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 
Abstract—This paper focuses on the assessment of the air 

pollution and morbidity relationship in Tunisia. Air pollution is 
measured by ozone air concentration and the morbidity is measured 
by the number of respiratory-related restricted activity days during 
the 2-week period prior to the interview. Socioeconomic data are also 
collected in order to adjust for any confounding covariates. Our 
sample is composed by 407 Tunisian respondents; 44.7% are women, 
the average age is 35.2, near 69% are living in a house built after 
1980, and 27.8% have reported at least one day of respiratory-related 
restricted activity. The model consists on the regression of the 
number of respiratory-related restricted activity days on the air 
quality measure and the socioeconomic covariates. In order to correct 
for zero-inflation and heterogeneity, we estimate several models 
(Poisson, negative binomial, zero inflated Poisson, Poisson hurdle, 
negative binomial hurdle and finite mixture Poisson models). 
Bootstrapping and post-stratification techniques are used in order to 
correct for any sample bias. According to the Akaike information 
criteria, the hurdle negative binomial model has the greatest goodness 
of fit. The main result indicates that, after adjusting for 
socioeconomic data, the ozone concentration increases the probability 
of positive number of restricted activity days.  
 

Keywords—Bootstrapping, hurdle negbin model, overdispersion, 
ozone concentration, respiratory-related restricted activity days.  

I. INTRODUCTION 

N the past 40 years, research on air quality has increasingly 
become an issue of great concern in view of the 

accumulated evidence that demonstrates adverse effects of air 
pollution on human health. The assessment of pollution 
external costs is of great interest to policy makers, since it 
allow them to integrate the environmental issues in decision 
making. A variety of methods has been used to the valuation 
of these costs. A common approach used to evaluate the costs 
of air pollution is the Concentration-Response Relationships 
(CRRs). 

This method is based on the estimation of the physical 
impact of socio-economic and environmental variables, such 
as ambient concentrations of air pollution, on the morbidity. 
The most used indicators of morbidity are days of work loss 
(WLD), days of restricted activity (RAD), and days of 
respiratory-related restricted activity (RRAD).  
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Several studies have identified CRRs for US and some 
developed countries data, using the number of RRADs as a 
measure of health impact of air pollution and have shown a 
significant relationship between air pollution and human 
health [1]-[4]).  

Over the last decades Tunisia has recognized a fast 
development of the principal causes of air pollution. The 
annual growth rate of the urban population was 1.824% 
between 1995 and 2005. Increasing rates of industrialization 
and rising demands for motor vehicles have been registered. 
The annual growth rate of the motor vehicles was more than 
6% over the same period. These factors are associated to an 
intensive use of combustible fuels accompanied by a poor 
environmental regulation. The situation is implying an 
increasing pressure on the public health. 

In this paper, we investigate the morbidity effects of air 
pollution in Tunisia by estimating CRRs based on Tunisian 
health survey data. The data are collected from 407 randomly 
chosen individuals from 9 Tunisian zones. These zones are 
geographically close to the air pollution monitors planted by 
the National Agency for Environmental Protection in Tunisia. 
Socioeconomic data, air quality measures, temperature and 
respiratory-related restricted activity days are collected. Air 
quality measures are provided by air pollution monitors and 
are attributed to delegations that are less than 10 kilometers 
away. Our sample is drawn from individuals who live in these 
areas. Individuals' exposure to air pollution is measured using 
data from the air pollution monitors nearest their residences. 
As we are concerned by the health status of adults, 
respondents are aged between 18 and 60 years. Following [1], 
we exclude older peoples from our sample because for these 
persons respiratory problems are always likely to be notably 
related to their age. Let us notice that the number of exposed 
individuals are about 1 600 000 individuals. The survey period 
is from March to April 2006. 

The rest of the paper is organized as follows. In section II, 
we expose our statistical methodology. Section III deals with 
data and exploratory statistics. Econometric results are 
presented in Section IV. Section V is dedicated to results 
discussion and Section VI concludes. 

II. METHODOLOGY 

Overdispersion in count data models can be considered as a 
direct consequence of unobserved heterogeneity. In this 
context, [5] developed continuous mixture models for 
unobserved heterogeneity. These models consider that the 
conditional distribution of the dependent variable given an 
unobserved heterogeneity variable   is Poisson with 
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parameter  . The negative binomial 1 (Negbin) is particular 
case with   a Gamma variable of mean   1E    and 

variance  V   . 

For the zero-excess outcome, [6] suggested modified count 
models in which zeros and nonzero are not governed by the 
same data-generating process. These models are the zero-
inflated and the hurdle model which have been widely used in 
the literature [7], [8], [5]. We consider that these models are 
well adapted in our context. Indeed, as we will show below, 
the sample data contains two sub-samples. The first sample 
contains the individuals who are in good health and never had 
respiratory problems and the second sample contains those 
who are not healthy. Even the latter induces a high percentage 
of zero RRADs. To handle with this phenomenon, the zero 
inflated model (ZIP) specifies that the probability of the zero 
outcomes is additively augmented by a logistic function 

i  

(see Table I which summarizes count data models used in the 
empirical illustrations.).  

The hurdle model allows the possibility that the 
mechanisms that determine the likelihood of respiratory 
problems may differ from the mechanisms that determine their 
duration. Then, for our study, we need to specify the 
probability 

0 , of being healthy in the sample period 

(RRAD=0) and the distribution for the positive number of 
RRADs. 

Another alternative to deal with overdispersion is the finite 
mixture (FM) models. The FM formulation uses a discrete 
representation of unobserved heterogeneity. It supposes that 
the density ( )if y  of 

iY  is:  
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Equation (1) defines a g-component finite mixture density. 

Each term in the sum is the product of mixing probability 
(weight) 

j  and the component density  j if y . To fit our data 

we use a Poisson mixture model which considers that the 
component distributions are Poisson distributions (line 6 of 
Table I). The mixing proportions 

j  are commonly 

parameterized using the logistic function: 
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1 Reference [9] considered the Negbin models and demonstrated the 

superiority of the Negbin2, for which the conditional variance function is 
quadratic in the mean. This Negbin implementation is adopted in what 
follows. 

The parameters of the mixed models are estimated using an 
EM algorithm for mixture model estimation [10]. In practice, 
g should also be estimated. In general, the g components of the 
mixture correspond to g different groups identified throw 
some observable characteristic(s). For g varying between 1 
and the sample size n , the mixture approach is considered in 
[11] as a semiparametric compromise between the fully 
parametric model for 1g  , and a nonparametric model given 

in the case of g n  by the Kernel method of density 

estimation2. 
The question of the number of components in a mixture 

model is always approached in terms of an assessment of the 
smallest number of components in the mixture compatible 
with the data [11]. Reference [13] suggested a selection 
approach consisting of two stages. At the first stage, we fix an 
upper bound for g , this value that we set g  is often a small 

number like 2, 3, or 4. Saturated mixture models (containing 
all possible covariates) are estimated for all values of g g . 

Then we select g  that minimizes information criteria. The 

widely used criteria are the Akaike's Information Criterion 
(AIC) and the Bayesian Information Criterion (BIC).3At a 
second stage, likelihood ratio tests are used to compare 
between nested g-component mixture models, when the goal is 
inference about model parameters. 

Compared with samples used in similar studies, our sample 
is relatively limited in size. This is due to practical difficulties 
to interview a large number of individuals. In order to improve 
the quality of the data and make them more representative of 
the mother population, post-stratification4 and bootstrapping 
techniques are used. Post-stratification classifies the sample 
into post-strata according to different characteristics and then 
provides a set of sub-samples (empirical post-strata) from 
which pseudo-samples are drawn respecting population 
frequencies. The samples obtained are then used for 
parameters estimation and statistical testing. This approach is 
based on the bootstrapping techniques. 

III. DATA AND EXPLORATORY STATISTICS 

As indicated below, the data are elicited using a 
questionnaire surveying individuals from different regions in 
Tunisia for which air pollution is monitored. The number of 
RRADs experienced during the 2-week period prior to the date 
of each interview was to be reported by each respondent.  

 
2 The nonparametric approaches identify the number of components by the 

resulting placement of modes in the density estimate. This approach was used 
in [12] when testing for multimodality using nonparametric kernel density 
estimation technique. 

3 The Monte Carlo study in [13] shows that the BIC is more reliable than 
the AIC. Indeed, the BIC choose always the correct models. The AIC choose 
the correct model in 96% of the time. 

4  See [14] for a detailed description of post-stratification. 
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TABLE I 
POISSON AND OVERDISPERSED COUNT DATA MODELS
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 ,...,1Z Z Zi i ig , 1Zij  when the subject i belongs to 

the jth mixture component. 

 
The socioeconomic data reported by each respondent 

includes information on sex, age, education and income. 
Education (EDU) is measured as the number of years in 
school and income (INC) is monthly household income/1000 
in TND. Demographic variables are sex (SEX), indicated by a 
dummy variable (0 for male and 1 for female), and age (AGE) 
measured in years. The respiratory health situation is 
represented by four dummy variables, one for asthma (ASM), 
one for bronchitis or emphysema (BRO), one for hay fever or 
other forms of allergic runny nose (HAY) and one for other 
complaints from the nose: frequent sneezing, itch, blocked 
nose, etc. (OCN). The dummy variable receives a value of 1 if 
the respondent has, has had or has been diagnosed with 
asthma/bronchitis/hay-fever/other complaints from the nose; 
otherwise the value is 0. Data on smoking behavior are also 
included in view of the harmful effects of cigarettes on health. 
For this, we include the number of cigarettes smoked per day 
(SMK). Knowing that many individuals spent most of their 
time indoors, our study takes into account the effects of some 
characteristics of the respondent's house on his respiratory 
health status. Among the characteristics of the respondent's 
house that can affect his respiratory health, we include the 
number of persons (apart from himself) living permanently in 
his home (NBR). In addition, the home's date construction is 
included as an ordinal variable (HOM), which takes, 
respectively, the values 1, 2, 3, 4, 5 if the home was, 
respectively built after 1995, between 1980 and 1995, between 
1960 and 1980, between 1940 and 1960 and before 1940. The 
outside temperature is also considered, for this the fourteen-
day average of the daily maximum temperature is included 
(TEM). As a measure of air quality we use ozone measures in 
μg/m³ (OZN). Fixed effects in the form of type of zone 

dummies (urban (URB)/industrial (IND)/high traffic road 
(HIGH)/suburban (SUB)), are introduced to control for 
differences between the zones that are not accounted for by 
explanatory variables. For each respondent, the type of area in 
which he lives is indicated by the dummy that receives the 
value 1. When estimating the relationships between 
atmospheric pollution and lost work days, [15] emphasizes the 
importance of such variables in reducing the uncertainty 
attendant on the valuation of the effects of pollution on health. 

Measures of the temperature are given by the National 
Institute of Meteorology. Air pollution data come from the 
National Environmental Protection Agency (NEPA). The 
NEPA was created in 1996 in order to analyze and monitor the 
state of the environment in the country. At the period of the 
study the network has 9 monitors of air pollution planted in 
different regions in Tunisia. Several studies have used more 
than one indicator of exposure to assess the effects of air 
pollution. A drawback of this is the high correlation between 
pollutants, both in time and space. To avoid multicollinearity, 
[16] recommended the use of only one pollutant as an 
indicator5. For the survey period, (March 2006-April 2006), 
the NEPA had monthly data on ozone measured in μg/m³, for 
the 9 stations of air quality measuring. March data on air 
quality were attributed to March respondents and the April 
data were attributed to April respondents. 

The descriptive statistics show (see Table II) that the 
average number of RRADs during the 2-week recall period is 
2.1 days. The average age is 35.137 with a 95% confidence 
level ranging from 34 to 36.2, and the proportion of women is 

 
5 To quantify the effects of air pollution, they used exposure-response 

functions for a 10 µg/m³ increase in particulate matter (PM10). For the same 
reason [4] used only the NO2 measure to identify CRRs in Sweden 
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44.7%. In average, the respondents smoked about 5.3 
cigarettes a day, while the heaviest smoker reported smoking 
nearly 2 packs per day.  

 
TABLE II 

DESCRIPTIVE STATISTICS 
Variable Mean 95% CL 

Female (%) 44.7 
AGE, years 35.137 34.1 36.17

EDU, years of education completed 14.427 13.98 14.87
INC, monthly household income in 1000 TND 1.155 1.02 1.29 

SMK, number of cigarettes smoked per day 5.268 4.36 6.18 
ASM (%) 2.2 
BRO (%) 6.4 
HAY (%) 6.9 
OCN (%) 6.6 

HOM, (date of build) (%) 
Before 1940 3.4 
[1940 , 1960] 5.7 
[1960 , 1980] 22.1 
[1980 , 1995] 32.4 

After 1995 36.4 
NBR, number of people living with the respondent 3.231 3.05 3.41 

OZN, μg/m³ 69.098 64.31 73.89
TEM,C-degrees 17.982 17.9 18.07

Zone (%) 
Urban residence 33.2 
Industrial zone 12.5 

High traffic zone 34.9 
Sub-urban zone 19.4 

RRAD, days in the 2-week recall period 2.108 1.7 2.52 
RRAD, binary (%) 27.8 23.45 32.15

 
As can be seen from Table II, the raw data are clearly 

overdispersed, since the mean number of RRAD is 2.1 with a 
variance equals to 17.9. Table III summarizes the distribution 
of RRADs for the whole sample of 407. As already 
announced, there is large number of persons (72%) reporting 
zero RRADs. A second mode corresponds to 14 RRADs. 

Among the 113 reporting positive RRADs, 62 respondents 
have had a nose problem; 63 have had a throat problem and 36 

have had a bronchial tubes problem. In addition to the large 
number of individuals reporting zero RRADs, our data present 
another feature showed in Table III, which is the large number 
of individuals reporting 7 and 14 RRADs and the absence of 
respondents reporting 8, 11 and 13 RRADs. This indicates the 
fact that some respondents may not accurately report the 
correct number of their RRADs. About the mode 
corresponding to 14 RRADs, it should be noted that 
individuals reporting 14 RRADs comprise those who have had 
respiratory problems for more than 14 days but were 
constrained to report the upper limit assumed by the response 
variable. 

 
TABLE III 

RRAD DISTRIBUTION 
RRAD No. OBS % 

0 294 72.24 
1 2 0.49 
2 9 2.21 
3 17 4.18 
4 21 5.16 
5 4 0.98 
6 2 0.49 
7 18 4.42 
8 0 0 
9 1 0.25 
10 2 0.49 
11 0 0 
12 1 0.25 
13 0 0 
14 36 8.84 

IV. EMPIRICAL RESULTS 

As announced below, we present the results for original 
sample and post-stratified samples. Results for the post-
stratified sample are presented in Table IV. Results for the 
original are presented in Appendix 2. 

 
TABLE IV 

POISSON, NEGBIN, ZIP, POISSON HURDLE AND NEGBIN HURDLE ESTIMATION RESULTS 

Variable Poisson Negbin ZIP Poisson hurdle Negbin hurdle 
      Inflate  RRAD Zeros Positives Zeros Positives 
Constant 15.492  24.056  -4.44 0.469 3.451 -0.014 5.572  0.907 
SEX 0.579  1.060  -1.197  -0.254 0.901  -0.219 1.172  -0.274 
AGE - 0.004 - 0.007 -0.000 -0.003 -0.003 -0.001 -0.0005 -0.003 
EDU 0.021 0.024 -0.094  -0.036  0.077  -0.034  0.091  -0.038   
INC - 0.131 - 0.414  0.214 0.162  -0.145 0.133 -0.205 0.167  
SMK 0.022  0.039  -0.046  -0.009 0.036  -0.008 0.045  -0.011 
ASM 0.723 1.316 -4.285 0.242 2.487 0.275 5.647 0.283 
BRO 0.53 1.097  -1.283  0.075 0.938  0.074 1.277   0.119 
HAY 0.835  0.636  -1.232  0.323 0.948  0.312 1.229   0.323 
OCN 0.691  0.999  -2.014   -0.209 1.371  -0.186 1.941   -0.239 
HOM 0.079 0.069 -0.053 0.149  0.066 0.139  0.06 0.157  
NBR 0.094  0.094 -0.180  0.037 0.142  0.037 0.178   0.049 
OZN 0.022  0.037  -0.026  -0.005 0.019  -0.005 0.027   -0.004 
TEM - 0.955  -1.489  0.570  0.106 -0.464  0.13 -0.633  0.074 
URB - 0.980  -1.444  - 0.094 - 0.119 - 0.185 
IND - 0.616 -1.520  - 0.484 - 0.482 - 0.481 
SUB - 0.387 -0.343 - 0.336 0 0.361 -  0.448 
LL -1125.22 -604.933 - -822.813 -189.063 -352.643 -187.811 -329.44 
AIC 2267.434 1226.866 - 1676.626 - 1114.512  -  1065.502 
α -   4.677  - -  - -  0.161  - 

Note: ***, **, *: significance at the 1%, 5% and 10% level.  
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The post-stratification has the advantage of sample bias 
correction. It is undertaken here by drawing with replacement 
200 samples of size 407 from our original sample according to 
the population frequencies given in Table VII see Appendix 
2). On the basis these samples6, we construct confidence 
intervals for the mean and the variance of RRADs. The mean 
and variance confidence intervals at 1% level risk are 
respectively [1.828, 2.783] and [13.916, 22.571], this indicates 
that a strong overdispersion is also characterizing the post-
stratified samples. 

According to the AIC and the log-likelihood ratio tests, the 
Negbin hurdle model overcomes all the alternative models. 
Hence, this model better fits the data. For example, the LR test 
statistics of Negbin against the hurdle Poisson is equal to 
126.454 (p-value=1%), the LR statistics of Poisson hurdle 
against the Negbin hurdle is equal to 48.909 (p-value=1%).  

Negbin hurdle results show that women, smokers, those 
who have had respiratory problems and those with more 
people living permanently in their homes are more likely to 
suffer from respiratory illnesses. OZN is also significant in 
determining the incidence of such days. Temperature is likely 
to reduce the incidence of RRADs. 

In the conditional mean part, only HOM is significant to 
determine the duration of RRADs with positive sign, 
indicating that those living in older homes have more RRADs. 
The variables INC and EDU are also significant but the sign of 
INC is not as predicted. 

In order to take in account of any unobserved heterogeneity 
in the population groups, we estimate FM models. To 
determine the number of components in the mixture we use 
the approach of [13] presented above. Our saturated models 
involve the following covariates: Constant, SEX, AGE, EDU, 
INC, SMK, DIS, HOM, NBR, OZN, and TEM. Some 
covariates are dropped to avoid over-parameterization. For the 
same goal, we represent the health situation of each 
respondent by the variable DIS which receives a value of 1 if 
the respondent has, has had or has been diagnosed with one of 
the four health indicators introduced in the preceding models; 
otherwise the value is 0. Maximum likelihood estimates are 
calculated by using the EM algorithm. For the choice of 
starting values, we divide the data into g components (for g=2, 
and g=3)7 according to the information given by the indicator 
variable  1 , ..., ,   1, ,  407i i igZ Z Z i   . 

A multiple linear regression model is then performed for 
each component. Least squares estimators of the parameters 
are then used as starting values for each component in the 
Poisson mixture. The estimates of the parameters in this model 
are then used as starting values. Starting values for the logit 
model are obtained in the same way. Estimation of saturated 
models is given in Table V. In the 2-components finite 
mixture (FM2), we suppose a decomposition of the population 

 
6 These samples will then be used for all econometrical estimations. 

Confidence intervals for the parameters estimated are based on the "bootstrap-
t" approach. We use B′=2000 for confidence intervals construction. 

 
 

on two groups, the first is the group of those who have had a 
number of RRAD lower than 4. 

 The second group is formed by the remainder individuals 
who have had a number of RRAD equal or upper than 4. In 
the 3-components finite mixture we suppose a decomposition 
of the population into three groups: the first is formed by those 
who have had less than 4 RRADs, the second by those who 
have had a number of RRADs that is equal or greater than 4 
and less than 12 and the third group is formed by the 
remainder. The BIC is minimized with the two components 
model which fits best the data than the FM with three 
components. 

The results relative to the two components model show that 
the variables SEX, EDU, SMK, OZN are significant with 
expected signs in predicting the Poisson rate for the first 
group, whereas only the constant and HOM are significant in 
predicting the Poisson rate for the second group. In modeling 
the mixing proportions

j , the variables SEX, DIS, NUM, 

OZN and TEM were significant with predicted signs. 
To test the FM2 against the Negbin hurdle alternative, the 

calculated value of the LR test statistic is -2(-
551.091+517.251)=67.679. The 1% critical value is 12.383, 
and then the FM2 is rejected against the Negbin hurdle.  

If g=3 is preferred, then we test between g=3 and g=4 
components. 

The interpretation of regression coefficients, in particular 
the OZN coefficient is of great interest. Hence, it allows us to 
illustrate the changes in the number of RRADs that might be 
associated with changes in ozone levels, known as semi-
elasticity. For the hurdle Negbin and the finite mixture 
specifications, semi-elasticities are evaluated as indicated in 
(3) to (8):  
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Obviously y stands for the number of RRADs that an 

individual have had during the last fortnight. For the 
estimation results of the hurdle specifications (Table IV), the 
OZN was significant in the determination of the incidence of 
respiratory problems but not in the determination of their 
duration. Then the first term of (3) is set equal to zero. From 
the same equation, the change in the number of RRADs that 
might be associated with a change in the OZN level is 
calculated as follows: 
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TABLE V 
FINITE MIXTURE MODELS FOR POST-STRATIFIED SAMPLE 

Variable 2 components Finite mixture 3 components Finite Mixture 
 Comp 1 Comp 2 logit (p) Comp 1 Comp 2 Comp 3 logit (p) logit (p) 

Constant 11.42 7.79** -7.70* 13.86 9.05 -4.28 -19.79 -15.75 
SEX 1.95*** -0.03 -0.97*** -0.03 -0.37** 0.16 -1.65** -0.66 
AGE -0.02 -4.10⁻³ 2.10⁻³ -0.03 3.10⁻⁴ 4.10⁻³ 7.10⁻³ 6.10⁻³ 
EDU 0.45*** -4.10⁻³ -10⁻³ 0.76 -0.05*** -4.10⁻³ -0.10 -0.11 
INC -1.26 0.01 0.02 -1.97 0.10 0.09 0.28 0.28 
SMK 0.12*** -3.10⁻⁴ -0.01 0.21 -4.10⁻² 2.10⁻³ -0.04 -0.05 
DIS 1.67 0.18 -1.32*** 2.92 -0.33* 0.05 -2.54*** -1.99*** 

HOM 0.43 0.09* 0.04 0.64 -0.08 -0.01 -0.27 -0.40 
NBR 0.21 0.03 -0.19** 0.03 -0.04 0.03 -0.34* -0.20 
OZN 0.04*** 3.10⁻² -0.02*** 0.06 3.10⁻³ -6.10⁻³ -0.04** -0.01 
TEM -1.47* -0.33 0.67*** -2.08 -0.35 0.38 1.65* 1.20 

 LL=-551.091, m=33, BIC=1300.473 LL=-495.876, m=55, BIC=1322.236 

 
For the FM2 specification the mean is calculated in the 

following way (1 and 2 denote the first and second component 
of the mixture): 
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with, 
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Then, 

    
  

1 1

2 2

/
1

1 .

OZN OZN

OZN OZN

E y x

OZN
    

    


  


  

              (8) 

 
The changes in acute respiratory health that might be 

associated with changes in ozone levels are given in Table VI, 
which gives an estimation of the proportionate change in the 
conditional RRADs mean if the OZN changes by one unit 
according to different specifications.  

For the Negbin hurdle and the FM2 specifications, the 
intermediate calculation is given in Table VI, giving rise to 
0.020 and 0.005 as respective OZN semi-elasticity values. 
These values will able us to monetize the ozone effect on 
human health. 

 

TABLE VI 
OZONE SEMI-ELASTICITIES 

Specification 

Negbin hurdle (c=0)  FM2 (c=3) 

E[RRAD x]                      1.951                 1.639 

E[RRAD RRAD>c]         7.656                 8.404 

Pr[RRAD>c]                    0.255                 0.193 

OZN semielasticity          0.020                 0.005 

    
In the literature, the value of air pollution impacts depends 

on the value assigned to human health. Studies of the value of 
human health simply reflect what people seem willing to pay 
in monetary units for a marginal change in health. To evaluate 
the effect of a change in the level of ozone, suppose that a 
policy measure reduces by 1 unit the level of ozone 
concentration. Using the ozone semi-elasticity, this measure 
will imply a reduction in the expected number of RRADs 
which ranged between 0.5% and 2% depending on the model 
specification used. 

Given the RRAD mean calculated on the basis of post-
stratified samples which is 2.295 days, this policy measures 
will simply an average individual reduction that ranged 
between 0.011 and 0.046 day each two weeks. 

Finally, a monetary value could be assigned to this 
hypothetical improvement in health. To this end, the 
contingent valuation method is used. The willingness to pay to 
avoid one day of respiratory restricted activity was elicited by 
each respondent. The mean value elicited was 0.963 dinar per 
day. Therefore, the value of the average individual reduction 
per 2 weeks is ranged between 0.01 and 0.044 dinars. That is, 
the annual benefit per person of the 1 unit reduction in the 
ozone concentration will be valued at as much as 1.152 dinar. 
Finally, the annual benefit to the urban population is estimated 
at 7.2 million dinars.  

V.  DISCUSSION 

Following [1]-[4], we estimated several models adjusting 
RRAD and socio-economic and air quality measures. The 
models considered are Poisson, Negbin, ZIP, Hurdle Poisson, 
Hurdle Negbin and Finite mixture. The Hurdle Negbin 
performs all the other models. We found encouraging results 
in accordance with previous studies finding. Indeed, [2] has 
used three indicators of morbidity measured for a 2-week 
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period, among which the number of RRADs. He used Poisson 
specifications for data provided by the annual health interview 
surveys (HIS) for 1976-1981. Pollution is measured by the 2-
week average of fine particles which received 0.7 to 2.2 
percent as coefficient. In [3] and [1] the number of RRADs is 
also considered as dependent variable. The estimation samples 
come from the 1979 HIS in the United States. For [3], Poisson 
specifications were used. The mean of individual elasticity 
obtained is ranged from 0.006 and 0.485. In [1] linear 
estimators have been used. The estimated elasticity for ozone 
ranged from 0.12 to 2.97. Reference [4] estimated a CRR 
based on Swedish national health survey data. To deal with 
overdispersion characterizing the number of RRADs they used 
a logit model for estimating probability of RRAD > 0. The 
individuals with positive RRADs are analyzed separately 
using a Poisson model. Their results indicate that if the level 
of NO2 increases by one unit (µg/m3), the number of RRADs 
will increase by 3.2 percent. 

The difference between these results is mainly due to the 
specificity of each country, in addition to their dependence on 
the estimation methodology. Compared to these results, ours 
can be improved if a larger sample were available.  

VI. CONCLUSION 

The morbidity effects of air pollution in Tunisia are 
investigated. The data were elicited using a questionnaire 
surveying individuals from 9 regions in Tunisia for which air 
pollution is monitored. In order to improve the quality of our 
data, post-stratification and bootstrapping techniques were 
used. 

The dependent variable is the number of RRADs 
experienced by each respondent during the 2-week period 
prior to the date of the interview. This variable is characterized 
by the simultaneous presence of excess zeros and an 
overdispersion detected by several tests. To handle with this 
characteristic, models allowing for overdispersion and zero-
inflation were estimated. 

 In terms of goodness of fit, measured by either log-
likelihood or AIC, hurdle Negbin is the best to fit our data 
followed by Poisson hurdle, FM2, Negbin, ZIP, and Poisson, 
in that order. The superiority of the hurdle Negbin could be 
explained by the joint presence of unobserved heterogeneity 
and a considerable excess of zeros. Beyond the estimation 
method, our results indicate that women, smokers, those with 
more people living permanently with them are found to be 
more likely to suffer from respiratory illness. The results 
indicate notably that the population is sensitive to air 
pollution: increases in modest pollution levels tend notably to 
determine the incidence of respiratory problems and to also 
prolong their duration (depending on the model specification). 
It was found that a reduction of one unit in the ozone level 
leads on average to a decrease ranged between 0.5% and 3.7% 
in the expected number of RRADs depending on the 
specification used. This corresponds to an average individual 
reduction that ranged between 0.011 and 0.046 day each two 
weeks. 

The contingent valuation method is used to monetize this 
hypothetical improvement in health. The willingness to pay to 
avoid one day of respiratory restricted activity was elicited by 
each respondent. The mean value elicited was 0.963 dinar per 
day. Therefore the value of the average individual reduction 
per 2 weeks is ranged between 0.01 and 0.044 dinars. 

The annual benefit for each individual of this reduction will 
be valued at as much as 1.152 dinar. Therefore, the annual 
benefit to the adult urban population of Tunisia is valued at as 
much as 7.2 million dinars. 

APPENDIX 

Appendix 1: Post-Stratification and Bootstrapping 

To implement the Post-stratification technique, the 
population is classified by three criteria: sex (1 female, 2 
male), 4 categories of age (1 age 18 to 29, 2 age 30 to 39, 3 
age 40 to 49, 4 age 50 to 60), and 9 zones (1 Bab Sâadoun, 2 
Nahli, 3 El Mourouj, 4 Ben Arous, 5 Rades, 6 Bizerte, 7 
Sousse, 8 Sfax Siap, 9 Sfax). This classification implies a 
division of the population into 2×4×9=72 post-stratification 
cells. 

The size of each cell according to the parent population is 
derived from the 2004 Tunisia Census of Population, which 
provides the population structure by age group, sex and 
delegation. Then we derive a classification of 407 individuals 
according to the parent population composition of size 
N=1 603 906. Table VII (respectively Table VIII) gives the 
size of each cell according to the parent population 
(respectively to our sample). 

 
TABLE VII 

POPULATION CLASSIFICATION OF 407 INDIVIDUALS 
Sex Male female 

Zone/Age 1 2 3 4 1 2 3 4 

1 26 17 15 10 25 17 15 10 

2 8 6 4 3 8 5 4 3 

3 5 4 4 2 5 4 3 1 

4 3 2 2 1 3 2 2 1 

5 6 5 4 3 6 5 4 3 

6 5 3 3 2 5 4 3 2 

7 10 6 5 3 9 6 5 3 

8 11 7 7 4 10 7 6 4 

9 5 3 2 1 4 3 2 1 

 
TABLE VIII 

SAMPLE CLASSIFICATION OF 407 INDIVIDUALS 

Sex Male female 

Zone/Age 1 2 3 4 1 2 3 4 

1 9 11 6 10 27 5 14 9 

2 10 11 2 1 6 12 2 3 

3 13 6 1 4 6 1 1 1 

4 2 2 3 2 4 2 1 2 

5 15 8 10 2 16 9 7 2 

6 11 16 5 2 10 2 4 2 

7 2 1 2 1 3 3 1 1 

8 13 13 7 7 5 1 3 1 

9 6 3 5 3 3 4 8 1 
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In order to test for sample representativeness, we compare 
between the sample and the population frequencies according 
to the variables used as criteria for the post-stratification (sex, 
age and zone). To this end, the Khi test is used for testing the 
null hypothesis: the population and the sample come from the 
same distribution. For confidence intervals construction, we 
use the approach of percentile confidence interval based on 
percentiles of the bootstrap distribution of a statistic as well as 
the bias corrected version of this interval as presented in [17]. 
Our calculations are obtained with 2000 samples of size n=407 
from our original sample. The percentile confidence interval at 
α=1% risk level is [44.557; 109.382]. To improve these 
results, we use the bias-corrected and accelerated approach 
(see [17]). The interval is almost the same as the 99% BCa 
interval with [α₁,α₂]=[0.726, 99.662] which is [45.941, 
111.660]. The calculated value obtained on the base of the 

original sample is 259.679, these results allows us to reject the 
null hypothesis that population and the sample come from the 
same distribution. The rejection of the null hypothesis implies 
that frequency distribution of the sample at hand, at least 
according to stratification criteria such as age, sex and region, 
is quite different from what is observed at the population level. 
That is any econometric result based on the original sample 
without any treatment permitting to overcome this 
shortcoming will lead definitely to both biasness and 
inconsistency of the estimates, which preclude understanding 
the true interconnection between the key variables. In order to 
fix this problem the idea is to use post-stratification techniques 
based on population frequencies to draw consistent 
poststatificated samples using bootstrapping. Our econometric 
results are based on independent bootstrap samples. 

Appendix 2 
TABLE IX 

POISSON, NEGBIN, ZIP, POISSON HURDLE AND NEGBIN HURDLE ESTIMATION RESULTS FOR THE ORIGINAL SAMPLE 
Variable Poisson Negbin ZIP Poisson hurdle Negbin hurdle 

   Inflate RRAD Zeros Positives Zeros Positives 

Constant 13.175*** 12.683 -0.21 1.371 0.719 1.245 0.305 2.947 

SEX 0.629*** 1.086*** -0.937*** 0.091 0.802*** 0.091 0.935*** 0.091 

AGE -0.003 -0.006 0.011 0.006* -0.012 0.007  -0.011 0.006 

EDU 0.019** 0.008 -0.049 -0.008 0.048** -0.007 0.049 0.011 

INC -0.267*** -0.588*** 0.402* 0.085 -0.316* 0.085 -0.399* 0.094 

SMK 0.024*** 0.051*** -0.049*** -0.004 0.041*** -0.004 0.049*** -0.005 

ASM 0.811*** 1.327 -1.289 0.322** 0.583 0.323** 1.284 0.32 

BRO 0.432*** 0.843 -1.212** -0.046 0.813** -0.047 1.277** 0.006 

HAY 0.572*** 0.542 -1.228*** -0.01 0.936*** -0.009 1.227*** -0.03 

OCN 0.842*** 1.215** -2.035*** -0.104 1.449*** -0.103 2.026*** -0.107 

HOM 0.069** 0.178 -0.105 0.034 0.093 0.037 0.105 0.053 

NBR 0.117*** 0.185** -0.198*** 0.059** 0.143*** 0.061** 0.198*** 0.066 

OZN 0.020*** 0.028** -0.016** 0.0005 0.014** 0.0005 0.016** 0.003 

TEM -0.824*** -0.85 0.239 -0.0007 -0.248 0.004 -0.245 -0.105 

URB -0.586*** -0.734 - 0.094 - 0.096 - 0.143 

IND -0.435** -1.171* - 0.24 - 0.244 - 0.111 

SUB -0.217 -0.047 - 0.282* - 0.284* - 0.368 

LL -1164.976 -570.807 - -712.992 -186.342 -360.886 -187.811 -318.053 

AIC 2346.952 1158.614 - 1456.984 - 547.228 - 536.864 

α - 5.672***     0.279*** - 

 
TABLE X 

FINITE MIXTURE MODELS FOR THE ORIGINAL SAMPLE 
 2 components Finite mixture 3 components Finite Mixture 

Variable Comp 1 Comp 2 logit (p) Comp 1 Comp 2 Comp 3 logit (p) logit (p) 

Constant 11.45 5.21** -0.47* 6.61 7.98** 0.43 -6.24 -7.98 

Sex 1.06*** 0.06 -0.75** 1.60** -0.06 0.03 -1.07** -0.39 

Age -0.05*** -0.003 -0.002 -0.09** -0.001 0.000 -0.001 -0.009 

Edu 0.11*** -0.008 -0.027 0.25*** -0.02 -0.004 -0.03 -0.02 

Inc -1.04*** 0.02 0.30 -0.62* 0.05 0.02 0.20 -0.26 

Smk 0.09*** 0.001 0.028* 0.14*** 0.005 0.001 -0.03 -0.008 

Dis 2.99*** 0.19** -1.09*** 2.86*** -0.23* -0.001 -1.86*** -0.635 

Hom -0.07 0.016 -0.10 -0.28 -0.049 0.011 -0.14 -0.01 

Num 0.19** 0.03 -0.19*** 0.13 -0.03 0.01 -0.30*** -0.13 

Ozn 0.03*** 0.003 -0.015** 0.03* 0.005 -0.002 -0.02** -0.01 

Tem -0.97* -0.19 0.259 -0.82 -0.35 0.13 0.72 0.63 

 LL=-556.6747, m=33, BIC=1311.640 LL=-506.6057, m=55, BIC=1343.696 
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