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Affine Combination of Splitting Type Integrators,
Implemented with Parallel Computing Methods

Adrian Alvarez, Diego Rial

Abstract—In this work we present a family of new convergent
type methods splitting high order no negative steps feature that
allows your application to irreversible problems. Performing affine
combinations consist of results obtained with Trotter Lie integrators
of different steps. Some examples where applied symplectic
compared with methods, in particular a pair of differential equations
semilinear. The number of basic integrations required is comparable
with integrators symplectic, but this technique allows the ability
to do the math in parallel thus reducing the times of which
exemplify exhibiting some implementations with simple schemes for
its modularity and scalability process.

Keywords—Lie Trotter integrators, Irreversible Problems, Splitting
Methods without negative steps, MPI, HPC.

I. INTRODUCTION

WE consider the autonomous problem:

ẋ = f0(x) + f1(x), x(0) = x0. (1)

• With f0 is a closed densely defined operator D(f0) ⊂ H ,

a Hilbert space, which generates a strongly continuous

semigroup of operators.

• The nonlinear term f1 : H → H is a smooth application

with f1(0) = 0.

• In general numerical integration methods based on

temporary partitions, splitting methods, take advantage

of the ability to easily solve partial problems, finding

approximate solutions of the problem (1) alternately

applying the partial flows φj with j = 0.1 associated

with each subproblem:

ut = f0.u, y ut = f1(u)

II. BRIEF HISTORY

The first and simplest methods are proposed in [1]

Lie-Trotter and [2] Strang given by:

φj
L(h) =φ1−j(h) ◦ φj(h),

φj
S(h) =φj(h/2) ◦ φ1−j(h) ◦ φj(h/2).

We say that a method φ̂ is of order q sii local truncation

error for 0 < h < h0 holds:
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|φ(h, x0)− φ̂(h, x0)| ≤ C(f0, f1, x0)h
q+1

where φ is the flux equation (1). It is known that φL is of

order 1 and φS of order 2. In [6] , symplectic integrators how

arise:

φj
a,b(h) = φ1−j(bmh) ◦ φj(amh) ◦ · · · ◦ φ1−j(b1h) ◦ φj(a1h)

Ruth gets in ( [8]) A symplectic integrator φS,3 = φj
a,b of

third order, later Neri shown in [7] be a symplectic integrator

φS,4 = φj
a,b of fourth order. In [6], Yoshida presents a

systematic way to obtain any even-order integrators, from

Baker formula - Campbell - Hausdorff. We see [5] that q > 2
is necessary that some step is negative, which prevents its

application in cases irreversible. Our goal is to provide stable

high-order methods for such problems.

III. THE RELATED METHODS

Given the flow φj associated with partial problems, we

define applications:

φ+(h) = φ1(h) ◦ φ0(h), φ
−(h) = φ0(h) ◦ φ1(h)

φ±
m(h) = φ±(h) ◦ φ±

m−1(h)

Φ(h) =

s∑
m=1

γmφ±
m(h/m) (asymetric),

(2a)

Φ(h) =
s∑

m=1

γm(φ+
m(h/m) + φ−

m(h/m)) (symetric).

(2b)

Reference [9] tested the consistency and stability of these

methods, given by integrators given in (2a) and (2b) are

convergent with order q where 2n = q, if the coefficients

γm verified respectively:

1 = γ1 + γ2 + · · ·+ γs,

0 = γ1 + 2−kγ2 + · · ·+ s−kγs,

1 ≤ k ≤ q − 1,

(3a)
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1

2
= γ1 + γ2 + · · ·+ γs,

0 = γ1 + 2−2kγ2 + · · ·+ s−2kγs,

1 ≤ k ≤ n− 1,

(3b)

The above calculation to find the scalar necessary for

integrators proposed family of related methods φA,q(h), is a

method of order q, where:

• If q = 2, γ1 = 1/2.

• If q = 3, γ1 = −1/6, γ2 = 2/3.

• If q = 4, γ1 = −1/16, γ2 = 0, γ3 = 9/16.

• If q = 5, γ1 = 1/90, γ2 = −2/9, γ3 = 0,

γ4 = 32/45.

• If q = 6, γ1 = 1/144, γ2 = −8/63,

γ3 = γ4 = 0, γ5 = 625/1008.

• If q = 7, γ1 = −1/1680, γ2 = 1/15,

γ3 = −27/80, γ4 = γ5 = 0, γ6 = 27/35.

• If q = 8, γ1 = − 1
2304 , γ2 = 32

675 ,

γ3 = − 729
3200 ,γ4 = γ5 = γ6 = 0, γ7 = 117649

172800 .

IV. COMPARATIVE ANALYSIS

In [9] are calculated coefficients related to low orders.

Table I shows the number of steps for different methods, the

advantage of the φA,q(h),is to be calculated simultaneously,

thus the computation time, neglecting the inter-processor

communication time, is proportional to P = 2q − 2.

TABLE I
NUMBER OF STEPS OF THE METHODS

Method Order (q) Number of steps
S P

Lie–Trotter 1 2 –
Strang 2 3 –
Related 2 2 4 2
Ruth 3 6 –
Related 3 3 12 4
Neri 4 7 –
Related 4 4 16 6
Related 5 5 28 8
Yoshida 6 6 8 –
Related 6 6 32 10
Related 7 7 48 12
Yoshida 8 8 16 –
Related 8 8 52 14

• The system (3a) is solvable for: s ≥ q, therefore there

are methods of order q con S = q(q + 1).
• To the other, the system (3b) is solvable for: s ≥ n, this

shows that there are integrators of even order q = 2n
with S = q(q/2 + 1).

V. COMPUTATIONAL IMPLEMENTATION OF PARALLELING

To illustrate see the idea in case q = 4 , it can implement

a shared memory architecture using the API Open MP, with

the technique fork join as developed by [4]. To display

the performance of the proposed methods compared the

results with those obtained using symplectic integrators and

applications exhibit 4 order using distributed memory clusters.

In the implementation for cases q > 4 , you must

increase the number of threads accordingly, will increase the

parallelism of the application and the number of processors,

the proposal is to use a distributed memory architecture,

for which it becomes necessary using a cluster by the MPI

interface proposed technical standard with Master Worker, Fig.

1, see [4] applied as outlined below, so as to provide scalability

to the model, using the Master to maintain synchrony and also

as Worker.

To compare with the serial implementation the Amdahl’s
Law is taken:

The algorithm that decides the speed improvement

Increasing the number of processors from a value not

reflected significant progress. This fact tells us that does not

always serve the parallelization, so we show cases where we

observed that improves significantly. It defines the Speed up
a: Sp =

TS

TT
, in terms of efficiency it can be seen as: Ep =

Sp

p
,

parallelizable algorithm fraction α. Taking that:

TT = TS(1− α) + α
TS

p
;α ∈ [0, 1]

With what fraction will pay for parallelized:

Sp ≤ p

p(1− α) + α

Fig. 1 Master worker scheme (the master is too worker)

The 4th order related methods makes this composition

following this call also affine integrator.

VI. EXAMPLES USING THESE METHODS

A. Stiff System ODE 2× 2

{
ẋ1 = 4x2 − tan(x1),

ẋ2 = −4x1 − tan(x2),
(4)

It decomposes naturally in a linear equations problem and

decoupled.

The linear flow Is a clockwise rotation, the orbits are

indicated in Fig. 3, by circles.
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xj+1 = φA,4(xj , 2h) = γ1Φ1 ◦Φ0(xj , h)+γ2Φ0 ◦Φ1(xj , h)+

...γ3Φ1 ◦Φ0 ◦Φ1 ◦Φ0(xj ,
h

2
) + γ4Φ0 ◦Φ1 ◦Φ0 ◦Φ1(xj ,

h

2
).

That to have a notion of computational implementation show

Fig. 2:

Fig. 2 Affine integrator module parallelized order 4

The no linear flow

ẋj = − tan(xj)

whose solution is:

xj(t) = arcsin(e−t sin(xj,0))

Lines that converge to the origin represent the trajectories

of equations. Note that the solution it is not defined for:

t < ln | sin(xj,0)| ≤ 0 which limits the value of h for

symplectic integrators. In the same graph the exact solution

with initial data (1, 3/2) for t ∈ [0, 2] and the points earned

with φA,4with h = 0, 2 Note that the symplectic integrator

fourth order proposed Neri (1987) [7] and Yoshida (1990) [6],

is not defined for that value of h. Then we display an evolution

conducted in parallel indicated in Fig. 4.

Fig. 3 Flows φ0, φ1 and solution with φA,4 of (4)

.

Fig. 4 Evolution with the parallel code for 4 where Sp = 1.002

.

B. Schrödinger Cubic 2D

{
ut = i(uxx + uyy + |u|2.u),
u(0) = u0.

(5)

The linear flow

φ0(h) = eih∂
2
X

X = (x, y), can be calculated using algorithm Cooley and

Tukey FFT, where Ûs is the discrete Fourier coefficient. Since

η is an integer, where the execution time required to perform

FFT, it is fastest for powers of two, resulted the number of

operations is O(η2 × log(η). We exhibit pseudo Dirac delta

evolution in parallel (a Gaussian with very small variance σ =
0.01 figure 5) and showing the result to 50 sec. in Fig. 6. We

consider:

Ûs(S) =
1

η2

η−1∑
r1=0

η−1∑
r2=0

u(2π/η(r1, r2))e
−i2π/η(r1s2+r1s2).

Iηu(X) =
l∑

s1=−l

l∑
s2=−l

Ûse
iS.X

The nonlinear flow take the ordinary (parametric in X)

ut = i2|u|2u
being that:

∂t|u|2 = 4�i|u|4 = 0

Where worth

|u(X, t)|2 = |u0(X)|2

in which the flow is given by

φ1(h, u0) = ei2h|u0|2u0
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Fig. 5 Initial solution for (5) Dirac delta

Fig. 6 Evolution for (5) in 50 seconds with the parallel module 4 order for
the NLS 2D Sp = 1.2373

VII. GOALS

In this method, be emphasizes stability and the possibility

of no having negative steps give to the Related Methods

unbeatable features in situations where symplectic not work.

Be stable high-order methods and have advantage of to use

simplicity of partial problems. The possibility of parallelism

is an additional advantage that reduces the total computation

time if performed on multiple processors in parallel.

In this paper, we show some figures made parallelizations

making figures with Matlab in the cluster of CNEA.

The idea is to use these methods to treat cases as to

analyze the dynamics of Bose - Einstein rotating based on

the Gross-Pitaevskii equation 2D, irreversible problem with a

term that corresponds to the angular momentum of rotation,

is applying the affine method to find the minimum of the

Hamiltonian by gradient descent.
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