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 
Abstract—This work focuses on the symmetric alpha stable 

process with continuous time frequently used in modeling the signal 
with indefinitely growing variance, often observed with an unknown 
additive error. The objective of this paper is to estimate this error 
from discrete observations of the signal. For that, we propose a 
method based on the smoothing of the observations via Jackson 
polynomial kernel and taking into account the width of the interval 
where the spectral density is non-zero. This technique allows 
avoiding the “Aliasing phenomenon” encountered when the 
estimation is made from the discrete observations of a process with 
continuous time. We have studied the convergence rate of the 
estimator and have shown that the convergence rate improves in the 
case where the spectral density is zero at the origin. Thus, we set up 
an estimator of the additive error that can be subtracted for 
approaching the original signal without error. 
 

Keywords—Spectral density, stable processes, aliasing, p-adic.  

I. INTRODUCTION 

ECENT years have shown an increasing interest in the 
study of stationary stable processes and in general 

stationary processes with infinite variance. The harmonizable 
process is an important example of a symmetric  -stable 
stationary process, and its proprieties have been considered by 
numerous authors like [1]-[10] to name a few. 

Stable symmetric processes find applications in various 
fields including: signal and image processing, hydrology, 
economies, electronic and electric, communications and radar 
applications ... see [11]-[23]. 

In this work, we consider, as in [4], a complex stationary 
symmetric  -stable (S S) process: 

 = ( ), < <X X t t  , with (0,2) ; more specifically, 

X  is a complex-valued stochastic process for which the finite 
dimensional characteristic function is:  
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with =j j jz x iy  and 1

0
= ( ) cos( ) ,C d

 
      where   

is a nonnegative integrable function called the spectral density 
of X . This spectral density plays a role analogous to that 
played by the usual power spectral density function of a 
second order stationary process. It is clear that the spectral 
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density   fully describes the distribution of the process .X  

Alternatively X  has the integral representation  
 

( ) = ( )ituX t e d u


                                      (1) 

 

where   is a complex-valued S S process with independent 

isotropic increments. The stochastic integral in (1) is defined 
by means of convergence in probability, for details see [1], 
[5]. 

The spectral density function was already estimated by [4], 
when the process is continuous-time, by [24] when the process 
is discrete-time and by [25] when the process is p-adic-time. 

This paper deals with the fairly common situation in 
practice, namely that the observations of the process are 
tainted by an unknown and constant error. The process 

=t tX a Z  is observed instead of the process Z  alone. The 

constant a  is estimated in [26] when the process is discrete-
time. 

Our goal is to establish nonparametric estimate of a , from 

sample of the process ( )nX t  at instants nt , where the 

sampling instants nt  are equally distant, i.e., =nt n , > 0 . 

It is known that aliasing occurs. For more details about 
aliasing phenomenon, see [27], [28]. To avoid this difficulty, 

we suppose that the spectral density   is vanishing for 

| |>   where   is a nonnegative real number. The value of 

  is chosen such that <  . 
In this paper we particularly study some cases where the 

spectral density is zero at the origin:  2( ) = / 2 ( )sin k g     

and ( ) =| | ( )g    . We show that the rate of 

convergence of the estimator of the constant "a" is improved.  
This paper is organized as follows: The second section 

gives some definitions and proprieties of Jackson polynomial 
kernel and an estimator of the constant a  is defined. We 
show that this estimate converges in probability to a . Then 
we show that the estimate converges to a  in ( < )pL p  . 

Since the second moment of this process does not exist, the 
convergence in Lp substitutes the quadratic. In third section, 
the spectral density of Z  is assumed vanishing at origin 

precisely: ( ) =| | ( )g    . We improve the rate of 

convergence depending to the value of  . The fourth section 

is reserved to numerical studies. 
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II.  ESTIMATION OF THE CONSTANT ERROR 

As in [20], [24], we give the definition of the Jackson 

polynomial kernel: Let 1, , NZ Z  observations of the process 

Z :  ( ) 0 1n n N
Z

  
, where N satisfies:  

 

 1 = 2 ( 1) 1/ 2N k n with n N k N      

 

if =1/ 2k  then 1 1= 2 1,n n n N  .  

The Jackson's polynomial kernel is defined by: 
 

( )( ) = ( )N
N NH A H
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where  
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In addition, we have 
1

,= ( )N NA B 



 with 

 

( )
, = ( ) .N
NB H d

 

 
 

  

 
We give the following lemmas which are used in the 

reminder of this paper. Their proofs are given in [24].  

 Lemma1. There is a non negative function kh  such as:  
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Lemma2. Let 
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where ]0,2].   Then 
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The estimator of the a is constructed as follows:  

   
1

(( 1)
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ˆ = ( ( 1)).
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Theorem1. Let p a real number such that 0 < <p  . Then  
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Proof. From (1) and (2), we have 
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As in [1], the characteristic function of ˆ( )a a  can be 

written as:  
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where 1 2=r r ir . It is easy to show that:  
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Putting = 2y j   and using the fact that NH  is 2 -

periodic, we obtain 
 

( )
= ( ) ,

(0)

a

N
N jj Z

N

H
y dy

H







 

    

 

where 2
( ) = .j

y
y j

 
 
  
 

 Let j  be an integer such that 
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2
< <

y j



  . Using the fact that <   and | |<y  , 

we get 1
| |< < 1

2 2
j




  and then = 0j . Consequently:  
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The function   being bounded on [ , ]   and | (.) |NH   

being a kernel, it can be shown that ( ) ( )NH d
 


   

  is 

converging to (0) . On the other hand, from lemma 2, we 

have:  
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Therefore N  converges to 0. Consequently, the 

characteristic function of â a  converges to 1 when N  
approaches infinity. Hence we have the convergence in 
probability of â  to a .  

We study now the convergence of â  to a  in pL  where 

0 < <p  , which replaces the convergence in mean square, 

because the second order moment of X  is infinity. Let  
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Replacing in this formula x  by â a , from the previous 
result we have  
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Let 
1

= [ ]Nu t   and using (3), we obtain  
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III. THE RATE OF CONVERGENCE FOR PARTICULAR CASES 

Suppose that the spectral density is zero at the origin. This 
assumption gives our estimator a better convergence rate. 
Theorem2. Assume that the spectral density is satisfying: 

( ) =| | ( )g     where ]0,2 1[,k    [ , ]     and 

( )g   is a bounded function on [ , ]   and vanishing for 

| |>  , continuous in neighborhood of 0  and (0) = 0g . 

Then  
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Proof. The function N  can be written as:  
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Using the inequality: sin 0 ,
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The Lebesgue's dominated convergence theorem gives the 
following convergence:  
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Lemma 2 gives:  
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Thus N  converges to zero. Using the following inequality 
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The first equality of (4) reaches the result of this theorem. 
Theorem3. Assuming that the spectral density satisfies:  
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Proof. From the definition of N , we have  
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As 1 k  and the sinus function is smaller than 1 , the 
next expression is connected to  
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So, from lemma 2, we have:  
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Using the fact that the sinus function is between 1  and 1  
and < [ ] 1k k    where [ ]k  represents the integer part of 

k , we obtain  
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The binomial formula gives:  
 

[ ] 1 22 ( )k k
N n g d

 


    


   

IV. SIMULATION 

The proposed estimator can be applied to concrete 
situations. For example, the arrival time of a signal sent by 
Wi-Fi using new wireless transmission technologies can be 
modeled by alpha stable process. Indeed, [29] proposed an 
arrival time model based on Poisson distributions. Reference 
[15] provided a model based on stable alpha distributions. The 
sum of arrival times modeled by independent and isotropic 
Poisson distributions can be represented by a stable 
harmonizable process like that given in (1), see [30]. When 
these signals are collected in an aquatic environment with a 
constant disturbance, the process will be added with a constant 

error ( =n nX Z a ). 

Throughout this section, we give the simulation of the 
studied process:  
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= ( ),it
tZ e d  



  

 

where 1 < < 2  and   is a complex symmetric S S 

measure on R  with independent and isotropic increments and 
with control measure m  such that = ( )mdx x dx . In order to 

achieve this, we use the series representation defined in [26]. 
Therefore, the process Z  given in (8) can be expressed as: 
 

 1 1

=1

= ( )
inV ij j

t j j
j

Z C x dx e e
 

  


  

 

where j  is a sequence of i.i.d. random variables such as 

[ = 0] = [ =1] =12j jP P  , k  is a sequence of arrival times 

of Poisson process, jV  is a sequence of i.i.d. random variables 

independent of k  and of k  having the same distribution of 

control measure m , which has probability density  , j  are 

independent random variables, having the uniform distribution 
on [ , ]  , independent of j , j  and jV .  

To generate N  values ( =101,501,1001)N  of the process 

tn
Z , we use the following steps:  

• generate 2000  values of j   

• generate 2000  values of j   

• generate 2000  values of 
jV   

• generate 2000  values of 
j   

Then we calculate for all 0 n N  : 

 
1 2000

1

=1

= ( )
it V in j j

t j jn
j

Z C x dx e e


     where the spectral 

density is chosen as | |( ) =| | xx x e   for [ , ]x     and 

( ) = 0x  otherwise and = 1,7  and = 4k . The   is taken 

as 2, between 0 and 2 1k   g Afterwards, we generate 

=t tn n
X a Z  where a  is chosen equal to 40 . 

We calculate the estimator â  given in (1) for different sizes 
of sample = 101,501,1001N . The result is given in Table I. 

 
TABLE I 

THE VALUE OF THE ERROR ESTIMATOR FOR DIFFERENT SIZES OF SAMPLES 

2 1 = 12.6k   = 2  

N=101 ˆ = 31,5a  

N=501 ˆ = 36,3a  

N=1001 ˆ = 41,05a  

 

Comparing â  to 40 (value of the constant a ), we find that 

the estimator â  increasingly approaches the constant error a  
when the sample size is large. 

V. CONCLUSIONS 

We give an estimator of the constant additive error in 
spectral representation of S S process. This work could be 
applied to several cases when processes have an infinite 
variance and the observation of these processes is perturbed by 
a constant noise. For example: 
- the decomposition of audio signals with background noise 

by separating the different musical instruments. 
- the denoising of a degraded historical record. The signal 

is considered infinitely variable. 
The perspective of this work is to optimize the smoothing 

parameters to have a better speed of convergence. For this 
purpose, the cross-validation method will be the most 
appropriate tool. 
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