) of Lemma 6 is satisfied.

Finally, calculate the ΔV of V (k) along the solutions of
(17), we can obtain

ΔV(17)(k)
= V (k + 1) − V (k)

=
2∑
i=1

{(pi(k + 1) − qi(k + 1))2

+(ui(k + 1) − ωi(k + 1))2}

−
2∑
i=1

{(pi(k) − qi(k))2 + (ui(k) − ωi(k))2}

=
2∑
i=1

{(
pi(k) + ri(k)

[
1 − exp{pi(k)}

ai(k) + bi(k) exp{pj(k)}

−ci(k) exp{pi(k)}
]
− di(k)ui(k) − qi(k)

−ri(k)
[
1 − exp{qi(k)}

ai(k) + bi(k) exp{qj(k)}

−ci(k) exp{qi(k)}
]
− di(k)ωi(k)

)2
+[((1 − fi(k))ui(k) + gi(k) exp{pi(k)}
−(1 − fi(k))ωi(k) − gi(k) exp{qi(k)}]2

−(pi(k) − qi(k))2 − (ui(k) − ωi(k))2
}

=
2∑
i=1

{[
r2i (k)

(ai(k) + bi(k)eqj(k))2
+ r2i (k)c

2
i (k)

+2r2i (k)ci(k) + g2i (k)
]
(epi(k) − eqi(k))2

+
b2i (k)(e

pi(k))2(epj(k) − eqj(k))2

(ai(k) + bi(k)epj(k))2(ai(k) + bi(k)eqj(k))2

−
[

2r2i (k)bi(k)e
pi(k)(epj(k) − eqj(k))2

(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))2

+
2r2i (k)bi(k)ci(k)

(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))

]
×(epi(k) − eqi(k))(epj(k) − eqj(k))

−
[

2ri(k)
ai(k) + bi(k)eqj(k)

+ 2ci(k)ri(k)
]

×(pi(k) − qi(k))(epi(k) − eqi(k))

+
2ri(k)bi(k)epi(k)

(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))
×(pi(k) − qi(k))(epj(k) − eqj(k))
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−2di(k)(pi(k) − qi(k))(ui(k) − ωi(k))

+
[

2ri(k)di(k)
ai(k) + bi(k)epj(k)

+ 2ci(k)ri(k)di(k)

+2(1 − fi(k))
]
(ui(k) − ωi(k))(epi(k) − eqi(k))

− 2ri(k)bi(k)di(k)epi(k)

(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))
×(ui(k) − ωi(k))(epj(k) − eqj(k)) + (d2i (k)

−2fi(k) + f2i (k))(ui(k) − ωi(k))2
}
. (18)

Using the mean value theorem we get

epi(k) − eqi(k) = ξi(k)(pi(k) − qi(k)), i = 1, 2, (19)

where ξi(k) lies between epi(k) and eqi(k), i = 1, 2. From (18)
and (19), we have

ΔV(17)(k)

=
2∑
i=1

{[
r2i (k)

(ai(k) + bi(k)eqj(k))2
+ r2i (k)c

2
i (k)

+2r2i (k)ci(k) + g2i (k)
]
ξ2i (k)(pi(k) − qi(k))2

+
b2i (k)(e

pi(k))2ξ2j (k)(pj(k) − qj(k))2

(ai(k) + bi(k)epj(k))2(ai(k) + bi(k)eqj(k))2

−
[

2r2i (k)bi(k)e
pi(k)

(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))2

+
2r2i (k)bi(k)ci(k)

(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))

]
×ξi(k)(pi(k) − qi(k))ξj(k)(pj(k) − qj(k)))

−
[

2ri(k)
ai(k) + bi(k)eqj(k)

+ 2ci(k)ri(k)
]
ξi(k)(pi(k)

−qi(k))2 +
2ri(k)bi(k)epi(k)

(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))
×ξj(k)(pj(k) − qj(k))(pi(k) − qi(k)) − 2di(k)(pi(k)

−qi(k))(ui(k) − ωi(k)) +
[

2ri(k)di(k)
ai(k) + bi(k)eqj(k)

+2ci(k)ri(k)di(k) + 2(1 − fi(k))
]
(ui(k)

−ωi(k))ξi(k)(pi(k) − qi(k))

− 2ri(k)bi(k)di(k)epi(k)

(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))
×(ui(k) − ωi(k))ξj(k)(pj(k) − qj(k))

+(d2i (k) − 2fi(k) + f2i (k))(ui(k) − ωi(k))2
}

≤
2∑
i=1

{[
r2i (k)ξ

2
i (k)

(ai(k) + bi(k)eqj(k))2
+ r2i (k)c

2
i (k)ξ

2
i (k)

+2r2i (k)ci(k)ξ
2
i (k) + g2i (k)ξ

2
i (k)

− 2ri(k)ξi(k)
ai(k) + bi(k)eqj(k)

−2ri(k)ci(k)ξi(k)
]
(pi(k) − qi(k))2

+
b2i (k)(e

pi(k))2ξ2j (k)
(ai(k) + bi(k)epj(k))2(ai(k) + bi(k)eqj(k))2

×(pj(k) − qj(k))2

+2
∣∣∣∣
(
− r2i (k)bi(k)e

pi(k)ξi(k)ξj(k)
(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))2

− r2i (k)bi(k)ci(k)ξi(k)ξj(k)
(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))

+
ri(k)bi(k)epi(k)ξi(k)ξ2j (k)

(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))

)

×(pi(k) − qi(k))(pj(k) − qj(k))
∣∣∣∣

+2
∣∣∣∣
[

ri(k)di(k)ξi(k)
ai(k) + bi(k)epj(k)

+ ci(k)ri(k)di(k)ξi(k)

+(1 − fi(k))ξi(k) − di(k)
]
(pi(k) − qi(k))

×(ui(k) − ωi(k))
∣∣∣∣

+
∣∣∣∣ 2ri(k)bi(k)di(k)epi(k)ξj(k)
(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))

×(pj(k) − qj(k))(ui(k) − ωi(k))
∣∣∣∣

+[d2i (k) − 2fi(k) + f2i (k)](ui(k) − ωi(k))2
}
.

We get for j = 1, 2,

ΔV(17) =
2∑
i=1

{V1ij + V2ij + V3ij + V4ij + V5ij + V6ij},

where

V1ij =
[

r2i (k)ξ
2
i (k)

(ai(k) + bi(k)eqj(k))2
+ r2i (k)c

2
i (k)ξ

2
i (k)

+2r2i (k)ci(k)ξ
2
i (k) + g2i (k)ξ

2
i (k)

− 2ri(k)ξi(k)
ai(k) + bi(k)eqj(k)

− 2ri(k)ci(k)ξi(k)
]

×(pi(k) − qi(k))2

≤
[

ru
2

i ξ
u2

i

(ali + blixj∗)2
+ ru

2

i c
u2

i x
∗2

i + 2ru
2

i c
u
i x

∗2

i

+gu
2

i x∗
2

i − 2rlixi∗
aui + bui x

∗
j

− 2rlic
l
ixi∗

]
×(pi(k) − qi(k))2,

V2ij =
b2i (k)(e

pi(k))2ξ2j (k)
(ai(k) + bi(k)epj(k))2(ai(k) + bi(k)eqj(k))2

×(pj(k) − qj(k))2

≤ bu
2

i x
∗2

i x
∗2

j

(ali + blixj∗)4
(pj(k) − qj(k))2,

V3ij = 2
∣∣∣∣
(
− r2i (k)bi(k)e

pi(k)ξi(k)ξj(k)
(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))2

− r2i (k)bi(k)ci(k)ξi(k)ξj(k)
(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))

+
ri(k)bi(k)epi(k)ξi(k)ξ2j (k)

(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))

)
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×(pi(k) − qi(k))(pj(k) − qj(k))
∣∣∣∣

≤
[
ru

2

i b
u
i x

∗2

i x
∗
j

(ali + blixj∗)3
+
ru

2

i b
u
i c
u
i x

∗
i x

∗
j

(ali + blixj∗)2
+

rui b
u
i x

∗2

i x
∗2

j

(ali + blixj∗)2

]
×((pi(k) − qi(k))2 + (pj(k) − qj(k))2),

V4ij = 2
∣∣∣∣
[

ri(k)di(k)ξi(k)
ai(k) + bi(k)epj(k)

+ ci(k)ri(k)di(k)ξi(k)

+(1 − fi(k))ξi(k) − di(k)
]

(pi(k) − qi(k))(ui(k) − ωi(k))
∣∣∣∣

≤
[
rui d

u
i x

∗
i

ali + blixj∗
+ rui c

u
i d
u
i x

∗
i + (1 − f li )x

∗
i − dli

]
×((pi(k) − qi(k))2 + (ui(k) − ωi(k))2),

V5ij =
∣∣∣∣ 2ri(k)bi(k)di(k)epi(k)ξj(k)
(ai(k) + bi(k)epj(k))(ai(k) + bi(k)eqj(k))

×(pj(k) − qj(k))(ui(k) − ωi(k))
∣∣∣∣

≤ rui b
u
i d
u
i x

∗
i x

∗
j

(ali + blixj∗)2
((pj(k) − qj(k))2 + (ui(k) − ωi(k))2),

V6ij = [d2i (k) − 2fi(k) + f2i (k)](ui(k) − ωi(k))2

≤ (du
2

i − 2f li + fu
2

i )(ui(k) − ωi(k))2.

Hence,

ΔV(17) ≤
2∑
i=1

[
ru

2

i ξ
u2

i

(ali + blixj∗)2
+ ru

2

i c
u2

i x
∗2

i

+2ru
2

i c
u
i x

∗2

i + gu
2

i x∗
2

i − 2rlixi∗
aui + bui x

∗
j

− 2rlic
l
ixi∗

+
ru

2

i b
u
i x

∗2

i x
∗
j

(ali + blixj∗)3
+
ru

2

i b
u
i c
u
i x

∗
i x

∗
j

(ali + blixj∗)2
+

rui b
u
i x

∗2

i x
∗2

j

(ali + blixj∗)2

+
rui d

u
i x

∗
i

ali + blixj∗
+ rui c

u
i d
u
i x

∗
i + (1 − f li )x

∗
i − dli

]

×(pi(k) − qi(k))2 +
[
bu

2

i x
∗2

i x
∗2

j

(ali + blixj∗)4

+
ru

2

i b
u
i x

∗2

i x
∗
j

(ali + blixj∗)3
+
ru

2

i b
u
i c
u
i x

∗
i x

∗
j

(ali + blixj∗)2

+
rui b

u
i x

∗2

i x
∗2

j

(ali + blixj∗)2
+

rui b
u
i d
u
i x

∗
i x

∗
j

(ali + blixj∗)2

]

×(pj(k) − qj(k))2 +
[
rui d

u
i x

∗
i

ali + blixj∗
+rui c

u
i d
u
i x

∗
i + (1 − f li )x

∗
i − dli

+
rui b

u
i d
u
i x

∗
i x

∗
j

(ali + blixj∗)2
+ du

2

i − 2f li + fu
2

i

]
×(ui(k) − ωi(k))2

= −
2∑
i=1

[
2rlixi∗

aui + bui x
∗
j

+ 2rlic
l
ixi∗ −

ru
2

i ξ
u2

i

(ali + blixj∗)2

−ru2

i c
u2

i x
∗2

i − 2ru
2

i c
u
i x

∗2

i − gu
2

i x∗
2

i

− ru
2

i b
u
i x

∗2

i x
∗
j

(ali + blixj∗)3
− ru

2

i b
u
i c
u
i x

∗
i x

∗
j

(ali + blixj∗)2
− rui b

u
i x

∗2

i x
∗2

j

(ali + blixj∗)2

− rui d
u
i x

∗
i

ali + blixj∗
− rui c

u
i d
u
i x

∗
i − (1 − f li )x

∗
i

+dli −
bu

2

j x
∗2

j x
∗2

i

(alj + bljxi∗)4
− ru

2

j b
u
j x

∗2

j x
∗
i

(alj + bljxi∗)3

− ru
2

j b
u
j c
u
j x

∗
jx

∗
i

(alj + bljxi∗)2
− ruj b

u
j x

∗2

j x
∗2

i

(alj + bljxi∗)2
− ruj b

u
j d
u
j x

∗
jx

∗
i

(alj + bljxi∗)2

]

×(pi(k) − qi(k))2 +
[
2f li −

rui d
u
i x

∗
i

ali + blixj∗

−rui cui dui x∗i − (1 − f li )x
∗
i + dli −

rui b
u
i d
u
i x

∗
i x

∗
j

(ali + blixj∗)2

−du2

i − fu
2

i

]
(ui(k) − ωi(k))2

≤ −
2∑
i=1

{
rij(pi(k) − qi(k))2 + r∗ij(ui(k) − ωi(k))2

}

≤ −β
2∑
i=1

{
(pi(k) − qi(k))2 + (ui(k) − ωi(k))2

}
≤ −βV (k),

where β = min{rij , r∗ij}, i, j = 1, 2, i 	= j. That is, there
exists a positive constant 0 < β < 1 such that

ΔV(17)(k) ≤ −βV (k).

From 0 < β < 1, the condition (iii) of Lemma 6 is
satisfied. So, from Lemma 6, there exists a uniqueness uni-
formly asymptotically stable almost periodic solution X(k) =
(p1(k), p2(k), u1(k), u2(k)) of (16) which is bounded by s∗
for all k ∈ Z+, which means that there exists a unique-
ness uniformly asymptotically stable almost periodic solution
X(k) = (x1(k), x2(k), u1(k), u2(k)) of (2) which is bounded
by Ω for all k ∈ Z+. This completes the proof.
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