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Abstract— This paper suggests a new affine projection(AP) algo-
rithm with variable data-reuse factor using the condition number as a
decision factor. To reduce computational burden, we adopt a recently
reported technique which estimates the condition number of an input
data matrix. Several simulations show that the new algorithm has
better performance than that of the conventional AP algorithm.
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I. INTRODUCTION

P algorithms are considered as an alternative to increase
Athe convergence rate in adaptive filtering algorithms
where input signal is correlated[1][2]. In these algorithms,
the idea of variable data-reuse was proposed to lower the
overall complexity of the conventional algorithm in the set-
membership AP algorithm[3]. This paper proposes a new
affine projection algorithm with variable data-reuse factor K
(which presents the number of input vector used for update)
using the condition number as a decision factor.

It is well known that adaptive filtering algorithms are
sensitive to the condition number of input data. Generally,
the condition number of a matrix is computed by using L,-
norm. However, it requires much computational burden to
calculate the condition number. Recently, a new technique
which estimates the condition number of an input data matrix
was proposed in the RLS algorithm[4]. This technique used a
proper norm instead of Ls-norm to reduce much computation
complexity. It is a useful alternative to estimate the condition
number when the exact value is not required. Based on this
technique, we can easily estimate the condition number of an
input data matrix in AP algorithm and use it to exploit a new
AP algorithm with variable data-reuse factor. Through this
process, this paper explores the relations among data-reuse
factor, misalignment and the convergence rate.

As a result, this paper proposes a new algorithm that
adaptively adjusts the data-reuse factor K by comparing the
condition number of input data matrix at the present step
with that at the previous step. This algorithm can lower
the arithmetic burden of the conventional AP algorithm by
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employing a variable data-reuse factor, and moreover it has
a lower misalignment and convergence rate similar to that of
the conventional AP algorithm. Several simulations show that
the performance of the proposed algorithm is better than that
of the conventional AP Algorithm. Specifically, the proposed
algorithm not only achieves very similar convergence rate,
but also reaches a lower misalignment as compared to the
conventional AP algorithm.

Notations used in this paper are fairly standard. Bold-
face symbols are used for vectors (in lowercase letters) and
matrices (in uppercase letters). We also have the following
notations.

()T : Transposition

(+)* : Transposition with complex conjugate

Tr(-) : trace

E(-) : Expectation

In addition, the symbol I denotes the identity matrix of
appropriate dimensions. All vectors are column vectors except
for the input data vector denoted by u; which is taken to be
a row vector for convenience notation.

II. REVIEW OF AP ALGORITHMS

AP Algorithms can be derived from the regularized New-
ton’s recursion[5],

wi =wi 1+ T+Ry) 'Raw — Ruwi 1] (1)

where w; is a weight vector at time instant i, {/ is a fixed step
size, ' is a fixed regularization parameter, R,, = E[u*u] and
Ray = E[du*].

We replace {Ry, Rau} by the following instantaneous
approximations[5]:

%

1 . - 1 & .
R, = K Z wju; , Rau = K Z d(j)uj ?2)
j=i—K+1 j=i—K+1

where K is the number of input vectors used for parameter
update and is called the data reuse factor.
If the K x M block data matrix

u;
u;—1

Wi— K41
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and the K x 1 data vector
d(f)
dii—1)
d; = ) “)
dii— K+1)

are introduced, then we can express {f{u ﬁdu} simply as[5]
1 1
K K
By (5), the Newton’s recursion (1) becomes

Ru=—U'U; , Rau=--Uld,. )

wi=w; 1+ u( I+ UU)'UNd; — Usw; 1], (6)
Using the inversion formula in [5]
(I+UU) U = U ( 1+ U U, (7)
(6) becomes

w; = w1+ PU; ( T+ U;U7) 7 Hdy = Uiwia]. (8)

If we choose > 0 for all i, then the inversion term ( I+
U, U;)~ ! is positive definite[6], and the choice = 0 results
in the standard AP algorithm[7]

w; = w1 + g0 (U U)) 7 di — Uiwi ). 9)

III. HOw TO ESTIMATE THE CONDITION NUMBER OF AN
INPUT DATA MATRIX IN AP ALGORITHM

Recently, the procedure which estimates the condition num-
ber of an input signal covariance matrix using a proper norm
was presented in the context of RLS equation[4].

In [4], the means to estimate the condition number of a
matrix R was presented as follows:

BRI = RV2 LI RTY2 |3 (10)

which has the below property(11) and expressions (12), (13),
1

75 2RI< BR: < 2R (11
1 1/2

IR = { 7 TiR1} (12)
1/2

HR*“?HE:{%W[R*]} , (13)

where L is the size of a matrix R and subscript E is used to
distinguish the different condition numbers.

To avoid the confusion of square in the formula (10), it is
defined as p[R] = Z[R2].

Instead of concentrating on an input signal correlation
matrix U7;U;, this paper concentrates on U;U; because the
performance in the recursion formula (9) is directly related
to the condition number of U;U;. The condition number of
U,U; becomes as follow:

p(U;U) = % Tr(U,UNTr(U,UH™Y, (14)

where K is the number of an input vector used for updates or
the size of U;U;.

From this equation, the condition number can be eas-
ily estimated without significantly increasing the arithmetic
complexity, because the inversion term has already been
calculated in (9) and it is a general assumption that U, U}
is learned before the calculation of the inversion. Specifically,
the additional computation burden is shown in the Table /.

Figure 1 shows the comparison of (a) (U;U}) and (b)

p(U;UY). Figure 2 shows the comparison of (a) p(U;U})
and (b) 7z 2(U;U;). From figure 1, it appears that the
graphs are different and the difference between these values is
very large. However, with careful observation of figure 1 and
figure 2, it is evident that the pattern of the condition number
using E-norm is similar to that of the condition number using
Lo-norm. In some special cases like in this paper, the accurate
condition number is not required since the pattern of the
condition number is enough for the proposed algorithm in
the next section. From the above property, this paper will use
the estimated condition number to adaptively adjust the data-
reuse factor.

IV. THE NEW AP ALGORITHM WITH VARIABLE
DATA-REUSE FACTOR

This section shows a new AP algorithm with variable data-
reuse factor. Table // presents the proposed algorithm.

In this algorithm, U-matrix and d-vector are updated as the
conventional AP algorithm. However, K is adaptively assigned
using the condition number as a decision factor and the weight
parameter vector is updated under this data-reuse factor K.

The proposed algorithm is based on the following two
relations. The first one is the relations among the data-reuse
factor, misalignment and convergence rate. The second one is
the relations among the condition number, misalignment and
convergence rate. From these relations, the condition number
can be used to adjust the data-reuse factor. In the rest of this
section, these relations are discussed in details.

In the first relation, it is well known that the convergence
rate becomes fast as data-reuse factor K increases. It was
proven through numerical formulas and simulations on [8].
The relation between misalignment and data-reuse factor K
was proved from the following equation [7]:

[

EMSE= g T Bl 2
where 2 is the noise variance. From this equation, we can
see that misalignment increases as K increases.

Some papers have explored the second relation. That is,
misalignment increases and convergence rate becomes slightly
slow as the condition number of an input correlation matrix
increases. Generally, the measurement noise contributes to the
misalignment. The amount of the contribution depends on
(U,;U;)~1, which is related to the condition number of U,; U}
[9]. As a result, misalignment becomes lower as the condition
number of U; U7 decreases. The other reference reveals that
the convergence rate of AP algorithm are slightly affected

(15)
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by the condition number[10]. Specifically, it is known that
convergence rate of AP algorithm can become slightly fast if
the condition number decreases.

From the above relations, in case p increases, the pro-
posed algorithm decreases K by 1 to reduce misalignment. In
other words, the decreased K lowers misalignment, although
the convergence rate becomes slow because the condition
number of a matrix tends to increase with the matrix size[11].
It improves bad misalignment through sacrificing the conver-
gent speed. In the other case, we increase K by 1, and it
improves the convergence rate through sacrificing the good
misalignment. It means that this paper can use the condition
number and data-reuse factor to meet the conflicting require-
ments of fast convergence and low misalignment.

The proposed algorithm does not decrease K continually
whenever p increases because the convergence rate of AP
algorithm is related to K as mentioned before. If K decreases
in every step, the convergence rate becomes very slow, even
though the misalignment becomes lower. To overcome this
situation, the resetting technique is adopted whenever K
becomes less than 2. If K is 1, the condition number always
becomes 1. In this case, K can never be larger than 1 under
any circumstances in this algorithm. Therefore, the proposed
algorithm resets the data-reuse factor whenever K becomes 1.

V. SIMULATION RESULTS

In this section, some simulation results are presented to
demonstrate the performance of the proposed algorithm. In
all cases, we consider a system identification problem that is
trying to identify the weights of 16-tap FIR filter. The input
signal is correlated and the output noise variance (which cor-
responds to the minimum MSE) is -30dB. The regularization
factor is 1077, the step size is 1 in all cases (NLMS, AP
algorithm and the proposed algorithm) and the maximum K
is 6. The results are obtained by an ensemble averaging over
500 independent trials or one iteration.

Figure 3 shows that the convergence rate of the proposed
algorithm with variable data-reuse factor is very similar to that
of the conventional AP algorithm and misadjustment of the
proposed algorithm is smaller than that of the conventional
AP algorithm. Figure 4 shows an example of the percentage
of data-reuse factor for one iteration. Figure 5 is the ensemble
average of K.

Figure 6 shows the performance of the proposed algorithm
in details. Here, the normalized least square method shows a
very slow convergence rate as mentioned before. In this situa-
tion, it is shown that AP algorithm can be used to improve the
convergence rate. The relations among the data-reuse factor,
convergence rate and misalignment can be clearly shown in
this figure. As mentioned in section IV, the convergence rate
becomes fast and misalignment becomes large as the data-
reuse factor increases. The proposed algorithm achieves low
misalignment, which is similar to the level of small data-
reuse factor (K=2) keeping the fast convergence rate similar to
that of large one (K=6). Additionally, the proposed algorithm
requires computation complexity similar to that of middle one

(K=4). In other words, the proposed algorithm shows better
performance without much additional computation burden
through adjusting the data-reuse factor.

VI. CONCLUSION

This paper proposed a new AP algorithm with variable
data-reuse factor since the introduction of a variable data-
reuse factor K allows a significant reduction in the overall
complexity as compared to a fixed K. The proposed algorithm
adjusts the data-reuse factor using the condition number as a
decision factor to meet the conflicting requirements of fast
convergence and low misalignment in AP algorithm.

To easily estimate the condition number in AP algorithm
with low computation, a proper norm was used in this paper.
It could be used to adjust the data-reuse factor through
analyzing misalignment and convergence rates that are related
to this condition number. As a result, the new algorithm
was implemented to adaptively adjust the data-reuse factor
K comparing the condition number at the present step with
that at the previous step.

Simulation results showed that the proposed algorithm
could outperform the conventional AP Algorithm in terms of
computation complexity and misalignment.
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TABLE I
THE ADDED COMPUTATION BURDEN

x [+ T 7 ]
| The Proposed algorithm | 2 | 2K | 1 |
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TABLE 11 3
THE PROPOSED ALGORITHM
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Fig. 1. Comparison of condition numbers using (2)L2-norm(x2(U;U}))  Fig. 3. Comparison of learning curves for the proposed algorithm and

and (b)E-norm(x,(U;UY)) for one iteration

conventional AP algorithm with fixed K
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Data-Reuse Factor K

Fig. 4. Percentage of Variation of K for one iteration
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Fig. 5. Variation of K for 500 ensemble average
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Fig. 6. Comparison of learing curves for NLMS, AP algorithm for K=2,
AP algorithm for K=4, AP algorithm for K=6 and the proposed algorithm
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