
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

379

All-pairs shortest-paths problem for unweighted
graphs in O(n2 log n) time
Udaya Kumar Reddy K. R, and K. Viswanathan Iyer

Abstract—Given a simple connected unweighted undirected graph
G = (V (G), E(G)) with |V (G)| = n and |E(G)| = m, we present a
new algorithm for the all−pairs shortest−path (APSP) problem.
The running time of our algorithm is in O(n2 log n). This bound is
an improvement over previous best known O(n2.376) time bound of
Raimund Seidel (1995) for general graphs. The algorithm presented
does not rely on fast matrix multiplication. Our algorithm with
slight modifications, enables us to compute the APSP problem for
unweighted directed graph in time O(n2 log n), improving a previous
best known O(n2.575) time bound of Uri Zwick (2002).

Keywords—Distance in graphs, Dynamic programming, Graph
algorithms, Shortest paths.

I. INTRODUCTION

LET G = (V (G), E(G)) be a finite connected unweighted
undirected graph without self-loops and multiple edges.

Let |V (G)| = n and |E(G)| =m. For u, v ∈ V (G), let dG(u, v)
be the distance (the minimum number of edges on a shortest
path between u and v) between u, v (we take dG(u, v) =
∞ if no such path exist). Given G, the all-pairs shortest-
path (APSP) problem asks to compute dG(u, v) between every
pair of vertices u, v ∈ V (G). A traditional method to solve
the APSP problem of a graph G is to run breadth-first-search
(BFS), once from every vertex of G. This takes time O(mn)
which can be cubic in n for dense graphs. Many researchers
have improved for long time and various algorithms have
been proposed via fast matrix multiplication algorithms (see
for example, Galil and Margalit [5], [6] and Seidel [7]), and
algorithms that achieve logarithmic speeds (see for example,
Feder and Motwani [4] and Chan [2]). For general graphs, the
best result is due to Seidel [7] for the unweighted undirected
case, using Coppersmith and Winograd’s matrix multiplication
algorithm. As mentioned in Dragan [3], fast matrix multipli-
cation algorithms are far from being practical and suffer from
large hidden constants in the running time bound and many
researchers started considering the all-pairs almost shortest-
paths (APASP) problem for general graphs or for certain class
of graphs designing an optimal time O(n2) algorithms. For
more details of APSP problem on different graph classes,
APASP problem and approximation results see Dragan [3]
and for general graphs see Chan [2]. Many of the graph
classes such as interval graphs, chordal graphs, circular arc

Udaya Kumar Reddy K.R is with the Department of Computer Sci-
ence and Engineering, National Institute of Technology, Tiruchirappalli–620
015, India (Tel.: +91-9003301758; Fax: +91-431-2500133; email: krudayku-
mar@yahoo.com).
K. Viswanathan Iyer is with the Department of Computer Science and

Engineering, National Institute of Technology, Tiruchirappalli–620 015, India
(email: kvi@nitt.edu).

graphs, permutation graphs, etc., are generally not sparse and
can contain as many as Θ(n2) edges. Therefore there is an
interest in obtaining optimal algorithms for the APSP problem
for dense graphs in general. For sparse graphs, many efforts
have been made during the years to beat the naive O(mn)
time bound. Throughout the years slight improvements were
obtained only for dense graphs. Recently, Chan [2] succeeded
to obtain the o(mn) result for unweighted undirected graphs
for all m � n1.376. There are also results for APSP problem
of unweighted directed graphs. In this case, Alon, et. al, [1]
obtained a O(n2.688) algorithm. Later Zwick [8] has improved
the result to obtain a running time of O(n2.575) which is
currently the best time bound. Also in this case fast matrix
multiplication has been applied to solve the APSP problem.
In this paper we propose a new algorithm for the APSP

problem for unweighted (undirected or directed) graphs in
time O(n2 log n). This bound beats the previous best known
O(n2.376) time bound on APSP of Seidel [7] for unweighted
undirected case, and O(n2.575) time bound for unweighted di-
rected case of Zwick [8]. Our approach is simpler and practical
than the previous approaches using fast matrix multiplication
and word-packing tricks.
The rest of the paper is organized as follows. In Section II,

starting with basic definitions and notions of the shortest paths,
we show how to compute the APSP problem for an unweighted
undirected graph G using dynamic programming technique
and also shows that the APSP problem can be solved for
unweighted directed graphs.

II. COMPUTATION OF ALL-PAIRS SHORTEST-PATH
PROBLEM

In this section, we give a dynamic programming solution
to solve the all-pairs shortest-path problem on an unweighted
(undirected or directed) graph G. We assume that the vertices
of G are numbered 1, 2, . . . , n. One way to compute APSP
problem on an unweighted graph G in time Θ(n 3) is to assign
a weight of 1 to each edge in E(G) and run the Floyd-Warshall
algorithm. If there is a path from vertex i to vertex j, we get
dij < n. Otherwise, we get dij = ∞ (for the case of directed
graphs). Let A denote the n-by-n (boolean matrix) adjacency
matrix in which the element in the ith row and the jth column
is equal to 1 if there is an edge from vertex i to vertex j and
equal to 0 if there is no such edge. Let D denote n-by-n
distance matrix. Let D(0), D(1), . . . , D(x) be the sequence
of distance matrices generated by our algorithm for the given
graph G, where x ≤ log n. For each k ∈ {0, 1, . . . , x}, let
D(k) = (d(k)

ij) for all i, j ∈ V (G), where dij denote the distance

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

380

TABLE I
THE ARRAYS a(k) AND b(k) FROM D(0) AND D(1) IN FIG. 1.

Index i 1 2 3 4 5 6 7 8
a(0)[i] 2 1 4 3 1 2 3 4
b(0)[i] 5 6 6 7 NIL 3 4 7

Index i 1 2 3 4 5 6 7 8
a(1)[i] 6 3 7 8 2 7 6 3
b(1)[i] 3 5 2 6 6 1 8 2

of a shortest path from i to j. For unweighted undirected graph
G, for 1 ≤ i ≤ n, let a(k)[i] denote some vertex uk = t such
that p = min(d(k)

it) for some p with t �= i and t �= (a(k−1)[i]
. . . a(0)[i] and b(k−1)[i] . . . b(0)[i]), for 1 ≤ t ≤ n, and for 1
≤ i ≤ n, let b(k)[i] denote some vertex vk = w such that q =
min(d(k)

iw) for some q with w �= i and w �= (a(k)[i] . . . a(0)[i]
and b(k−1)[i] . . . b(0)[i]), for 1 ≤ w ≤ n. Intuitively, for each
k, and for all i, j ∈ V (G), a(k)[i] is an array that holds an
index uk (uk ∈ {1, . . . , n}) of minimum distance in the ith
row and jth column of the matrix D (k), and b(k)[i] is an array
that holds an index vk with vk �= uk (vk ∈ {1, . . . , n}) of
next minimum distance in the ith row and jth column of the
matrix D(k). For unweighted directed graph, for every i, let
a(k)[i] denote some vertex uk = t such that d

(k)
it is minimum

with t �= i and t �= (a(k−1)[i] . . . a(0)[i]), for 1 ≤ t ≤ n, and
for every j, let b(k)[j] denote some vertex vk = w such that
d
(k)
jw is minimum with w �= j and w �= (b(k−1)[j] . . . b(0)[j]),
for 1 ≤ w ≤ n. Intuitively, for each k, and for all i, j ∈ V (G),
a(k)[i] is an array that holds an index uk (uk ∈ {1, . . . , n}) of
minimum distance in the ith row and jth column (row-wise)
of the matrix D(k), and b(k)[i] is an array that holds an index
vk (vk ∈ {1, . . . , n}) of minimum distance in the jth column
and ith row (column-wise) of the matrix D (k).

A. Some notions of the shortest paths

We begin with a lemma which shows that how to find a(k)

and b(k) for k = 0, 1, . . . , x.

Lemma 1:
Let D(0), D(1), . . . , D(x) be the sequence of distance matrices
for k = 0, 1, 2, . . . , x for some x. For all i, j ∈ V (G), there
exists some vertex uk or some vertex vk or both such that uk

= j such that d
(k)
ij is minimum and vk = j

′
such that d

(k)

ij′ is

minimum, j
′ �= j, with uk �= (uk−1...0 and vk−1...0) and vk

�= (uk...0 and vk−1...0).

Proof. Assume that for all i, j, and for k = 0, D (0) contains
d
(0)
ij = 1 if (i, j) ∈ E(G), d(0)

ij =∞ if (i, j) /∈ E(G) and d
(0)
ii =

0. Assume that j = 1, 2, . . . , n in that order. First, for all i, j,
and for k = 1, to compute D (1): since G is connected, in D(0)

we find that each row i has at least one d
(0)
ij = 1. In D(0), since

every row i has only distances d
(0)
ij = 1 (without considering

d
(0)
ii = 0 and d

(0)
ij = ∞), and d

(0)
ij ≤ d

(0)
ij+1 ≤ . . . ≤ d

(0)
in , we

have uk−1 = j and vk−1 = j+1. Now, for some i, and for j ∈
{1, 2, . . . , n}, if there exists only one value d

(0)
ij = 1, then we

have uk−1 = j and vk−1 = NIL. Next, for all i, j, and for k =
2, to compute D(2): we may have distances d

(k−1)
ij ≥ 1. Now

1

5

2

6

3

7

4

8

D(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 ∞ ∞ 1 ∞ ∞ ∞
1 0 ∞ ∞ ∞ 1 ∞ ∞
∞ ∞ 0 1 ∞ 1 1 ∞
∞ ∞ 1 0 ∞ ∞ 1 1
1 ∞ ∞ ∞ 0 ∞ ∞ ∞
∞ 1 1 ∞ ∞ 0 1 ∞
∞ ∞ 1 1 ∞ 1 0 1
∞ ∞ ∞ 1 ∞ ∞ 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 3 4 1 2 4 5
1 0 2 3 2 1 2 3
3 2 0 1 4 1 1 2
4 3 1 0 5 2 1 1
1 2 4 5 0 3 5 6
2 1 1 2 3 0 1 2
4 2 1 1 5 1 0 1
5 3 2 1 6 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 3 4 1 2 3 4
1 0 2 3 2 1 2 3
3 2 0 1 4 1 1 2
4 3 1 0 5 2 1 1
1 2 4 5 0 3 4 5
2 1 1 2 3 0 1 2
3 2 1 1 4 1 0 1
4 3 2 1 5 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. An undirected graph and the sequence of matrices D(k) computed
by ALL-PAIRS-SHORTEST-PATHS (Fig. 2) for 0 ≤ k ≤ 2.

we choose uk−1 (u1) = j such that d
(k−1)
ij is minimum with

uk−1 �= (uk−2, vk−2) i.e., u1 �= (u0, v0), and vk−1 = j
′
such

that d(k−1)

ij′
is minimum with vk−1 �= (uk−2, vk−2, uk−1) i.e.,

v1 �= (u0, v0, u1). As for k = 2, a similar argument follows
for k = 3, 4, . . . , x, where x ≤ log n. Hence the lemma.
Let P be a shortest path from i to j. In the following lemma
we show that the subpaths P1 and P2 of P are shortest paths.

Lemma 2:
Let P be any shortest path from i to j, i �= j. Let z be an
intermediate vertex in P . Let P1 be a subpath of P from i . . .
z and P2 be a subpath of P from z . . . j. Then the subpaths
P1 and P2 are always shortest paths.

Proof. Let k = 1, 2, . . . , x, where x ≤ log n. By Lemma
1, the vertices uk−1, vk−1 are chosen such that the distance
d
(k−1)
iuk−1

and d
(k−1)
ivk−1

are shortest-path distances by themselves.
So the vertex uk−1 or vertex vk−1 is an intermediate vertex
in the path P . In finding P , choosing z from {uk−1, vk−1}
is of crucial importance.
First, for all i, j, and for k = 1, to compute D (1): Here vertex

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

381

z is chosen based on the subpath P2. Consider the subpath
P1: Here d

(k−1)
iuk−1

= d
(k−1)
ivk−1

= 1. That is, the subpath from i to
uk−1 or i to vk−1 are shortest-path distances by themselves
since (i, uk−1) ∈ E(G) or (i, vk−1) ∈ E(G). Now, consider
the subpath P2:
Case 1: for some i, in computing d

(k)
ij , uk−1 or vk−1 > i.

Here d
(k−1)
uk−1j = d

(k−1)
vk−1j = 1 since (uk−1, j) ∈ E(G) and (vk−1,

j) ∈ E(G). So z = uk−1 or vk−1.
Case 2: for some i, in computing d

(k)
ij , uk−1 or vk−1 <

i. Here d
(k−1)
uk−1j ≥ 1 and d

(k−1)
vk−1j ≥ 1. That is, the values of

d
(k−1)
uk−1j and d

(k−1)
vk−1j are already computed as shortest-path

distances in D(k) = d
(k)
uk−1j or D(k) = d

(k)
vk−1j . In this case

z = uk−1 if d
(k−1)
uk−1j < d

(k−1)
vk−1j and z = vk−1 if d

(k−1)
uk−1j >

d
(k−1)
vk−1j . Suppose if d

(k−1)
uk−1j = d

(k−1)
vk−1j , then z = uk−1 or uk−1.

In general, for k = 1, z = uk−1 if d
(k−1)
uk−1j ≤ d

(k−1)
vk−1j and z =

vk−1 otherwise. Thus, the subpath P1 from i to z is a shortest
path with no intermediate vertices in the set {1, 2, . . . , n}
and the subpath P2 from z to j is a shortest path with all
intermediate vertices in the set {1, 2, . . . , n}.
Next, for all i, j, and for k = 2, to compute D (2): Here
vertex z is chosen based on P1 or P2. Consider the subpath
P1: Now, d

(k−1)
iuk−1

≥ 1 and d
(k−1)
ivk−1

≥ 1. That is, the subpath
from i to uk−1 or i to vk−1 are shortest-path distances by
themselves since the values of d

(k−1)
iuk−1

and d
(k−1)
ivk−1

are already
computed in D(k−1) for all i, j ∈ V (G). Now, consider
the subpath P2: Here d

(k−1)
uk−1j ≥ 1 and d

(k−1)
vk−1j ≥ 1. Again

the values of d
(k−1)
uk−1j and d

(k−1)
vk−1j are already computed as

shortest-path distances in D(k−1) or in D(k) if Case 2 above
satisfies. In this case z = uk−1 if d

(k−1)
uk−1j < d

(k−1)
vk−1j and z =

vk−1 if d
(k−1)
uk−1j > d

(k−1)
vk−1j . Suppose if d

(k−1)
uk−1j = d

(k−1)
vk−1j , then z

= uk−1 if d
(k−1)
iuk−1

< d
(k−1)
ivk−1

and z = vk−1 otherwise. Thus, P1

is a shortest path from i to z with all intermediate vertices in
the set {1, 2, . . . , n} and P2 is a shortest path from z to j
with all intermediate vertices in the set {1, 2, . . . , n}. As for
k = 2, a similar argument follows for k = 3, 4, . . . , x, where
x ≤ log n.
Now, suppose that for some i, j, if we choose a vertex r
in V (G) − {uk−1, vk−1} as intermediate vertex, then the
subpath P2 from r to j is d

(k−1)
rj ≥ d

(k−1)
zj . Thus the subpath

from z to j is a shortest path with all intermediate vertices
in the set {1, 2, . . . , n} and in turn from i to z is also a
shortest path with all intermediate vertices in the set {1, 2,
. . . , n}. Thus, if the path P from i to j goes through the
intermediate vertex z, then the subpaths of that path from i
to z and from z to j are themselves shortest paths. Hence the
lemma.

Example A.1: Consider the shortest path P from vertex
i to vertex j for i = 8 and j = 1 in the graph of Fig. 1. In
Fig. 1. we see that the shortest path from vertex 8 to vertex
1 is computed in D(2). Let (p −→ q) = r denote the distance
from p to q. For vertex i, the vertices uk−1 = 2, and vk−1 =
3, and the distances from uk−1 to j and vk−1 to j are: (2 −→
1) = 1 and (3 −→ 1) = 3. So we choose z = 2 as intermediate

vertex since (2 −→ 1) < (3 −→ 1). The distances from
vertex i to uk−1 and i to vk−1 are: (8 −→ 2) = 3 and (8 −→
3) = 2. Though (8 −→ 3) < (8 −→ 2), based on vertex z
(or subpath P2 = z to j) we conclude that the subpaths P1 =
(8 −→ 2) and P2 = (2 −→ 1) are shortest paths from 8 to 1.
This illustrates Lemma 2. The shortest path from 8 to 1 is
computed in the sequence as shown in Table II. At each step
in Table II one can verify that the subpaths from i to z and
from z to j are shortest-path distances by themselves.

The next lemma shows that any shortest path P can be
categorized into two parts.

Lemma 3:
From among all the paths from i to j, let P be a shortest
path from i to j, i �= j. Let the path P be simple. Let z be
an intermediate vertex in P . Then all such paths of P can be
partitioned into two categories: those that do not include the
intermediate vertex z and those that do.

Proof. If the path P does not include z, then the shortest
path from i to j with all intermediate vertices in the set {1,
2, . . . , n} in D(k−1) is also a shortest path from i to j with
all intermediate vertices in the set {1, 2, . . . , n} in D (k). If
P contains z, then we can split the path P into P1 and P2,
where P1 is a path from i to z and P2 is a path from z to j.
By Lemma 2, we know that the subpaths P1 and P2 of P are
shortest paths with all intermediate vertices in the set {1, 2,
. . . , n}. Hence the lemma.

B. The structure of a shortest-path

The first step in the dynamic programming paradigm is
to find the optimal substructure and then use it to construct
an optimal solution to the problem from optimal solutions to
subproblems. The structure of a shortest path of our approach
looks similar to that of Floyd-Warshall algorithm. That is,
instead of drawing the intermediate vertices from the set {1,
2, . . . , k} for k ∈ {1, 2, . . . , n}, we draw the intermediate
vertices from the set {1, 2, . . . , n} using {uk, vk}, for some
uk, vk ∈ {1, 2, . . . , n} for each k ∈ {1, 2, . . . , x}, where x
≤ log n. Based on the above Lemmas 1−3, we can formulate
the structure of a shortest-path as follows. For every pair of
vertices i, j ∈ V (G), let P be the minimum-distance path
from among all paths from vertex i to vertex j and the path P
is simple. We can partition all such paths into two categories:
those that do not use the vertex z as intermediate and those
that do.

• If vertex z is not in P , then the shortest-path from vertex
i to vertex j is of length d

(k−1)
ij .

• If vertex z is in P , then we break down P into P1 and
P2, where,

– P1 is a shortest-path from vertex i to vertex z of
length d

(k−1)
iz , where z = (a(k−1)[i] or b(k−1)[i]).

– P2 is a shortest-path from vertex z to vertex j of
length d

(k−1)
zj .

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

382

TABLE II
SHORTEST PATH FROM VERTEX 8 TO VERTEX 1

Edge (i, j) or (j, i) Path (i −→ j) {uk−1, vk−1} Vertex z D(k) Distance
(2, 6) (2 −→ 6) NIL NIL D(0) 1
(2, 7) (2 −→ 6 −→ 7) {1, 6} 6 D(1) 1 + 1 = 2
(8, 2) (8 −→ 7 −→ 2) {4, 7} 7 D(1) 1 + 2 = 3
(8, 1) (8 −→ 2 −→ 1) {2, 3} 2 D(2) 3 + 1 = 4

Procedure ALL-PAIRS-SHORTEST-PATHS(G)

1) Initialize D[i, j] ← ∞ for every i and j, and for every i, D[i, i] ← 0
2) Modify D[i, j] ← 1 whenever A[i, j] = 1, where A is the adjacency matrix of G.
3) repeat
4) for i ← 1 to n do amin ← ∞ ; bmin ← ∞
5) for j ← 1 to n
6) do if D[i, j] < amin and j �= i and BR[i, j] = 0
7) then amin ← D[i, j] ; BR[i, j] ← 1 ; a[i] ← j ; s1 ← j
8) if D[i, j] < D[i, s1] then BR[i, s1] ← 0
9) for j ← 1 to n
10) do if D[i, j] < bmin and j �= i and j �= a[i] and BR[i, j] = 0
11) then bmin ← D[i, j] ; BR[i, j] ← 1 ; b[i] ← j ; s2 ← j
12) if D[i, j] < D[i, s2] then BR[i, s2] ← 0
13) for i ← 1 to n
14) do for j ← 1 to n
15) do t1 ← D[i, a[i]] + D[a[i], j] ; t2 ← D[i, b[i]] + D[b[i], j]
16) D[j, i] ← D[i, j] ← MIN

{
D[i, j], MIN{t1, t2}

}
17) flag ← true
18) for i ← 1 to n
19) do for j ← 1 to n do temp[i, j] ← D[i, j]
20) if D[i, j] �= temp[i, j] then flag ← false
21) until flag = false

Fig. 2. Computing APSP for unweighted undirected graph G.

1

5

2

6

3

7

4

8

Fig. 3. An undirected graph having a single path from 1 to 2.

1

5

�

2

6

3

7

4

8
� � �

�
��

Fig. 4. A directed graph having a single path from 1 to 2.

C. A recursive solution

The second step in the dynamic programming paradigm is
to define the cost of an optimal solution recursively in terms

of the optimal solutions to subproblems. For each k ∈ {0, 1,
. . . , x}, and for all i, j ∈ V (G), we define d

(k)
ij recursively

as follows. Initially, for k = 0, the problem is trivial and the
matrix D(0) is defined as follows:

d
(0)
ij =

⎧⎨
⎩

0 if i = j
1 if i �= j and (i, j) ∈ E(G)
∞ if i �= j and (i, j) /∈ E(G)

(1)

To compute d
(k)
ij for k ≥ 1, we take the advantage of the

structure of an optimal shortest path. Thus, we obtain,

d
(k−1)
ij = d

(k)
ij = min

{
d
(k−1)
ij , min{t1, t2}

}
(2)

where, t1 = d
(k−1)
ip + d

(k−1)
pj and t2 = d

(k−1)
iq + d

(k−1)
qj .

Also, p = a(k−1)[i] (uk−1) and q = b(k−1)[i] (vk−1). Eq. (2)
computes the sequence of matrices: D (1), . . . , D(x). Since
the computation of D(k) uses only D(k−1), we do not have
to save the earlier matrices. Let δ(i, j) = dG(i, j) from vertex
i to vertex j. The final matrix in the sequence, D (x) = (d(x)

ij)
= δ(i, j) for all i, j ∈ V (G) and hence is nothing but the
distance matrix being sought.

Note C.1: In (2), we observe that the value of d
(k)
ij

after computing is assigned to d
(k−1)
ij . This is because, if for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

383

some i, d
(k)
ij has {uk−1, vk−1} and uk−1 or vk−1 < i, then

the shortest-path distances that is already computed from
uk−1 to j or vk−1 to j can be used to compute d

(k)
ij . For

example, in Fig. 1 to compute d
(1)
ij from vertex i = 5 to j (j

= 1, 2, . . . , n), we have z = uk−1 = 1 and 1 < 5, so the
shortest-path distances computed from vertex 1 to n is used
in computing from vertex 5 to n. That is, as we move down
on each i starting from i = 1 in the increasing order, for
each k, we can compute more number of distances since d

(k)
ij

draws the intermediate vertices from the set {1, 2, . . . , n}.

D. Design of the algorithm

Based on the above observations, we list our procedure
ALL-PAIRS-SHORTEST-PATHS(G) which is shown in the
Fig. 2 for computing the APSP on unweighted undirected
graph G. In Fig. 2, the function MIN(a, b) returns the
minimum value of two items. For every i, the arrays a[i]
and b[i] contain, respectively, an index uk−1 (uk−1 = 1, . . .
, n) of minimum distance in the ith row of matrix D (k)

and an index vk−1 (vk−1 = 1, . . . , n) of next minimum
distance in the ith row of matrix D(k) (lines 7 and 11).
Let BR denote an n-by-n boolean matrix. In lines 7 and
11, the entry in the ith row and the jth column of BR,
marks as 1 for each a[i] and b[i] of D (k−1). Otherwise,
the entry remains 0. Now, based on the values of a[i] and
b[i] we can compute d

(k)
ij for all i, j ∈ V (G) (line 16).

For every i and j, if D(k) is equal to D(k+1) (k = 1, 2,
. . . , x) (lines 18-20), then we terminate the algorithm and
the matrix D(x) contains the actual shortest-path distances
for all u, v ∈ V (G). Thus Fig. 2 implements Eq. (1) and
(2). We first give the algorithm, then prove its correctness
and show that it requires O(n2 log n) time, if G has n vertices.

Algorithm C.1: Computing all-pairs-shortest-path distances.
Input. A connected, unweighted undirected graph G = (V (G),
E(G)).
Output. An n × n distance matrix D(x) of the shortest-path
distances.
Method.

1) Initially, for every i and j, BR[i, j] and temp[i, j] are
initialized to 0. Then ALL-PAIRS-SHORTEST-PATHS(G)
(Fig. 2) is called to compute shortest-path distances
between all pairs of vertices u, v ∈ V (G).

Example C.1: Computation of distance matrix
Consider a connected undirected graph G in Fig. 1 and for

each i, a(0)[i], b(0)[i], a(1)[i] and b(1)[i] in Table I. In Fig. 1,
starting from the initialized matrix D(0) the procedure ALL-
PAIRS-SHORTEST-PATHS (Fig. 2) computes the matrices D (1)

and D(2) using (2).

• Computation of matrix D(1): Computation of D(1) uses
D(0).
Using (2), for k = i = 1, for instance we can compute
distances d

(k)
ij = 2, for j = 6 based on a(0)[i] = 2. That

is, to compute d
(1)
16 , we have, t1 = d

(0)
12 + d

(0)
26 = 1 + 1 =

2. Similarly, for i = 2, and j = 5 we can compute d
(k)
ij

based on a(0)[i] = 1. That is, to compute d
(1)
25 , we have,

t1 = d
(0)
21 + d

(0)
15 = 1 + 1 = 2. Next for i = 2, and j =

3, 7, based on b(0)[i] = 6 we can compute d
(1)
23 = d

(1)
27

= 2. Next for i = 3, and j = 1, we can compute based
on b(0)[i] = 6. That is, d

(1)
31 = d

(0)
36 + d

(0)
61 = 1 + 2 = 3.

Note that d
(1)
16 is already computed for i = 1. Since the

graph is undirected d
(1)
61 = d

(1)
16 = 2. Thus, it is similar for

every i and j and the result of D (1) matrix is shown in
Fig. 1. Hence, the shortest-path distances that is computed
for each i is represented as bold-font distances in D (1)

of Fig. 1 and since the graph is undirected the rest of
the distances are computed from i to j or j to i. Also,
in D(1), we find that some of the d

(1)
ij entries may not

be the shortest-path distance (for example, (1, 7), (1, 8),
(5, 7) and (5, 8) are not shortest-path distances) since it
depends on some path which is not a shortest path from
i to j. These intermediate results will be computed in the
next higher matrix D(2) in which there exists a shortest
path from i to j.

• Computation of matrix D(2): Computation of D(2) uses
only D(1).
Now based on a(1)[i] and b(1)[i] we can find D(2) matrix
using (2). Again, for i = 1, and j = 7, 8, based on a (1)[1]
= 6 we can compute d

(2)
17 = d

(1)
16 + d

(1)
67 = 2 + 1 = 3 and

d
(2)
18 = d

(1)
16 + d

(1)
68 = 2 + 2 = 4. Next, for i = 5, and j =

7, 8, based on b(1)[1] = 6 we can compute d
(2)
57 = d

(1)
56 +

d
(1)
67 = 3 + 1 = 4 and d

(2)
58 = d

(1)
56 + d

(1)
68 = 3 + 2 = 5. Note

that except for (1, 7) or (7, 1), (1, 8) or (8, 1), (5, 7) or
(7, 5) and (5, 8) or (8, 5), for remaining i, j we find d

(2)
ij

= d
(1)
ij . The result of D(2) is shown in Fig. 1. Thus, in

Fig. 1, the matrix D(x) = D(2), for x = 2, gives the final
answer: d

(2)
ij = δ(i, j) for all i, j ∈ V (G).

It is clear that Fig. 1 gives a typical example of an undirected
graphG in which all cases occurring in (2) are put to use in the
algorithm. Fig. 3 gives an extreme example of an undirected
graph in which there exists only one shortest path between
vertices 1 and 2 and the path is {1, 5, 6, 7, 8, 4, 3, 2}. In
this example the length of the shortest path from 1 to 2 is a
diameter which is the largest of all shortest-path distances.
Fig. 4 gives an extreme example of a directed graph in which
there exists only one shortest path between vertices 1 and 2.

Theorem 1:
Algorithm C.1 correctly finds the all-pairs shortest-path dis-
tance problem of unwieghted undirected graph G.

Proof. Suppose that the procedure ALL-PAIRS-SHORTEST-
PATHS (Fig. 2) is run on G from every vertex s ∈ V (G)
to j, for all j ∈ V (G)−{s}. Let D(0), D(1), . . . , D(x)

be the sequence of distance matrices generated by ALL-
PAIRS-SHORTEST-PATHS for the graph G, where x ≤ log n.
Let δ(i, j) be the shortest-path distance from i to j. Then,
ALL-PAIRS-SHORTEST-PATHS discovers the shortest-path
distance over all possible vertex pairs i, j in G, and upon
termination, we have D(x) = δ(i, j) for all i, j ∈ V (G). To
prove correctness it suffices to prove, by induction on the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

384

number k (k = 1, . . . , x) of distance matrices (that “repeat”
loop in Fig. 2 has been executed) of G. The inductive
hypothesis is that D(k) = δ(i, j) for all i, j ∈ V (G) produced
in line 16 (Fig. 2) are shortest-path distances.
The basis, k = 0, is trivial since D(0) is obtained from the
adjacency matrix A by considering the 1 entries and noting
the corresponding i and j values (“repeat” loop has not yet
been executed).
Now, assume that the inductive hypothesis is true for k = 1,
2, . . . , x−1 (D(1), D(2), . . . , D(x−1)) (“repeat” loop has
been executed x-1 times). Now to carry out inductive step for
k = x, based on the distances stored in the matrix D (x−1) and
for every i, based on uk−1 = a(k−1)[i] and vk−1 = b(k−1)[i]
with all intermediate vertices drawn in the set {1, 2, . . . , n},
we can compute D(x) using (2) correctly. That is, by Lemma
1, for some i, we have uk−1 = j and vk−1 = j

′
with j

′ �=
j, uk−1 �= (uk−2...0 and vk−2...0) and vk−1 �= (uk−1...0 and
vk−2...0). Consider d1 = d

(k−1)
iuk−1

+ d
(k−1)
uk−1j and d2 = d

(k−1)
ivk−1

+

d
(k−1)
vk−1j for some i, j. By Lemma 2, we have z = uk−1 if d1

< d2 and z = vk−1 otherwise. Let P be a shortest path from
i to j. By Lemma 3, we have d

(k)
ij = d

(k−1)
ij if z is not in P

and d
(k)
ij = d

(k−1)
iz + d

(k−1)
zj if z is in P . A similar argument

follows for all i, j ∈ V (G). Therefore the execution of Eq.
(2) makes D(k) = (d(k)

ij) true for all i, j ∈ V (G).

The following corollary is a consequence of Theorem 1.

Corollary 1:
Algorithm C.1 correctly finds the all-pairs shortest-path dis-
tance problem of unwieghted directed graph G.

Proof. Clearly, recurrence (2) can be used for unweighted
directed graphs with the modified values of a (k) and b(k)

for k = 0, 1, . . . , x, as given in Section II. Now the result
for directed graphs follows immediately from Theorem 1.

1) Complexity analysis: In Section II-D we have outlined
an algorithm for computing APSP for unwieghted undirected
graph via the procedure ALL-PAIRS-SHORTEST-PATHS(G).
We will show in this section that the Algorithm C.1 can be
implemented to run in O(n2 log n) time. First we shall analyze
for unweighted directed graphs since the procedure in Fig. 2
can be used for directed graphs with slight modifications for
a(k) and b(k) (lines 4−12) as defined in Section II and we
also modify line 16 (i.e., D[i, j] ← MIN{D[i, j], MIN{t1,
t2}}) of Fig. 2 and we can show that O(n2 log n) time bound
is tight for directed graphs in the worst case. We shall then
conclude the analysis for unweighted undirected graph G.
The worst case of our algorithm of Fig. 2 happens when

the length of the shortest path is a diameter (maximum of all
shortest-path distances) denoted by ΔG of G or if the given
graph G has a single path from vertex i to vertex j. We first
examine the code of lines 1−21 except “repeat .. until” loop
(lines 3 and 21). We can easily see that the cost of lines 1−2,
4−12, 13−16, and 18−20 each is O(n2). We now examine the
code of “repeat” loop from lines 4−20. Consider the graph
G that has a single path from i to j. For example, the graph

in Fig. 4 has a single path from vertex 1 to vertex 2 that has
a diameter ΔG = 7 for n = 8 vertices. For a directed graph,
solving the APSP problem of a graph G that has a single path
from i to j computes in the following sequence: starting from
the initialized matrix D(0) in line 2 of Fig. 2, our algorithm
computes the matrices D(1), D(2), . . . , D(x), for k = 1, 2,
. . . , x, where x ≤ log n as follows:

- During computation of D (1), d(1)
ij computes all distances

having 2 ≤ d
(1)
ij ≤ 2, for all i, j ∈ V (G) using D(0).

- During computation of D (2), d(2)
ij computes all distances

having 3 ≤ d
(2)
ij ≤ 4, for all i, j ∈ V (G) using D(1).

- During computation of D (3), d(3)
ij computes all distances

having 5 ≤ d
(3)
ij ≤ 8, for all i, j ∈ V (G) using D(2).

- During computation of D (x−1), d
(x−1)
ij computes all

distances having
ΔG/22�+1 ≤ d
(x−1)
ij ≤
ΔG/21�, for

all i, j ∈ V (G) using D(x−2) and
- Finally, during computation of D (x), d

(x)
ij computes all

distances having
ΔG/21�+1 ≤ d
(x)
ij ≤
ΔG/20�, for all

i, j ∈ V (G) using D(x−1).
Thus, as the matrices D(1), D(2), D(3), . . . , D(x), are
computed, the length of ΔG reduces to
ΔG/21�,
ΔG/22�,

ΔG/23�, . . . ,
ΔG/2x� respectively. Hence, the number of
iterations performed by “repeat .. until” loop from lines 4−20
is O(log n). Consequently, the total running time of lines 4−20
is O(n2 log n). We know that the cost of lines 1−2 is O(n2).
Thus the total running time for unweighted directed graphs is
O(n2 + n2 log n) = O(n2 log n). Therefore, we conclude that
the total running time for unweighted undirected graphs is also
in O(n2 log n). That is, in our approach, if the running time
in O(n2 log n) is true for unweighted directed graphs then it
is also true for unweighted undirected graphs in O(n 2 log n).
Since the computation of D(k) uses only D(k−1), for each k
∈ {1, 2, . . . , x}, we do not have to save the earlier matrices.
So the space complexity dictated by the arrays D[i, j], BR[i,
j] and temp[i, j] in Fig. 2 is O(n2).

Theorem 2:
The all-pairs shortest-path distance problem for unwieghted
(undirected or directed) graphs of Algorithm C.1 can be
implemented to run in time O(n2 log n) if G has n vertices.

E. Constructing a shortest-path

Let πij denote the predecessor of vertex j on a shortest
path from vertex i. Let Π denote an n × n predecessor matrix.
Suppose that Π(0), Π(1), . . . , Π(x) are the sequence of matrices
generated by our algorithm for the given graph G, where x ≤
log n. Suppose that the matrix Π(k) = π

(k)
ij (k = 1, . . . , x) for

all i, j ∈ V (G). Let α(i, j) be the shortest-path from vertex i
to vertex j. Then, for each possible vertex pairs i, j in G, we
can compute the the matrix Π (shortest-path) from D matrix,
and upon termination, we have Π(x) = α(i, j) for all i, j ∈
V (G). This can be implemented to run in time O(n2 log n).
Initially, for k = 0, the matrix Π(0) is defined as follows:

π
(0)
ij =

{
NIL if i = j or (i �= j and (i, j) /∈ E(G))
i if i �= j or (i �= j and (i, j) ∈ E(G)) (3)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

385

For k ≥ 1, following is the recursive definition of π
(k)
ij :

π
(k−1)
ij = π

(k)
ij =

{
π

(k−1)
ij if d

(k−1)
ij ≤ min{t1, t2}

π
(k−1)
kj if d

(k−1)
ij > min{t1, t2}

(4)

Refer Section II-C for definition of t1 and t2. Equation (3)
and (4) can be computed from (1) and (2) respectively. The
following corollary is a consequence of Theorem 2.

Corollary 2:
The all-pairs shortest-path problem for unwieghted (undirected
or directed) graphs can be solved in time O(n2 log n) if G has
n vertices.

Proof. Clearly, the matrix Π(k) (shortest-path) can be
computed from the matrix D (k) for each k = 0, 1, . . . , x
and the result for unwieghted (undirected or directed) graphs
follows immediately from Theorem 2.

REFERENCES

[1] N. Alon, Z. Galil, and O. Margalit, “On the exponent of the all-pairs
shortest path problem,” J. Comput. Sys. Sci., vol. 54, pp. 255-262, 1997.

[2] T. M. Chan, “All-pairs shortest paths for Unweighted Undirected Graphs
in o(mn) Time,” In Proc. 17th annual ACM-SIAM Sympos. on Discrete
Algorithms, pp. 514-523, 2006.

[3] F. F. Dragan, “Estimating all pairs shortest paths in restricted graph
families: a unified approach,” J. of Algorithms, vol. 57, pp. 1-21, 2005.

[4] T. Feder and R. Motwani, “Clique patritions, graph compression and
speeding-up algorithms,” J. Comput. Sys. Sci., vol. 51, pp. 261-272,
1995.

[5] Z. Galil and O. Margalit, “All pairs shortest distances for graphs with
small integer length edges,” Inf. Comput., vol. 134, pp. 103-139, 1997.

[6] Z. Galil and O. Margalit, “All pairs shortest paths for graphs with small
integer length edges,” J. Comput. Sys. Sci., vol. 54, pp. 243-254, 1997.

[7] R. Seidel, “On the all-pairs shortest path problem in unweighted
undirected graphs,” J. Comput. Sys. Sci., vol. 51, pp. 400-403, 1995.

[8] U. Zwick, “All-pairs shortest paths using bridging sets and rectangular
matrix multiplication,” J. ACM, vol. 49, pp. 289-317, 2002.

Udaya Kumar Reddy K. R. completed his B.E in Computer Science and
Engineering from Golden valley Institute of Technology, K.G.F, Bangalore
University, India in 1998. In 2004 he completed his M.E in Computer
Science and Engineering from University Visvesvaraya College of Engineer-
ing, Bangalore, India. Currently he is pursuing Ph.D in Computer Science
and Engineering in National Institute of Technology, Trichy, India (formerly
Regional Engineering College). His fields of interests are Algorithmic graph
theory and Theory of computation.

K. Viswanathan Iyer completed his B.E in Electronics and Communication
from the Indian Institute of Science, Bangalore, India in 1981. In 1984 he
completed his M.Sc.(Engg.) from Indian Institute of Science, Bangalore,
India. In 2007, he finished his Ph.D in Computer Science from National
Institute of Technology, Trichy, India. After his masters, he worked in various
industries for about 8 years. Since 1992 he has been with National Institute of
Technology, Trichy, India (formerly Regional Engineering College) where he
is now a Professor in the Department of Computer Science and Engineering.
His fields of interests are Algorithms and Theory. He has 20 publications
in journals and conference proceedings. He is listed in the 2009 edition of
Marquis Who’s Who in the World.

