
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2875

Abstract—The ever-growing usage of aspect-oriented

development methodology in the field of software engineering

requires tool support for both research environments and industry. So

far, tool support for many activities in aspect-oriented software

development has been proposed, to automate and facilitate their

development. For instance, the AJaTS provides a transformation

system to support aspect-oriented development and refactoring. In

particular, it is well established that the abstract interpretation of

programs, in any paradigm, pursued in static analysis is best served

by a high-level programs representation, such as Control Flow Graph

(CFG). This is why such analysis can more easily locate common

programmatic idioms for which helpful transformation are already

known as well as, association between the input program and

intermediate representation can be more closely maintained.

However, although the current researches define the good concepts

and foundations, to some extent, for control flow analysis of aspect-

oriented programs but they do not provide a concrete tool that can

solely construct the CFG of these programs. Furthermore, most of

these works focus on addressing the other issues regarding Aspect-

Oriented Software Development (AOSD) such as testing or data flow

analysis rather than CFG itself. Therefore, this study is dedicated to

build an aspect-oriented control flow graph construction tool called

AJcFgraph Builder. The given tool can be applied in many software

engineering tasks in the context of AOSD such as, software testing,

software metrics, and so forth.

Keywords—Aspect-Oriented Software Development, AspectJ,

Control Flow Graph, Data Flow Analysis

I. INTRODUCTION

SPECT-Oriented Programming (AOP) [1] is a relatively

new paradigm that can be used to achieve a higher level

of modularization, by means of separation of core concerns

from crosscutting concerns, in source code than traditional non

aspect-oriented approaches. However, AspectJ [2] is a

seamless aspect-oriented extension to Java, which is the most

widely used aspect-oriented programming language. AspectJ

adds some new concepts and associated constructs are called

join points, pointcut, advice, inter-type declaration, and

aspects into standard Java programming language.

Moreover, support for program analysis is crucial in modern

programming languages. Especially, a control flow graph is

R.M.Parizi is with the Department of Information System, University

Putra Malaysia, Serdang, 43400, Selangor, Malaysia (phone: +60-

173579565; fax: +60-389466576; e-mail: parizi@fsktm.upm.edu.my).

A.A.A. Ghani is with the Department of Information System, University

Putra Malaysia, Serdang, 43400, Selangor, Malaysia (phone: +60-

389466555; e-mail: azim@fsktm.upm.edu.my).

one of the most basic information of a program to analyze

various properties of a program, which in turn would be useful

in many ways. However, due to the specific features and

language constructs such as join points, advice, introduction,

and aspects in Aspect-Oriented (AO) languages, the control-

flow analysis for AO programs is more difficult and

challenging than that for object-oriented programs, so that the

current techniques in procedural or object-oriented paradigm

are not able to address these features. Therefore, a good

algorithm or technique to derive the control-flow graph for AO

programs is valuable and important.

Furthermore, once control flow graphs are obtained they can

be applied in many software engineering tasks in the context of

AOSD such as software testing, software measurement or

metrics, software maintenance, and concern interactions. For

instance, It stands to reason that the behavior of an aspect-

oriented system is the woven behavior of the aspects and the

core; but this woven behavior may reveal conflicts in the goals

of the system concerns, core or crosscutting, where such

conflicts are called concern interactions (e.g. advice overlaps,

where multiple advice applies to the same join point, which

can be viewed as potential source of interaction) and may

cause ripple effects on the overall AO system, therefore a CFG

of the given system would be helpful as map to detect or reveal

an easier identification of those point of impacts. Besides,

imagine one wants to obtain the CFG of a given AO system

manually, therefore a vast of energy probably with less

accuracy will be accounted to do so.

On the other hand, although many CFG constructing

approaches have been proposed for procedural and object-

oriented programming, but there are only a few works in

literatures including [3]–[7] are involved with generation of

control flow graphs for aspect-oriented programs. These works

even though define the concepts and foundations, to some

extent, for control flow analysis of aspect-oriented programs

but they do not provide a concrete tool that can solely

construct the CFG of these programs. Furthermore, most of

these works focus on addressing the other issues with respect

to these programs such as testing or data flow analysis rather

than CFG itself, in which they give a little attention to the

detailed information of CFG construction process or its tool

support. Therefore, an efficient technique and tool that are

appropriate for constructing CFG of aspect-oriented programs

are needed. This work presents an algorithm for constructing

the control flow graph of AOPs and its tool support. The

proposed approach and its given tool can be used to provide

AJcFgraph - AspectJ Control Flow Graph

Builder for Aspect-Oriented Software

Reza Meimandi Parizi, Abdul Azim Abdul Ghani

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2876

useful support to solve the aforementioned issues and other

problems for many software engineering tasks in the case of

aspect-oriented programming.

The rest of the paper is organized as follows: Section II

discusses related work; Section III presents the tool

architecture; Section IV gives the explanation of the code

compilation unit; Section V describes the data structures used

in the given tool; Section VI presents the proposed approach

for analyzing the CFG of aspects as well as, the algorithm that

takes care of constructing the control flow graph of aspect-

oriented programs named BuildAOCFG; Section VII discusses

the feasibility and applicability of the builder; Section VIII

reports the conclusion and future work on this work.

II. RELATED WORK

Several and different forms of control flow graphs have been

proposed along the years for procedural or object-oriented

paradigm [8]–[11] to address the change in advance of

programming technologies. However, as the adoption of AOP

in software development is gaining ground [3], some code

representation forms for AOP have been proposed in recent

years researches based on CFG, which in turn provide

information for analyzing AspectJ or similar AOP language

programs. Moreover, most of these works are focused on data

flow graphs and testing criteria for aspect-oriented

programming including [5],[7],[12], of course generation of a

dataflow graph usually requires a control flow graph in

advance but they do not provide the detailed information of

CFG constructing process especially its tool support.

A preliminary contribution is from J.Zhao. J.Zhao in [4]

proposes a technique to construct control flow representations

for aspect-oriented programs. Although his work defines good

foundations, our work is inspired by it to some extent, for

constructing CFG of aspect-oriented programs but it does not

provide a tool which is capable of putting those theories and

definitions into practice. In addition, the proposed technique

cannot handle the around advice in the process of constructing

control flow graphs, where this issue is taken into account in

our work.

O.A.L.Lemos, A. M.R. Vincenzi,J.C. Maldonado and P. C.

Masiero in [5] propose the derivation of a control and data

flow model for aspect-oriented programs based upon the static

analysis of the object code (the Java bytecode) than source

code level which resulted from the compilation process. Using

this model, called aspect-oriented def-use graph (AODU),

traditional and also aspect-based testing criteria were defined.

Furthermore, a prototype tool called JaBUTi/ AJ was proposed

to support proposed criteria and given model. One of the issue

associated with this approach, since it works on bytecode than

source code, is difficulty in building and preserving a map that

relates the data flow effects of each entity in the bytecode back

to its corresponding entity in source code. Furthermore, the

obtained map is also subject to change form one complier to

another since different compiler can produce totally dissimilar

mapping. Therefore, such issues can be addressed though a

source code level approach like [6].

More recently, G. Xu and A. Rountev in [6] propose a

source-code-level framework called AJANA (AspectJ

ANAlysis) for interprocedural dataflow analysis of AspectJ

programs. The results associated with the evaluation of the

framework shows that the given approach is superior to an

approach based on the woven bytecode like in [5] which in

turn enables analyses to be both faster and more precise as

well as, being a promising candidate for systematic

foundations of dataflow analysis in AspectJ programs. The

proposed framework was implemented as extension to the abc
AspectJ compiler.

Besides, AJDT (AspectJ Development Tools) [13] on

Eclipse provides some information on aspect-oriented

programs. With this, although it is possible to construct a

simple CFG builder for AspectJ programs but it is not a

straightforward process and still needs codification and

integration of some other tools such as XRef, Visualizer, or

Build path configuration in order to obtain those required

information for constructing CFG of AspectJ programs.

Although these approaches provide good foundation for

control flow analysis of AOPs and may able to construct the

CFG of aspect-oriented programs as a built-in process, but

they do not present a concrete tool that can do this, which

consequently make them to be not applied directly to construct

a complete CFG of aspects due to either remaining in theory

than practical or aforementioned issues associated with them.

The work presented in this paper is a source-code-level

approach which can handle the problems of constructing the

CFG of AspectJ software that are unique to aspect-oriented

programs, by proposing a tool call AJcFgraph, with a high-

level program analysis and program understanding.

III. TOOL ARCHITECTURE

The tool, AJcFgraph Builder, is developed to automate the

construction of the AOCFG (section VI). The following, Fig.

1, outlines the high-level architecture of a system for

constructing and managing the AOCFG representations in the

given tool. In other words, it illustrates the conceptual view of

AJcFgraph Builder’s process flow and interaction among its

components.

Fig. 1 AJcFgraph Builder architecture model

The given tool is object-orientedly designed and

implemented in Java programming language. The main

components of the tool, as shown in Fig. 1, are as follows:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2877

• Parser, which is used to parse AOP code written in

AspectJ on the base of modification of abc (AspectBench

Compiler).

• Algorithm, which builds the MCFG, pAOCFG, and

AOCFG based on AST of each compilation unit obtained

in parsing process.

• Graph visualizer, which is used to portrait the obtained

AOCFG graph on the screen.

In the following sections each of above component and their

basic properties of implementation is described in more detail.

Where each is studied in terms of input used, mechanism,

library, or framework applied, and output that it produces in

the flow of process.

IV. CODE COMPILATION UNIT

Generally, this unit is used to analyze the input program to

get control flow information such as the predecessors and

successors of each statement, caller/called information and

finally identification of each module in aspects or classes,

which are necessary for constructing the control flow graphs.

The compilation unit has two main components: the source

code parser and code model maker. The unit uses the parser to

parse input source code written in AspectJ and produces a

parse tree, then uses the code model maker to build the code

model for the input source from the parse tree produced by

parser. Simply, it transforms the given parse tree into an

Abstract Syntax Tree (AST).

A. Source Code Parser

The parsing itself is a process with two levels of grammar,

as shown in Fig. 2, which are lexical and syntactic. In other

words, a context-free grammar [17] is used to define the

syntax of AspectJ language by using two sets of rules: lexical

rules and syntactic rules.

Fig. 2 Process of parsing AspectJ source code

In AJcFgraph Builder tool, the language parsing in given

parser is implemented with the help and modification of abc
1

(AspectBench Compiler) which is an extensible of ajc

(AspectJ Compiler). To the best of our knowledge, at this

moment no parser generator can support the grammar of

AspectJ as its input; because the conventional parser

generators such as CUP, YACC, etc. only accept a restricted

class of context-free grammars. However, the AspectJ

grammar has already been defined and determined, which can

be found in [17].

1) Lexical Structure: The lexical analysis of AspectJ is

complicated by the fact that there are really three different

languages being parsed: (1) normal Java code, (2) aspect

declarations, and (3) pointcut definitions [17]. Therefore, to

this end, each of these three sub-languages should have its own

lexical structure and implementation, as addressed in

AJcFgraph Builder.

2) Syntactic Structure: Once the grammars and tokens

(using lexer) are determined, the implementation of the

syntactic part of the given parser would be straightforward. To

this end, the PPG [18] framework is used, in this work, to

handle the LALR (1) grammars of AspectJ language as well

as, tokens produced by lexical component. Besides, PPG

allows changes to an existing grammar to be entered in

separate file, overriding, inheriting and extending production

from the base grammar. This result in modular extensions,

which can easily be maintained should the base grammar

change.

B. Code Model Maker

The given component simply traverses the parse tree and

constructs code model objects from the parse tree, which is

used as program’s sole intermediate representation that seeds

the algorithm. Then it performs all the static checks required

by a number of passes which rewrite the tree. Moreover,

semantic checks are implemented by considering appropriate

methods on the relevant AST node, where every AST node

implements a typeCheck (TypeChecker) method. The type

checker is run after all variable references are resolved; all

checks that do not require further data structures are typically

put in the typeCheck method.

The Fig. 3 illustrates the overall view of code mode maker,

where it gets the parse tree as input and produces the AspectJ

model in the form of AST.

Fig. 3 Code mode maker macro view

 The code model maker is actually a set of classes that are

capable of simulating the AST of given parser specification

1 The given compiler is based on Polyglot extensible compiler framework

[14] and the Soot byte code analysis and transformation framework [15],

which forms the frontend and backend of abc respectively.

Code model

maker Parse tree AST model

Semantic checks

“Parser”

AspectJ

source

Tokens

Parse Tree

Lexical Analysis

(Create Tokens)

Syntactic Analysis

(Create Tree)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2878

(based on parse tree) [19]. The AST itself only contains

AspectJ and Java constructs where the specific-language

details are removed. Furthermore, the elements of the tree are

implemented as instances of classes. Instance variables of the

AST classes are used to represent the children of the node.

Instance variables of leaf nodes are used to hold information

about the node’s value, e.g. literal values, references into a

symbol table, etc. All of the AST node classes are directly or

indirectly derived from an abstract base class. A common

super/ base class of nodes can be as follows:

public abstract class Node implements

Switchable, Cloneable {

 public abstract Object clone();

 void parent() {…}

 void parent(Node parent) {…}

 abstract void removeChild(Node child);

 abstract void replaceChild(Node oldchild,

Node newchild);

 public void replaceBy(Node node) {…}

 protected String toString(Node node){…}

 protected String toString(List list){…}

 protected Node cloneNode(Node node){…}

 protected List cloneList(List list){…}

 …}

In this tool two alternatives in designing AST nodes are

used, “smart” objects and “dumb” objects. If there is only one

client for the AST, the smart object approach is used. Where,

the nodes of the AST provide a method for performing the

work the client requires. If there are multiple clients, then

dumb objects should be used. With dumb objects, there are

few or no methods implemented by the AST nodes.

Furthermore, to perform work with the ASTs, the VISITOR
pattern is used. The Polyglot’s visitor-based architecture

makes implementing much easier. In this case, two new passes

are added. The first stores all global pointcuts in a static

variable, and the second applies that pointcut to the relevant

code. For reason of code brevity, in given tool implementation,

these two passes are implemented by the same class, named

GlobalAspect; it uses a member variable called pass to

distinguish which of the two functions it is performing. On the

other hand, to instantiate the VISITOR pattern for the

implement AST pattern, a visit method is defined in each

AST. The visit method has a parameter for the Visitor

object. The Visitor object might do type-checking, code-

generation, etc as well (note, Visitor pattern is used to

implement traversals when using dumb objects). Therefore,

class definitions for the abstract syntax tree are built from the

parser specification. The following is an example for the AST

class discussed in the above:

abstract class AST {
 }
 public class Variable extends AST {
 public Identifier id;
 public Variable(Identifier id) {

 this.id = id;
 }
 }
 public class Constant extends AST {/* .. */}
public class OrExp extends AST { /* .. */} }

V. DATA STRUCTURE

 This section briefly describes the data structure used in

AJcFgraph Builder. The data structures are what are common

across all analysis modules in the given tool. One of the key

techniques devised in our tool, in order to support AOP

features and ease of the analysis development, is the presented

data structure. What the data structures represent is explained

in the following sub-sections.

A. Graphs, Nodes, Edges

Graphs represent program elements and the relationship

between these elements. The program elements are represented

as nodes, and the relationships are represented by edges.

Different nodes can represent the various program elements in

a Java application, and the different edges are used to

represent the different relationships between the program

elements.

All edges are directed and therefore have a source and

destination. Adding new relationships involves adding a new

class that extends the abstract Edge class. All edges can have

their own properties. This is especially important for the visual

representation of the graphs that can be generated. For

example, in control flow graph, a call edge is a dashed arrow

or an intra-module control flow edge is only arrow.

Nodes are more complicated. A node holds an object which

represents a program element. This object can either be a Soot

object [15], or a NodeElement object. Soot objects are only

used by GraphMaker (section VI.D) while constructing a

graph, so once a graph is made, all reference to Soot objects

are replaced with references to NodeElement objects. This

ensures serializability and also that there are no references to

Soot from anywhere in AJcFgraph Builder once a graph is

made. The NodeElement is an abstract class which contains

two abstract methods, getSignature and

setSignature. Each concrete class must implement these

methods. This signature is the actual representation of some

program element. The format of these signatures is the same as

those used in Soot [16]. The reason the signatures are not

stored directly into the nodes is because these signatures

represent the most elementary program element in Java,

whereas there are some NodeElements that are associated with

more than one Node. For example, a class can be abstract, or it

can be an interface, or it can be a regular class. Each of these

is represented by a different node; however, all these different

nodes contain an object of type Class, which is a

NodeElement, and their signature formats will be the same.

B. Groups

Groups represent an ordered set of nodes from a graph. The

order is based on the order in which nodes are added to the

group. There are two types of Group, JGroups and

Vectored-Statistics.

There are two main differences between JGroups and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2879

VectoredStatistics. The first is that JGroups can only contain

nodes, whereas VectoredStatistics can contain both nodes and

JGroups. The second is that JGroups are supposed to represent

sets of nodes generated by a graph traversal performed by the

GraphTraverser (section VI.E) component.

VectoredStatistics represent sets gnereated by the

GraphAnalyzer (section VI.F) component.

C. Marks

Marks represent objects that can be attached to Node, Edge,

or Graph. Mark can hold any type of object. Marks are used to

attach information to other elements. This information can be

weight, distance, a string representing color, or any other

attribute that the other elements may require.

VI. THE PROPOSED APPROACH AND BUILDAOCFG

ALGORITHM

The control flow graph used in procedural systems, non-

AOP languages, has been extented to be applicable for object-

oriented system as ECFG [20]. ECFG is a collection of CFGs

in a layered manner where nodes refer to module, e.g.

methods, rather than statements (in contrast with procedural).

Our approach, in the case of aspect-oriented, shares the same

viewpoint with OO approach in the sense that a control flow

graph for AOP is also a collection of CFGs in a hierarchical

manner but further since an AO program (in contrast with OO

program that is only base code e.g. classes) is divided into two

parts: base code which normaly includes classes, interfaces,

and standard Java features or constructs and aspect code

which put into practice the crosscutting concerns in the

program by using aspect, advice, etc; the interaction between

these two parts as well as unique features of AOP must be

considered. To this end, three layers or hierarchies towards

coming up with the final control flow graph of AOP are

defined; where each layer denotes a special named CFG that

captures some part of an AO code as well as, utilizing the

lower layers as part of its construction process.

The Fig. 4 depicts the macro view of three layers and their

name with respect to proposed approach, where lower layers

are used in the upper layers in order to form a hierarchical

structure of CFGs, which results in the final control flow graph

called Aspect-Oriented Control Flow Graph (AOCFG).

Fig. 4 The macro view of control flow graph construction process

Besides, a modified version of an AspectJ program taken

from [21] is used as small AOP named ShadowTraker,

throughout this section in order to introduce example with

respect to approach. Fig. 5 gives the AspectJ code, which

consists of two classes (Point and Shadow) and one aspect

(PointShadowProtocol) that associates shadow points

with every point object. For brevity, some implementation

details such as import packages are omitted from the figure.

1 public class Point {

2 protected int x, y;
3 public Point(int _x, int _y) {
4 x = _x;
5 y = _y;
6 }
7 public int getX() {
8 return x;
9 }
10 public int getY() {
11 return y;
12 }
13 public void setX(int _x) {
14 x = _x;
15 }
16 public void setY(int _y) {
17 y = _y;
18 }
19 public void printPositionP() {
20 System.out.println("Point at("+x+"

,"+y+")");
21 }
 // main method
22 public static void main(String[] args) {
23 Point p = new Point(1,1);
24 p.setX(2);
25 p.setY(2);
26 }
27 }

28 class Shadow {

29 public static final int offset = 10;
30 public int x, y;

31 Shadow(int x, int y) {
32 this.x = x;
33 this.y = y;}
34 public void printPositionS() {
35 System.out.println("Shadow at ("+x+",

"+y+")");
36 }
37 }

38 aspect PointShadowProtocol {

39 private int shadowCount = 0;
40 public static int getShadowCount() {
41 return PointShadowProtocol. aspectOf().

shadowCount;
42 }
 // introduction of a shadow field into class

Point
43 private Shadow Point.shadow;
 // its own methods
44 public static void associate(Point p, Shadow

s){
45 p.shadow = s;
46 }
47 public static Shadow getShadow(Point p) {
48 return p.shadow;
49 }

 // pointcuts definitions
50 pointcut setting(int x, int y, Point p):

target(p)&& args(x,y)&&
call(Point.new(int,int));

AOCFG

pAOCFGs

SC

L
a

y
e
r3

L
a

y
e
r2

Layer1 MCFGs

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2880

51 pointcut settingX(Point p): target(p) &&
call(void Point.setX(int));

52 pointcut settingY(Point p): target(p) &&
call(void Point.setY(int));

 // advice body
53 after (int x, int y, Point p) returning

:setting(x, y, p) {
54 Shadow s = new Shadow(x,y);
55 associate (p,s);
56 shadowCount++;
57 }
58 after (Point p): settingX(p) {
59 Shadow s = new getShadow(p);
60 s.x = p.getX() + Shadow.offset;
61 p.printPositionP();
62 s.printPositionS();
63 }
64 after (Point p): settingY(p) {
65 Shadow s = getShadow(p);
66 s.y = p.getY() + Shadow.offset;
67 p.printPositionP();
68 s.printPositionS();
69 }
70 }

Fig. 5 ShadowTracker aspect-oriented program (AspectJ)

A. MCFG, pAOCFG, AOCFG Definitions

This section provides the definitions of the different layers

(or CFGs) used in the proposed approach, Fig. 4, where

detailed information regarding these layers and their formal

definitions can be found in [22].

• MCFG: The first layer or hierarchy in constructing the final

control flow graph is capturing the control flow graphs of

individual modules (any block of code either in aspects or

classes such as methods, constructors, advice, and so forth)

that are the building blocks of classes and aspects, which are

called Module Control Flow Graphs. Given module m, MCFG

is defined as a directed graph, which is represented by a

quadruple: MCFGm= (sm, em, Vm, Em), where sm is the start

node of the module that represents the unique entry node into

m and em is the exit node representing the termination of

MCFG of a module. Vm is the set of nodes or vertices in the m,

where each represents one type of statement that can be

characterized as three types, which is

jpcasm VVVV ∪∪= . (1)

Statement nodes (Vs), representing normal code statements

(common with OO), Call nodes (Vca), representing a statement

in the code that contains a call to a method or creating an

object, and Join point shadow nodes (Vjp), representing the

join points in the code where the flow of control can be

delegated towards an advice. Note that, in order to handle

around advice for a given join point, our approach

differentiates join point node-before (JPb), and join point

node-after (JPa). That is, when a join point is regarded to an

around advice, in the MCFG two nodes, JPb and JPa, will be

considered just before and after the given join point affected

by the around advice (in implementing of the graph for

simplicity, the line’s number that is contacting the given join

point is considered as JP, for instance, if the desired join point

is a call to a method in line 23, of AspectJ example, and an

around advice is associated with this join point, therefore two

nodes, 23b and 23a will be inserted to the given MCFG

exactly before and after node 23, to represent the impact of

around advice). Em is a set of directed edges to represent the

flow of control between two nodes. More specifically, the

MCFG nodes are linked by intra-module control flow edges in

order to show the transfer of control between code statements.

• pAOCFG: The second layer or hierarchy in constructing the

complete CFG of a given AO system is, capturing the control

flow graph of an aspect, which is called partial Aspect-

Oriented Control Flow Graph. The word “partial” is used

because the given graph does not take into account the

relationship between base code and aspect code, whereas it

only represents the control flow relationships among the

components (advice, pointcut, inter-type declaration, and

method) within an aspect. Given as an aspect consists of n

modules such that MCFGk = (sk , ek , Vk , Ek) for k=1,2,….n

are the control flow graphs of n modules . The partial Aspect-

Oriented Control Flow Graph is defined as a directed graph

that is a collection of MCFGk (k =1...n) and edges linking

them to make up the pAOCFG of the considered system. A

quadruple: pAOCFGas = (s
as

, e
as

, V
as

, E
as

) is used to denote the

pAOCFG, where s
as

is the aspect start node (or entry node) of

as and e
as

 is the exit node of the given aspect; similar to

MCFG these nodes are unique and have in-degree and out-

degree of zero respectively. V
as

 is constructed by the set of all

nodes in n modules which form the given aspect as well as, the

pointcut nodes, which is

ptc

n

k

k

as
VVV ∪=

=

U
1

. (2)

Pointcut nodes (Vptc), representing a set of pointcuts in the

aspect as. It means each pointcut is represented by a pointcut

node, ptc, that is used to denote the entry to the given pointcut

as well. Lastly, E
as

 is the set of all edges in n modules forming

as aspect in addition some new types of edges that capture the

interaction among the modules inside the aspect as, which is

as

ptc

as

ca

as

m

n

k

k

as
EEEEE ∪∪∪=

=

U
1

. (3)

The
as

mE is the set of aspect-membership edges, which

denotes the membership relationships between aspect as and

its components. The
as

caE is a set of call and return edges.

These edges represent the caller/called relationships (or

control flow) between two modules in as. The
as

ptcE represents

a set of pointcut edges, which are used to link the ptc nodes to

the start node of corresponding advice modules in as to

represent the relationship, or control flow, between them.

• AOCFG: The third layer is the last hierarchy of the

constructing process that results in the complete CFG of AOP,

which is called Aspect-Oriented Control Flow Graph. The

only difference between this and the pAOCFG is in

consideration of the interaction between aspects with classes.

Generally, in AspectJ, an aspect can interact with a class in

several ways, i.e., by object creation, method call, and advice

weaving [4]. Therefore, the aspect-oriented control flow graph

of an AOP should be able to represent these interactions

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2881

between aspects and classes as well. Given AO an aspect-

oriented program (like that one in Fig. 5) with r modules in

base code or classes (that are affected by aspects) and t aspects

so that MCFGk = (sk , ek , Vk , Ek) for k=1,2,….r are the

control flow graphs of r modules and likewise, pAOCFGp =

(s
p
, e

p
, V

p
, E

p
) for p=1,2,….t are the control flow graphs of t

aspects within AO. Therefore, the Aspect-Oriented Control

Flow Graph is defined as a directed graph that is a collection

of MCFGks and pAOCFGps, as well as edges linking them to

make up the AOCFG of the whole AO system. On the other

hand, since pAOCFGs are constructed by a set of MCFGs

within themselves, therefore it can be viewed that the

AOCFGAO is a collection of all MCFGs no matter from base

code or aspect code, where each represents a method (a

method of a class, aspect, or main () method), a piece of

advice, or an inter-type member. A quadruple: AOCFGAO=

(s
AO

, e
AO

,V
 AO

, E
AO

) is used to represent the given graph, where

s
AO

 denotes the start node or the point from which the

execution of the given program is started and e
AO

 that

represents the exit node of the aspect-oriented program, in

which the execution of AO will be terminated; similar to

MCFG and pAOCFG these nodes are unique and have in-

degree and out-degree of zero respectively. Roughly speaking,

the s
AO

 is the same with the start node of the MCFG of

main() method in base code, because in AOCFG (in contrast

with MCFG or pAOCFG), the dynamic or running view of

whole aspect-oriented program is traced. V
AO

 is a set of nodes

in AO that is defined as

V
AO

 = UU
t

p

p
r

k

k VV
11 ==

∪ . (4)

Where, the first element is the set of all nodes in r modules

in AO aspect-oriented program; each represents a call node,

statement node, or joint point shadow node. Likewise, the

second element is the set of all nodes in t aspects where each

represents a pointcut node, call node, or statement node of

modules in aspects. Therefore, in the case of AOCFG, there is

no new or additional type of node that is going to be added;

whereas it only synthesizes the nodes obtained from the first

and second layers, that is

E
AO

 = AO

w

AO

ca

t

p

p
r

k

k EEEE ∪∪∪
==

UU
11

. (5)

 The first two elements denote the set of all edges in the

corresponding r modules and t aspects within AO aspect-

oriented program (already obtained from the first and second

layers). The
AO

caE captures the set of the inter-module control

flow or call/return edges in interaction of aspects with classes

while there is call or object creation. More specifically, in the

case of method calls, a call may occur between two modules

m1 and m2 either in aspect or base code. In this case, an inter-

module control flow edge is used to link the call node of m1’s

MCFG to the start node, s2, of m2’s MCFG and in return an

inter-module control flow edge from the exit node, e2, of m2’s

MCFG towards the immediate statement of call node in m1 is

drawn as well. Besides, in the sense of object creation, a

module m is capable of creating an object of a given class C

either in an aspect or a class. The creation process can be done

via class type declaration or by using an operator such as new.

In this case, by definition, behind the scene an implicit call

will be done from module m (at the place of object creation) to

class C’s constructor. Therefore, to take into account this

implicit constructor call and represent it in AOCFG, an inter-

module control flow edge is also used to link the call node of

module m to the start node, s, of the MCFG of C’s constructor

as well as, one edge for returning the flow of control from the

C’s constructor to the module m is drawn as well. Lastly,
AO

wE denotes the set of aspect-weaving edges that captures the

advice weaving process in the AO aspect-oriented program.

Generally, as mentioned earlier, in AOP new behaviors or

functionalities defined by advice are woven into the join points

in the base code. Therefore to represent such relationships (or

control flow) between an advised module m (normally a class’s

method or constructor) and advice a (after, before, or around),

aspect-weaving edges are used to link the join point shadow

nodes within m to the start nodes, s, of the MCFGa

corresponding to advice.

B. Example of AOCFG Construction

In this section the AOCFG of complete aspect-oriented

program, ShadowTracker (Fig. 5) that is referred as A, is

analyzed and also shown in the Fig. 7. The ShadowTraker

program is composed of 9 modules in the side of base code (in

both Point and Shadow classes) which are: Point’s

constructor, Shadow’s constructor, getX(), getY(),

setX(), setY(), printPositionP(),

printPositionS(), and main() method as well as,

one PointShadowProtocol aspect that is consisting of 6

modules. At this moment, assuming the MCFGs of 15 (all

together) modules are done and are available. Therefore, based

on the aforementioned definitions, the control flow analysis of

the ShadowTraker program can be presented as follows:

AOCFGA = (s
A
, e

A
,V

A
, E

A
), where s

A
 = 22 and e

A
 =26. Next

by referring to (4), we have: V
A
 = UU

1

1

9

1 ==

∪
p

p

k

k VV

The first element in V
A
 is a set of all nodes in nine modules

in A program; each represents a call node, statement node, or

joint point shadow node. The second element is a set of all

nodes in PointShadowProtocol aspect where each

represents a pointcut node, call node, or statement node of six

modules in given aspect that have been reused. Lastly by

referring to (5), we have

E
A

= ∪∪
==

UU
1

1

9

1 p

p

k

k EE {(23,3), (6,23a), (24,13), (15,24a),

(25,16), (18,25a), (54, 31), (33,55), (57,24), (60,7), (9,61),

(61,19), (21,62), (62,34), (36,63), (63,25), (66,10), (12,67),

(67,19), (21,68), (68,34), (36,69), (69,26)} ∪ {(23a, 53),(24a,

58),(25a,64)}.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2882

The first two elements in E
A
 denote the set of all reused

edges in the corresponding nine modules and

PointShadowProtocol aspect within A program. The

third set is consisting of the inter-module control flow edges

from each there is either a call/object creation to a given

method/constructor as well as, corresponding return edges

(
A

caE). For instance, (54, 31) represents a Shadow object

creation on line 54 that causes a call to the given class’s

constructor placed on the line 31. In other words, in the

AOCFG a directed edge from call node within the after advice

module (line 54) is drawn towards the start node of the

Shadow’s constructor MCFG (line 31). Lastly, the fourth set

denotes the set of aspect-weaving edges (
A

wE), for example,

(23a, 53) represents that there is a join point shadow node

named 23a in main () method’s MCFG that is associated

with after () advice on line 53 in which setting ()
pointcut captures any call to the Point class’s constructor.

More specifically, Point object creation on line 23 causes a

call to the given class constructor that in turn triggers the

setting () pointcut, since the given pointcut is associated

with the after advice (line 53) therefore the body of advice will

be executed. In a nutshell, such flowing of the control between

Point’s constructor and advice is represented by (23a, 53)

edge.

C. The BuildAOCFG Algorithm

 Finally, the basic algorithm that can construct the AOCFG

for an aspect-oriented program is given below. Fig. 6 shows

the pseudo-code of the algorithm, BuildAOCFG.

algorithm BuildAOCFG /* generate a control flow graph from the given

AO program */

 input An aspect-oriented program written in AspectJ: A
 output The aspect-oriented control flow graph of A: AOCFG

A

 begin // BuildAOCFG

 1. /* preprocess (parse) the aspect-oriented program A */

 2. for each class C

 3. Identify the methods

 4. endfor

 5. for each aspect A

 6. Identify the advice, introduction, pointcut, and method

 7. endfor

 8. /* build MCFGs for methods in each class and advice, introduction,

and methods in each aspect*/

 9. for each class C

 10. GraphMaker(m) //Construct MCFG for each method m in C

 11. endfor

 12.

 13. for each aspect A

 14. if A is concrete then

 15. for each advice, introduction, or method m declared in A

 16. GraphMaker(m) // Construct MCFG for m

 17. endfor

 18. else

 GraphTraverser(A)

 19. for each advice, introduction, or method m in the extended

aspects

 20. if m is marked as “inherited” then

 21. Reuse module control flow graph (MCFG) from the

base aspect

 22. Adjust call sites

 23. else

 24. GraphMaker(m) // Construct the given MCFG for m

 25. endif

 26. endfor

 27. endif

 28. endfor

 29. /*connecting MCFGs at call sites in order to build pAOCFG */

 30. GraphCombiner()

 31. /* weaving MCFGs at join point sites in order to build complete

AOCFG*/

 32. GraphWeaver()

 33. /* return the complete AOCFG of A */

 34. return AOCFG
A

 end // BuildAOCFG

Fig. 6 Basic algorithm for AOCFG construction

According to algorithm, as input BuildAOCFG gets the

source code of the given aspect-oriented program, A, and as

output BuildAOCFG returns the A’s control flow graph,

which is AOCFG
A
. First, BuildAOCFG preprocesses each

aspect and class in A to get those kinds of information that are

necessary for constructing the AOCFG, in this step it identifies

advice, introduction, pointcut, and methods (line 1-7). Second,

algorithm builds the MCFG for each piece of advice,

introduction, and method in aspect or class, using

GraphMaker() module. Note that, it builds these MCFGs in

a bottom-up fashion according to the aspect and class

hierarchies (line 8-28) therefore, to traverse the graph of a

given class or aspect a GraphTraverser() module is

devised. After that, BuildAOCFG utilizes

GraphCombiner() module to connect these MCFGs at the

call sites to form the pAOCFG (line 30). Finally,

BuildAOCFG builds the complete AOCFG for A, AOCFG
A
,

by calling GraphWeaver() module to weave the MCFG at

the join points for each piece of advice into the MCFGs for its

corresponding methods in the pAOCFG (line 32-34).

The algorithm that is implemented has a class “Controller”,

which is the brain of AJcFgraph Builder tool. It takes in

options, and generates constraints (type parameter objects and

value parameter objects are collectively known as constraints)

for the analysis modules and makes the appropriate calls. The

first step in this process is to parse the input source code, and

based on this; generate objects representing the options

(constraints). After this, the Controller calls the different

modules or component in the order specified by the algorithm

towards complete construction of AOCFG, and if there are any

objects for the modules, it passes them in.

 The Controller invokes all other modules in the order

specified in algorithm. The following is the module or

component invocation order:

1. GraphMaker
2. GraphTraverser
3. GraphAnalyzer
4. GraphCombiner
5. GraphWeaver
6. GraphVisualizer

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2883

Fig. 7 The complete AOCFG for ShadowTraker aspect-oriented program

The details of the components or modules used in this

algorithm and their interactions will be discussed in next sub-

sections, whereas each module is responsible for a part of the

BuildAOCFG construction process.

D. Graph Maker

GraphMaker has two main functions: building a graph

from application code, and adding or removing edges or nodes

from a graph (i.e. modifying a graph). This is called filtering a

graph. To build a graph, GraphMaker uses the Soot Jimple

API [15]. For filtering a graph, the user specifies filters to use

on a graph. Filters are also value constraints.

1) Building a Graph: Building a graph is divided into two

steps:

1. Creating nodes

2. Adding edges between nodes created in step 1

 Each graph type first creates a set of nodes based on the

type of graph it is, and these nodes are then passed through a

set of value constraints for nodes (i.e. these value constraints

22

LEGEND

 intra-module control flow edge statement/ call/ ptc node

 inter-module control flow edge or call/return edge

 aspect-weaving edge join point shadow node

 aspect-membership edge

 pointcut dege start/ stop node

44

3 53

58

64

56

55

54

59

62

61

60

57

63

69

68

67

66

65

45

46

4

5

23

24

23a

24a

25

25a

6

31

32

33
13

14

15

47

48

49

7

8

9

19

20

21

34

35

36

16

17

18

10

11

12

26

50

51

52

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2884

specifically apply to nodes). An example of a value constraints

is to only pass nodes that have x number of parameters.

 The next step is to generate edges between the nodes. Each

edge, before being added to graph, is passed through a set of

value constraints for edges. If an edge fails any of the

constraints, it is deleted. It is important to note that, using the

node and edge value constraints allows many different

alternatives to be run on the same graph type.

2) Filtering a Graph: Filters allow modification of a graph

from a holistic point of view. Whereas the constraints only act

on a single node or edge at a time, a filter takes in an entire

graph and can modify it. The modification can depend on the

Filter class itself. For example, a filter can remove all

nodes with no edges incident to it. These filter objects are the

only way to add or remove new edges or nodes form a graph

once it has been created. Currently AJcFgraph Builder has 4

different filters.

E. Graph Traverser

GraphTraverser takes in a graph, and generates a set of

JGroup based on the types of traversal specified. The

following are the three main steps performed by this

component or module:

1. Generate a set of staring points for the traversal

2. Traverse the graph once for each starting point and

generate a JGroup for that starting point

3. Filter the generated JGroups

1) Generating Starting Points: By default, every node in the

graph is used as a starting point. This can be changed by

specifying starting point value constraints. Each starting point

is used as a node to begin the traversal, and the set of nodes

visited by a traversal is added to a JGroup for the starting

point. The starting point is always the first element added to

the JGroup being generated.

2) Traversing the Ggraph: The type of traversal specifies

how a graph is going to be traversed. This is the type

constraint for this component. The starting points specify

where the traversal begins. Traversing a graph from a starting

point is broken into the following three steps:

1. Follow an edge

2. Visit a node and add the node to the JGroup being

constructed

3. Add a subset of the edges incident to the node in step 2

to the list of edges to follow

For each traversal, the starting point node is added to a new

JGroup. After this, based on the traversal type, a list of edges

incident to the starting point is generated. Each of these edges

is passed through the following edge value constraints, and if it

fails any constraints, the edge is discarded. After an edge

passes all the following edge value constraints, the edge is

followed and the node at the other end is visited (because the

edge can be followed forward or backward, the new node may

be the source or destination of the edge). The new node is then

passed through adding node value constraints, and if it passes

all constraints, it is added to the JGroup, and the edges

incident to it are analyzed. If it fails any of the adding nodes’

value constraints, then the node is discarded, and none of the

edges incident to it are analyzed.

3) Filtering Groups: Filtering groups is similar to filtering a

graph, and represents additional value constraints. This step

provides a holistic view of all the groups. This is the only

place where groups can be deleted. One important thing to

note is that whereas GraphTraverser can only create

JGroups, this part of the module can be used to delete either

JGroups or VectoredStatistics. In this case, all filters must

extend the abstract class FilterGroupConstraints.

Examples of filters include deleting groups that are smaller

than a certain size, or merging similar groups into a single

group.

F. Graph Analyzer

GraphAnalyzer generates VectoredStatistics data

structure. VectoredStatistics are generated using the JGroup

created by the GraphTraverser. The type constraints define

what kind of analysis will be run.

 Unlike the other modules, the value constraints for this

module are specific to the type constraint. For example, this

module can perform clustering, and the value constraint for

this is the number of clusters. There are no generic value

constraints.

G. Graph Combiner

The function of this component is to take in a number of

Graph objects, and create a new graph based on these. This is

the only module that allows graphs from different objects

(MCFG or pAOCFG) to be analyzed together and combined

into a single graph.

More specifically, using the graphs and groups, the

algorithm performs an analysis (done by GraphAnalyzer)

on the graph and groups and generates a new graph. An

example of this is merging all nodes with the same signature

(i.e. the signature held in the node element data structure of the

given node) from different graphs. This is very useful when

different graphs that represent the same code or program are

being combined.

Creating a new graph here is very similar to the graph

creating steps in GraphMaker. The following are the steps in

this component:

1. Create all new nodes

2. Create new edges between nodes

Each new node is passed through a set of value constraints,

and if it passes them all, then it is added to a new graph. After

all nodes are added, new edges are created, and each new edge

is passed through the value constraint for those edges. If the

edge passes all of these constraints, then it is added to the

graph. Both the creation of nodes and the addition of edges

will be dependent on the type of analysis being done.

H. Graph Weaver

The algorithm to build the AOCFG is based on the (static)

analysis of the aspect’s pointcut expressions. However, for

more complicated join points, it would be necessary to

override the code that iterates through an entire method body

looking for join point shadows. The overriding code can do

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2885

any required analysis of the method body to find instances of

the new join points, for instance, one might want to inspect all

control flow edges to find the back edges of loops. In

particular the algorithm (using GraphWeaver) inserts join

point shadow nodes into the MCFG and adds directed edges

that link the join point shadow nodes, in all modules, to the

advice whose pointcuts picks them up. For each advice, the

associated pointcut expression AST tree (obtained from the

previous component) is built in order to generate the resulting

set of join point shadow nodes related to the statements

selected by the pointcuts. Thus, the set of join point shadow

nodes which are related to the control flow graph region are

picked up by the pointcut declaration [3].

During the traversal of the pointcut expressions, shadow

nodes and corresponding edges are added to each MCFG.

Each join point shadow node is associated with additional

information about the pointcut’s expressions matching it.

More specifically, based on AspectJ code model (or AST)

obtained, passes on tree use data flow information to check

initialization of local variables and the existence of return

statements. Again, each AST node implements methods to

build the control flow graph for these purposes. The traversal

of the AST is performed by the ContextVisitor Polyglot

class. The new pass extends ContextVisitor with a

method that performs the required action when it encounters a

relevant AST node. The following code fragment illustrates

the behavior of the new visitor upon entering an AST node:

public NodeVisitor enter(Node parent, Node n){
 if (pass == COLLECT)&& n instanceof
GlobalPointcutDecl{
 ((GlobalPointcutDecl)n).
 registerGlobalPointcut(this,
context(), nodeFactory);
 }
 return super.enter(parent,n);
}

As mentioned above, both new passes are implemented by

the same class, and hence the check that pass = = COLLECT

makes sure the process is doing the right thing. If the current

node is a GlobalPointuctDecl (it is an AST node) so it

registers itself with the data structure storing global pointcuts.

Then it delegates the rest of work (the actual traversal) to the

super class.

I. Graph Visualizer

GraphVisulizer module is responsible for depicting

the information obtained from algorithm component on the

screen.

The GraphVisulizer takes in a text file in dot format

(where the text file represent a graph, G (V,E) produced by the

algorithm) and convert it to a visual representation of a graph.

To this end, in AJcFgraph Builder implementation, a separate

Java graph library called “JGraph” is used [23]. JGraph is the

leading Open Source Java Graph Visualization Library. It

follows Swing design patterns to provide an API familiar to

Swing programmers and functionality that provides a range of

features.

In addition, there are value constraints for nodes that can

determine which nodes get written out and value constraints

for edges that determine which edge get written. In the output,

the nodes and edges all have different colors and style, where

the different color or styles represent different type of nodes or

edges.

VII. DISCUSSION

 In order to assess the feasibility and correctness of

AJcFgraph Builder some AspectJ software were analyzed and

represented by the AOCFG using the proposed tool. Our study

used five AspectJ programs taken from AspectJ example

package as shown in Table I. The rationale behind was, this

collection of programs has also been used as benchmarks by

other researchers including [6], [24], [25]. Moreover, for each

program table gives the number of aspects, classes, and

modules, where module denotes a class constructor, a piece of

advice, an inter-type declaration, and a method in either

aspects or classes. Note that, since a pointcut does not contain

any body code therefore it is not considered as module and

consequently does not need any MCFG to represent it.

We verified those AOCFGs generated by the tool against a

manual inspection of the graph and the associated analyzed

source code for each of aforementioned programs. Our small

experiment showed that the AOCFG generated by the tool

were correct so that representing AO software by the AOCFG

provides a useful support for gaining a better knowledge of the

internal structure of these complicated programs, by reducing

the effort needed for obtaining them in a variety of software

engineering tasks.
TABLE I

ANALYZED PROGRAMS

Program #Modules #Classes #Aspects

telecom 53 10 3
bean 19 2 1
observer 25 6 2
tjp 8 1 1
introduction 19 1 3

Moreover, some user interfaces screenshots of the tool are

presented below, which are captured based on the main

functionality of AJcFgraph Builder tool.

Fig. 8 Source code view (after loading)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2886

Fig. 9 AOCFG construing result view

VIII. CONCLUSION AND FUTURE WORK

In this study the AJcFgraph Builder tool, in supporting of

the automated construction of AOCFG approach, was

proposed. The main features, definitions, and functionalities,

as well as its architecture were discussed. The current

implementation of tool allows defining, editing, storing and

applying AOCFG to an AspectJ system. One of the useful

aspects of AJcFgraph Builder is its portability and being run

on multiple platforms. The reason is the Java codes are

compiled into intermediate code called byte code. Besides, the

extensibility is the other aspect of the given tool that allows

easily extension of new type constraints or value constraints. It

means, to this end, the related class has to be modified, and the

new class must extend the appropriate abstract class, and

implement the appropriate methods that need to be

implemented.

As future research, the AJcFgraph Builder tool will be

improved and evolved to a more mature and scalable tool in

order to be used in more complex systems and multi-language

aspect-oriented environment. In addition, future work also

includes focusing on the given tool to be extended into a

quantitative evaluator tool of AO software in which AO

metrics are computed, but as part of it the proposed AOCFG

and its tool support will be used as underlying basis to develop

or adopt existing structural metrics (of OO or procedural) for

aspect-oriented paradigm. Also, cost estimation of building

representation and graph minimization still remain as open

research questions for further research. Furthermore, we are

currently working on the given tool to make it as Web-based

tool to be online accessible from any corner of the world.

REFERENCES

[1] A. Colyer,A.Clement, "Aspect-oriented programing with AspectJ", IBM

Systems Journal , pp.301-308, 2005.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M.

Loingtier, and J. Irwin, “An Overview of AspectJ”, In Proceedings 13th

European Conference on Object-Oriented Programming, LNCS,

Vol.1241, Springer-Verlag, pp.220-242, 2000.

[3] M. L.Bernardi,G.A.Di Lucca, "An Interprocedural Aspect Control Flow

Graph to Support the Maintenace of Aspect Oriented Systesms",

ICSM'07, IEEE computer society, pp. 435-444, 2007.

[4] J. Zhao, “Control-Flow Analysis and Representation for Aspect-

Oriented Programs”, In Proceedings of the Sixth International

Conference on Quality Software (QSIC'06), IEEE computer society,

2006.

[5] O. A.L.Lemos, A. M.R. Vincenzi,J.C. Maldonado and P. C. Masiero,

“Control and data flow structural testing criteria for aspect-oriented

programs”, Journal of Systems and Software , pp.862-882, 2007.

[6] G. Xu and A. Rountev, “AJANA: a general framework for source-code-

level interprocedural dataflow analysis of AspectJ software”, AOSD,

ACM, 2008.

[7] J. Zhao,”Data-Flow-Based Unit Testing of Aspect- Oriented Programs”,

In Proceedings 27th Annual IEEE International Computer Software

and Applications Conference (COMPSAC'2003), Dallas, Texas, pp.

188-197, 2003.

[8] M. J. Harrold, D. Liang, "Efficient Points-to Analysis for Whole-

Program Analysis", In Proceedings 7th European Software Engineering

Conference, Springer, Lecture Notes in Computer Science, Toulouse,

France, 1999.

[9] R. G. Sargent, D. G. Fritz, "An overview of hierarchical control flow

graph models", In Proceedings 27th Conference on Winter simulation,

ACM Press New York, Arlington, Virginia, United States, 1995.

[10] N. Schwartz,” Steering Clear of Triples: Deriving the Control Flow

Graph Directly from the Abstract Syntax Tree in C Programs”,

Technical Report: TR1998-766 , New York, NY, USA, 1998.

[11] M. J.Harrold, Gregg Rothermel, "A Coherent Family of Analyzable

Graphical Representations for Object-Oriented Software", Technical

Report OSU-CISRC-11/96- TR60, 1996.

[12] J. Zhao, “Tool support for Unit Testing of Aspect-Oriented Software”,

OOPSLA Workshop on Tools for Aspect-Oriented Software

Development, Seattle, WA, USA, 2002.

[13] AJDT: AspectJ Development Tools http://www.eclipse.org/ajdt/.

[14] N. Nystrom,M.R.Clarkson, A.C.Myers, "Polyglot: An extensible

compiler framework for Java", In 12th International Conference on

Compiler Construction, Lecture Notes in Computer Science, pp.138-

152, 2003.

[15] R. ValleeRai, E.Gagnon, L.J.Hendren, P.Lam, P.Pominville,

V.Sundaresan, "Optimizing Java bytecode using the Soot framework:Is

it feasible?", In 9th International Conference on Compiler

Constructio,pp.18-34, 2000.

[16] R. ValleRai, "Soot: A Java Bytecode Optimization Framework", McGill

University, School of Computer Science, 2000.

[17] L. Hendren, O.de Moor, A.S.Christensen, the abc team, "The abc

sanner and parser, including an LALR(1) grammar for AspectJ",

september 2004.

[18] M. Brukman,A.C.Myers, "PPG: a parser generator for extensible

grammars", 2003 : Available at

www.cs.cornell.edu/projects/polyglot/ppg.html.

[19] J. Jones, "Abstract Syntax Tree Implementation Idioms", University of

Alabama, 2004.

[20] A. Kanjilal, G.Kanjilal, S.Bhattacharya, "Extended Control Flow Graph:

An Engineering Approach", CIT'03, India, pp.22-25, 2003.

[21] The AspectJ Team, "The AspectJ Programming Guide", 2001.

[22] R. M. Parizi, “Control flow structure and graph embodiment of aspect-

oriented programs: definitions, algorithm, and tool support”, Master

Thesis, Dept. of Information System, University Putra Malaysia,

unpublished.

[23] JGraph: Java Open Source Graph Drawing Component

http://www.jgraph.com/jgraph.html

[24] B. Dufour, C. Goard, L.Hendren, O.de Moor, G.Sittampalam, and C.

Verbrugge, “ Measuring the dynamic behavior of AspectJ programs”,

OOPSLA, pp.150-169, 2004.

[25] G. Xu, A. Rountev, “ Regression test selection for AspectJ software”,

ICSE, pp.65-74, 2007.

